BAB I PENDAHULUAN 1.1 Latar Belakang

dokumen-dokumen yang mirip
BAB I PENDAHULUAN I.1

BAB I PENDAHULUAN. Gambar 1.1. Potensi dan kapasitas terpasang PLTP di Indonesia [1]

BAB I PENDAHULUAN I.1

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. Latar Belakang

I. PENDAHULUAN. menghasilkan energi listrik. Beberapa pembangkit listrik bertenaga panas

BAB IV HASIL ANALISA DAN PEMBAHASAN. 4.1 Pembangkit Listrik Tenaga Panas Bumi Single Flash System

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN. Demikian juga halnya dengan PT. Semen Padang. PT. Semen Padang memerlukan

Program Studi Teknik Mesin BAB I PENDAHULUAN. manusia berhubungan dengan energi listrik. Seiring dengan pertumbuhan

KONVERSI ENERGI PANAS BUMI HASBULLAH, MT

BAB I PENDAHULUAN. 1.1 Latar Belakang. listrik adalah salah stu kebutuhan pokok yang sangat penting

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. Pada akhir Desember 2011, total kapasitas terpasang pembangkit listrik di

OPTIMALISASI PEMBANGKIT LISTRIK SIKLUS BINER DENGAN MEMPERHATIKAN FLUIDA KERJA YANG DIGUNAKAN

BAB I PENDAHULUAN 1.1 Latar Belakang

Tenaga Uap (PLTU). Salah satu jenis pembangkit PLTU yang menjadi. pemerintah untuk mengatasi defisit energi listrik khususnya di Sumatera Utara.

SKRIPSI / TUGAS AKHIR

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN. Latar Belakang

Optimisasi Teknologi Proses Geothermal Sistem Flash Steam pada Pembangkit Listrik Tenaga Panas Bumi di Indonesia

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI

BAB I PENDAHULUAN. Tabel 1.1. Perkembangan Neraca Listrik Domestik Indonesia [2].

BAB I PENDAHULUAN. 1.1 Latar Belakang. Indonesia merupakan Negara yang memiliki sumber panas bumi yang sangat

BAB III APLIKASI TERMODINAMIKA PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI

DAFTAR ISI HALAMAN JUDUL PERNYATAAN BEBAS PLAGIARISME HALAMAN PENGESAHAN HALAMAN TUGAS HALAMAN PERSEMBAHAN HALAMAN MOTTO KATA PENGANTAR DAFTAR TABEL

BAB II TINJAUAN PUSTAKA

ANALISIS SIKLUS KOMBINASI TERHADAP PENINGKATAN EFFISIENSI PEMBANGKIT TENAGA

Pratama Akbar Jurusan Teknik Sistem Perkapalan FTK ITS

ARTIKEL TUGAS INDUSTRI KIMIA ENERGI TERBARUKAN. Disusun Oleh: GRACE ELIZABETH ID 02

BAB II. Prinsip Kerja Mesin Pendingin

1. PENDAHULUAN PROSPEK PEMBANGKIT LISTRIK DAUR KOMBINASI GAS UNTUK MENDUKUNG DIVERSIFIKASI ENERGI

Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure

BAB I PENDAHULUAN. Tabel 1.1. Potensi Sumber Daya Energi Fosil [1]

BAB I PENDAHULUAN Latar Belakang

ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN

Oleh : Dwi Dharma Risqiawan Dosen Pembimbing : Ary Bachtiar K.P, ST, MT, PhD

Analisa Efisiensi Thermal Pembangkit Listrik Tenaga Panas Bumi Lahendong Unit 5 Dan 6 Di Tompaso

BAB II PEMBANGKIT LISTRIK TENAGA PANAS BUMI (PLTP)

BAB I PENDAHULUAN 1.1. Latar Belakang

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU)

BAB I PENDAHULUAN Latar Belakang Penelitian Arief Hario Prambudi, 2014

BAB I PENDAHULUAN BAB I PENDAHULUAN

Analisa Efisiensi Pembangkit Listrik Tenaga Panas Bumi (PLTP) Tipe Single Flash Sistem Yang Dirubah Menjadi Binary Cycle Sistem Di Gunung Salak

Jurnal FEMA, Volume 1, Nomor 3, Juli Kajian Analitis Sistem Pembangkit Uap Kogenerasi

TEKANAN FLASHING OPTIMAL PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI SISTEM DOUBLE-FLASH

Analisa Energi, Exergi dan Optimasi pada Pembangkit Listrik Tenaga Uap Super Kritikal 660 MW Nasruddin*, Pujo Satrio

MODEL PEMBANGKIT LISTRIK TENAGA PANAS BUMI SISTEM HYBRID FLASH-BINARY DENGAN MEMANFAATKAN PANAS TERBUANG DARI BRINE HASIL FLASHING

BAB I PENDAHULUAN. mendirikan beberapa pembangkit listrik, terutama pembangkit listrik dengan

STUDI PADA PENGARUH FWH7 TERHADAP EFISIENSI DAN BIAYA KONSUMSI BAHAN BAKAR PLTU DENGAN PEMODELAN GATECYCLE

STUDI VARIASI LAJU PENDINGINAN COOLING TOWER TERHADAP SISTEM ORC (Organic Rankine Cycle) DENGAN FLUIDA KERJA R-123

BAB III KAJIAN PUSTAKA DAN KERANGKA PEMIKIRAN

Analisis Pengaruh Rasio Reheat Pressure dengan Main Steam Pressure terhadap Performa Pembangkit dengan Simulasi Cycle-Tempo

INOVASI PEMANFAATAN BRINE UNTUK PENGERINGAN HASIL PERTANIAN. PT Pertamina Geothermal Energi Area Lahendong

RANCANGAN EVAPORATOR DAN KONDENSOR PADA PROTIPE PEMBANGKIT LISTRIK TENAGA PANAS AIR LAUT (OCEAN THERMAL ENERGY CONVERSION/ OTEC)

Studi Variasi Flowrate Refrigerant Pada Sistem Organic Rankine Cycle Dengan Fluida Kerja R-123

BAB I PENDAHULUAN. BAB I Pendahuluan

OCEAN ENERGY (ENERGI SAMUDERA)

PENGARUH SUHU DAN TEKANAN TERHADAP PENINGKATAN EFISIENSI THERMAL SIKLUS RANKINE PADA PEMBANGKIT DAYA TENAGA UAP. Oleh ( ) TEKNIK MESIN UNILA

PENGEMBANGAN BINARY CYCLE PADA ORGANIC RANKINE CYCLE (ORC) DENGAN MEMANFAATKAN ENERGI SURYA SEBAGAI SUMBER PANAS

ANALISIS PEMANFAATAN GEOTHERMAL BRINE UNTUK PEMBANGKITAN LISTRIK DENGAN MENGGUNAKAN HEAT EXCHANGER

BAB II TINJAUAN PUSTAKA

BAB 1 PENDAHULUAN. generator. Steam yang dibangkitkan ini berasal dari perubahan fase air

BAB I PENDAHULUAN. udara yang diakibatkan oleh pembakaran bahan bakar tersebut, sehingga

BAB II LANDASAN TEORI

BAB I PENDAHULUAN. dengan melalui 6 tahapan, yaitu raw material extraction, raw material preparation,

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB III METODE PENELITIAN

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN. 1.1 Latar Belakang

PLTU (PEMBANGKIT LISTRIK TENAGA UAP)

Efisiensi PLTU batubara

Program Studi Teknik Mesin BAB I PENDAHULUAN. berfungsi untuk melepaskan kalor. Kondensor banyak digunakan dalam

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN. Tabel 1.1 Besaran dan peningkatan rata-rata konsumsi bahan bakar dunia (IEA, 2014)

1 PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN. untuk meningkatkan efisiensi boiler. Rotary Air Preheater, lazim digunakan untuk

BAB III SISTEM REFRIGERASI DAN POMPA KALOR

PENGARUH REKUPERATOR TERHADAP PERFORMA DARI PEMBANGKIT LISTRIK SIKLUS BINER

Analisis Pengaruh Tekanan Fluida Pemanas pada LPH terhadap Efisiensi dan Daya PLTU 1x660 MW dengan Simulasi Cycle Tempo

BAB I. bergantung pada energi listrik. Sebagaimana telah diketahui untuk memperoleh energi listrik

BAB II DASAR TEORI. Energy balance 1 = Energy balance 2 EP 1 + EK 1 + U 1 + EF 1 + ΔQ = EP 2 + EK 2 + U 2 + EF 2 + ΔWnet ( 2.1)

MAKALAH SEMINAR KERJA PRAKTEK. PROSES SINKRON GENERATOR PADA PEMBANGKIT di PT. GEO DIPA ENERGI UNIT I DIENG

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG

PEMBANGKIT LISTRIK TENAGA PANAS LAUT BAB I PENDAHULUAN

BAB 1 Pendahuluan Latar Belakang

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak. daur ini terjadi proses kompresi (1 ke 2), 4) dan penguapan (4 ke 1), seperti pada

PEMBANGKIT LISTRIK SISTEM BINER UNTUK LAPANGAN PANAS BUMI SKALA KECIL: STUDI KASUS LAPANGAN DIENG. Didi Sukaryadi

STUDI EKSPERIMEN PENGARUH PEMBEBANAN GENERATOR PADA PERFORMA SISTEM ORGANIC RANKINE CYCLE (ORC)

BAB III DASAR TEORI SISTEM PLTU

BAB IV HASIL DAN ANALISIS

Perancangan Siklus Rankine Organik Untuk Pemanfaatan Gas Buang Pada PLTU di Indonesia

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara

BAB 3 SIMULASI SIKLUS CETUS-BINER PADA PLTP

BAB I PENDAHULUAN. listrik. Adapun pembangkit listrik yang umumnya digunakan di Indonesia yaitu

I. PENDAHULUAN. kebutuhannya demikian juga perkembangannya, bukan hanya untuk kebutuhan

STUDI PEMBANGUNAN PLTP GUCI 1 X 55 MW JAWA TENGAH BERDASARKAN ASPEK TEKNIS, EKONOMI, DAN LINGKUNGAN.

ANALISA EFISIENSI PERFORMA HRSG ( Heat Recovery Steam Generation ) PADA PLTGU. Bambang Setyoko * ) Abstracts

Transkripsi:

BAB I PENDAHULUAN 1.1 Latar Belakang Energi menjadi peran penting dalam menunjang kehidupan manusia. Ketersediaan energi Indonesia saat ini masih didominasi oleh energi fosil. Energi fosil Indonesia jumlahnya terbatas dan harus menghadapi masalah pertumbuhan konsumsi energi yang semakin meningkat. Konsumsi energi Indonesia dalam satu dasawarsa terahkir menunjukkan peningkatan rata-rata 7-8% per tahun seiring dengan pertambahan populasi dan pertumbuhan ekonomi yang terus membaik. Kondisi ini menuntut ketersediaan energi untuk mendukung aktivitas perekonomian dan dinamika sosial masyarakat. Namun demikian, berbagai tantangan dan kendala untuk memenuhi kebutuhan energi diantaranya produksi minyak bumi yang cendrung menurun sementara akselerasi pengembangan energi baru terbarukan (EBT) yang diharapkan dapat jadi tulang punggung baru energi nasional masih belum maksimal [1]. Mengacu pada data kondisi energi Indonesia tahun 2013 dari Dewan Energi Nasional (DEN) kontribusi energi baru terbarukan yang meliputi panas bumi, air, biomassa, dan surya hanya 8% dari total pemakaian energi di Indonesia. Meskipun data menunjukkan kontribusi energi baru terbarukan yang semakin meningkat, tetapi kontribusinya masih sangat jauh dari target Kebijakan Energi Nasional (KEN) yaitu 21% (tanpa biomassa) di tahun 2025. Panas bumi tercatat pada tahun 2012 memiliki potensi total sebesar 28,617 GW namun pemanfaatannya masih kecil yaitu kapasitas terpasang masih sebesar 1,341 GW. Pulau Sumatera memiliki potensi terbesar yaitu 12,760 GW kemudian diikuti oleh Pulau Jawa yaitu 9,717 GW. Besar potensi tersebut tidak diikuti oleh besarnya pemanfaatan, di lihat bahwa pada Pulau Sumatera hanya 122 MW potensi panas bumi yang dapat dimanfaatkan, dan pada Pulau Jawa hanya 1.134 MW potensi yang telah dimanfaatkan. 1

2 Tabel 1.1. Potensi panas bumi di Indonesia 2012 [2] No. Pulau Jumlah Lokasi 2012 Potensi Energi (Mwe) Sumber Daya Cadangan Spekulatif Hipotesis Terduga Mungkin Terbukti Total Terpasang 1 Sumatera 90 3,089 2,427 6,849 15 380 12,760 122 2 Jawa 71 1,710 1,826 3,708 658 1,815 9,717 1,134 3 Bali-Nusa Tenggara 28 360 417 1,013-15 1,805 5 4 Kalimantan 12 145 - - - - 145 5 Sulawesi 65 1,323 119 1,374 150 78 3,044 80 6 Maluku 30 545 97 429 - - 1,071 7 Papua 3 75 - - - - 75 Total 299 7,247 4,886 13,373 823 2,288 28,617 1,341 12,133 16,484 Sebagian besar lokasi panas bumi di Indonesia terletak di lingkungan vulkanik dan sisanya di lingkungan batuan sedimen metamorf, sehingga sebagian besar sumber panas bumi di Indonesia tergolong mempunyai entalpi tinggi dengan suhu 250-300ºC [1]. Panas bumi merupakan energi terbarukan yang mana konversi energi terjadi dari fluida panas bumi yang idealnya berfasa uap digunakan langsung untuk memutar turbin sehingga dapat menggerakkan generator dan menghasilkan listrik. Uap panas bumi berasal dari hasil pemanasan air tanah oleh perut bumi, ketika air yang tidak memiliki suhu tinggi kontak dengan batuan panas maka air akan berubah fasa menjadi uap bersuhu dan tekanan tinggi sehingga dapat dimanfaatkan untuk Pembangkit Listrik Tenaga Panas Bumi (PLTPB). Pada kenyataannya tidak semua fluida panas bumi didominasi fasa uap, banyak juga fluida yang di dominasi fasa cair oleh karena itu pemanfaatan potensi panas bumi dibagi menjadi 3 macam yaitu dry steam, flash steam, dan binary cycle. Teknologi dry steam merupakan teknologi untuk fluida yang didominasi fase uap sehingga fluida langsung dimanfaatkan untuk memutar turbin. Teknologi

3 flash steam merupakan teknologi untuk fluida panas bumi yang cukup banyak mengandung fasa cair, oleh karena itu fluida dipisahkan melalui separator terlebih dahulu kemudian uap yang sudah dipisahkan digunakan untuk memutar turbin. Teknologi binary cycle merupakan teknologi untuk fluida panas bumi yang hampir seluruhnya didominasi fasa cair, sehingga fluida hanya akan masuk ke penukar panas di siklus biner untuk mengubah fasa fluida kerja menjadi uap dan dapat digunakan untuk memutar turbin. Teknologi flash steam memisahkan fluida 2 fasa menjadi uap yang dimanfaatkan untuk memutar turbin dan air panas buang untuk diinjeksikan kembali ke sumur. Air panas buang atau brine water sebelum diinjeksikan biasanya ditampung terlebih dahulu di kolam penampung atau thermal pond untuk menurunkan suhunya agar cukup dingin untuk di injeksikan kembali ke sumur. Air panas buang hasil pemisahan biasanya masih memiliki suhu yang tinggi, sehingga memilik potensi untuk membangkitkan listrik dalam skala kecil. Siklus Rankine Organik (Organic Rankine Cycle) yang untuk selanjutnya disingkat ORC adalah modifikasi dari siklus Rankine. Siklus Rankine adalah siklus termodinamika tertutup yang mengubah kalor menjadi kerja. ORC memodifikasi siklus Rankine dengan menggunakan fluida kerja organik dan mengganti peran boiler dengan evaporator untuk mengubah fluida menjadi fasa uap. Fluida organik ini yang mendasari perbedaan siklus Rankine dan ORC. Teknologi ORC telah diproduksi oleh berbagi manufaktur seperti Turboden, ORMAT, Adoratec, GE CleanCycle, dan lain sebagainya. Masing-masing manufaktur mempunyai fungsi untuk aplikasi tertentu diantaranya biomassa, surya, panas bumi, Waste Heat Recovery (WHR), dan Combine Heat Recovery (CHP). Masing-masing manufaktur dan aplikasi mempunyai rentang daya dibangkitkan yang berbeda-beda.

4 Tabel 1.2. Daftar manufaktur utama ORC [3] Manufacture Applications Power Range [kwe] Heat Source Temperature [ C] ORMAT, US Geo., WHR, Solar 200-70.000 150-300 Turboden, Italy Biomass-CHP, WHR, Geo. 200-20.000 100-300 Adoratec, Germany Biomass-CHP 315-1.600 300 Opcon, Sweden WHR 350-800 <120 GMK, Germany WHR, Geo., Biomass-CHP 50-5.000 120-350 Bosch KWK, Germany WHR 65-325 120-150 Turboden PureCycle, US WHR, Geo. 280 91-149 GE CleanCycle WHR 125 >121 Cryostar, France WHR, Geo. n/a 100-400 Tri-o-gen, Netherlands WHR 160 >350 Electratherm, US WHR, Solar 50 >93 ORC memiliki komponen-komponen utama yaitu evaporator sebagai penukar kalor, turbin sebagai expander untuk memutar generator, kondensor sebagai penurun suhu, dan pompa untuk menaikkan tekanan. Teknologi ORC yang disediakan dalam bentuk satu modul dapat langsung diterapkan, namun diperlukan sistem pendukung agar ORC dapat beroperasi. Balance of Plant (BOP) atau sistem pendukung yang dibutuhkan terdiri unit penukar panas, unti suplai refrigeran, unit menara pendingin, dan unit suplai air pendingin. Selain itu juga dibutuhkan layout pembangkit daya berbasis ORC. Gambar 1.1. Diagram skematik sistem menara pendingin [4]

5 Unit menara pendingin atau cooling tower dibutuhkan untuk membantu kinerja kondensor. Kondensor berfungsi menurunkan suhu fluida kerja membutuhkan air pendingin. Oleh karena peran menara pendingin yang selalu menyupali air dingin ke kondensor maka menara pendingin harus menurunkan suhu air panas dari kondensor agar kondensor dapat bekerja optimal. Menara pendingin menurunkan suhu air panas dengan cara menguapkan air panas dengan udara lingkungan. 1.2. Perumusan Masalah Berdasarkan latar belakang yang telah diuraikan, maka disusun perumusan masalah yaitu: 1. Brine water pada panas bumi memiliki potensi untuk membangkitkan listrik dalam skala kecil menggunakan ORC, pemilihan rancangan sistem yang paling optimal ditentukan oleh variabel efisiensi dan daya dibangkitkan. 2. ORC memiliki salah satu komponen yaitu kondensor yang mana membutuhkan sistem pendukung atau Balance of Plant (BOP) yang berupa menara pendingin untuk mendukung kerjanya. Desain konseptual menara pendingin harus disesuaikan dengan kebutuhan air pendingin di kondensor. 1.3. Batasan Masalah Adapun batasan masalah yang digunakan dalam penelitian tugas akhir ini adalah: 1. Pemodelan sistem ORC pada keadaan steady state. 2. Simulasi sistem ORC menggunakan Cycle Tempo 5. 1. 3. Data sumber panas di sistem pembangkit ini adalah data sekunder yang diambil di PT. Geo Dipa Energi Dieng. 4. Data suhu lingkungan untuk perancangan menara pendingin adalah data sekunder yang diambil di PT. Geo Dipa Energi Dieng. 5. Suhu udara lingkungan menggunakan suhu rerata harian tertinggi. 6. Dinding menara pendingin bersifat adiabatik.

6 1.4. Tujuan Tujuan dari penelitian ini adalah: 1. Memperoleh rancangan sistem ORC pada pemanfaatan air panas buang Geotermal. 2. Memperoleh bagian-bagian menara pendingin apa saja yang dibutuhkan untuk proses pendinginan air sehingga dapat mencapai kebutuhan kondensor. 3. Mendapatkan perhitungan (desain konsep baik secara geometri maupun bentuk) dari tiap-tiap bagian menara pendingin tersebut. Tujuan ke- 1 dikerjakan bersama dengan peneliti lain yaitu Fahmi Fahrurozi, Rizky Rachmadi, dan Ramanda. 1.5. Manfaat Penelitian ini diharapkan dapat memberikan gambaran tentang menara pendingin dan metode pemanfaatan sumber panas bumi dengan sistem ORC yang dapat diterapkan bagi pelaku bisnis panas bumi maupun pemerintah dalam mengembangkan potensi panas bumi di Indonesia, khususnya di PT. Geo Dipa Energi Dieng untuk dimanfaatkan sebagai pembangkit listrik skala kecil