Analisis Kinerja SISO dan MIMO pada Mobile WiMAX e

dokumen-dokumen yang mirip
ANALISIS UNJUK KERJA TEKNIK MIMO STBC PADA SISTEM ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING

BAB III PEMODELAN MIMO OFDM DENGAN AMC

BAB I PENDAHULUAN 1.1 Latar Belakang

ANALISIS UNJUK KERJA CODED OFDM MENGGUNAKAN KODE CONVOLUTIONAL PADA KANAL AWGN DAN RAYLEIGH FADING

KINERJA TEKNIK SINKRONISASI FREKUENSI PADA SISTEM ALAMOUTI-OFDM

ESTIMASI KANAL MIMO 2x2 DAN 2x3 MENGGUNAKAN FILTER ADAPTIF KALMAN

EVALUASI KINERJA TEKNIK ADAPTIVE MODULATION AND CODING (AMC) PADA MOBILE WiMAX MIMO-OFDM

Analisa Kinerja Alamouti-STBC pada MC CDMA dengan Modulasi QPSK Berbasis Perangkat Lunak

PENGARUH ERROR SINKRONISASI TRANSMISI PADA KINERJA BER SISTEM MIMO KOOPERATIF

Analisis Penerapan Teknik AMC dan AMS untuk Peningkatan Kapasitas Kanal Sistem MIMO-SOFDMA

Implementasi dan Evaluasi Kinerja Multi Input Single Output Orthogonal Frequency Division Multiplexing (MISO OFDM) Menggunakan WARP

BAB I PENDAHULUAN 1.1 Latar Belakang

ANALISA KINERJA ESTMASI KANAL DENGAN INVERS MATRIK PADA SISTEM MIMO. Kukuh Nugroho 1.

BAB I PENDAHULUAN. Tuntutan kebutuhan manusia untuk dapat berkomunikasi di segala tempat,

BAB II DASAR TEORI. Gambar 2.1. Pemancar dan Penerima Sistem MC-CDMA [1].

BAB IV HASIL SIMULASI DAN ANALISIS

ANALISIS KINERJA TEKNIK DIFFERENTIAL SPACE-TIME BLOCK CODED PADA SISTEM KOMUNIKASI KOOPERATIF

Simulasi MIMO-OFDM Pada Sistem Wireless LAN. Warta Qudri /

KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO

Analisa Kinerja Sistem MIMO-OFDM Pada Estimasi Kanal LS Untuk Modulasi m-qam

ANALISIS KINERJA SPHERE DECODING PADA SISTEM MULTIPLE INPUT MULTIPLE OUTPUT

Analisa Kinerja MIMO 2X2 dengan Full-Rate STC pada Mobile WiMAX

TUGAS AKHIR UNJUK KERJA MIMO-OFDM DENGAN ADAPTIVE MODULATION AND CODING (AMC) PADA SISTEM KOMUNIKASI NIRKABEL DIAM DAN BERGERAK

ANALISIS PENERAPAN MODEL PROPAGASI ECC 33 PADA JARINGAN MOBILE WORLDWIDE INTEROPERABILITY FOR MICROWAVE ACCESS (WIMAX)

ANALISIS KINERJA OSTBC (Orthogonal Space Time Block Code) DENGAN RATE ½ DAN ¾ MENGGUNAKAN 4 DAN 3 ANTENA MODULASI M-PSK BERBASIS PERANGKAT LUNAK

ANALISIS KINERJA SISTEM MIMO-OFDM PADA KANAL RAYLEIGH DAN AWGN DENGAN MODULASI QPSK

Gambar 1. Blok SIC Detektor untuk Pengguna ke-1 [4]

BAB IV PEMODELAN SIMULASI

Bit Error Rate pada Sistem MIMO MC-CDMA dengan Teknik Alamouti-STBC

BAB I PENDAHULUAN PENDAHULUAN

Kata kunci : Spread spectrum, MIMO, kode penebar. vii

Analisa Kinerja Orthogonal Frequency Division Multiplexing (OFDM) Berbasis Perangkat Lunak

Analisis Throughput Pada Sistem MIMO dan SISO ABSTRAK

ANALISIS KINERJA SISTEM KOOPERATIF BERBASIS MC-CDMA PADA KANAL RAYLEIGH MOBILE DENGAN DELAY DAN DOPPLER SPREAD

Implementasi dan Evaluasi Kinerja Kode Konvolusi pada Modulasi Quadrature Phase Shift Keying (QPSK) Menggunakan WARP

Jurnal JARTEL (ISSN (print): ISSN (online): ) Vol: 3, Nomor: 2, November 2016

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

Kata Kunci: ZF-VBLAST dan VBLAST-LLSE.

Analisis Kinerja Sistem MIMO-OFDM pada Kanal Rayleigh dan AWGN dengan Modulasi QPSK


REDUKSI EFEK INTERFERENSI COCHANNEL PADA DOWNLINK MIMO-OFDM UNTUK SISTEM MOBILE WIMAX

Analisis Unjuk Kerja Convolutional Code pada Sistem MIMO MC-DSSS Melalui Kanal Rayleigh Fading

BAB III METODOLOGI PENELITIAN

BAB I PENDAHULUAN 1.1 Latar Belakang

Gambar 1.1 Pertumbuhan global pelanggan mobile dan wireline [1].

PENGARUH FREQUENCY SELECTIVITY PADA SINGLE CARRIER FREQUENCY DIVISION MULTIPLE ACCESS (SC-FDMA) Endah Budi Purnomowati, Rudy Yuwono, Muthia Rahma 1

BAB I PENDAHULUAN. 1.1 Latar Belakang. Bab II Landasan teori

ISSN : e-proceeding of Engineering : Vol.3, No.2 Agustus 2016 Page 1654

Presentasi Tugas Akhir

BAB 2 KONSEP MOBILE WiMAX

BAB I PENDAHULUAN. 1.1 Latar Belakang

Analisa Sistem DVB-T2 di Lingkungan Hujan Tropis

Gambar 2.1 Skema CDMA

BAB III METODOLOGI PENELITIAN

PERHITUNGAN BIT ERROR RATE PADA SISTEM MC-CDMA MENGGUNAKAN GABUNGAN METODE MONTE CARLO DAN MOMENT GENERATING FUNCTION.

ANALISA KINERJA SISTEM KOOPERATIF BERBASIS MC- CDMA PADA KANAL RAYLEIGH MOBILE DENGAN DELAY DAN DOPPLER SPREAD

BAB III PERANCANGAN MODEL KANAL DAN SIMULASI POWER CONTROL DENGAN MENGGUNAKAN DIVERSITAS ANTENA

UNIVERSITAS INDONESIA SIMULASI DAN ANALISA KINERJA SISTEM MIMO OFDM-FDMA BERDASARKAN ALOKASI SUBCARRIER SKRIPSI

Analisis Penanggulangan Inter Carrier Interference di OFDM Menggunakan Zero Forcing Equalizer

DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2011

BAB II LANDASAN TEORI

Visualisasi dan Analisa Kinerja Kode Konvolusi Pada Sistem MC-CDMA Dengan Modulasi QAM Berbasis Perangkat Lunak

BAB I PENDAHULUAN. Gambar 1.1. Konsep global information village [2]

ANALISIS PENGARUH PERGERAKAN USER TERHADAP KUALITAS SINYAL SUARA PADA JARINGAN WIMAX IEEE

BAB III MODEL SISTEM MIMO OFDM DENGAN SPATIAL MULTIPLEXING

I. PENDAHULUAN. kebutuhan informasi suara, data (multimedia), dan video. Pada layanan

BAB II LANDASAN TEORI

Analisis Estimasi Kanal Dengan Menggunakan Metode Invers Matrik Pada Sistem MIMO-OFDM

Analisis Kinerja Kombinasi Sistem CDMA-OFDM dengan MIMO

IMPLEMENTASI MULTIPATH FADING RAYLEIGH MENGGUNAKAN TMS320C6713

BAB III PEMODELAN SISTEM

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1. 1 LATAR BELAKANG

BAB III PERANCANGAN SFN

SIMULASI PERBANDINGAN Wi-MAX DAN 3G-WCDMA DALAM MENGHADAPI MULTIPATH FADING

ADAPTIVE MODULATION AND CODING (AMC) SPATIAL DIVERSITY MIMO-OFDM UNTUK SISTEM MOBILE WIMAX SKRIPSI

Perancangan dan Pengujian Desain Sinkronisasi Waktu dan Frekuensi

Simulasi Perbandingan WiMAX dan 3G-WCDMA Dalam Menghadapi Multipath Fading

Perancangan dan Implementasi Prosesor FFT 256 Titik-OFDM Baseband 1 Berbasis Pengkodean VHDL pada FPGA

STUDI BIT ERROR RATE UNTUK SISTEM MC-CDMA PADA KANAL FADING NAKAGAMI-m MENGGUNAKAN EGC

PERENCANAAN ANALISIS UNJUK KERJA WIDEBAND CODE DIVISION MULTIPLE ACCESS (WCDMA)PADA KANAL MULTIPATH FADING

Simulasi Dan Analisa Efek Doppler Terhadap OFDM Dan MC-CDMA

Tekno Efisiensi Jurnal Ilmiah KORPRI Kopertis Wilayah IV, Vol 1, No. 1, Mei 2016

ABSTRAK. 2. PERENCANAAN SISTEM DAN TEORI PENUNJANG Perencanaan sistem secara sederhana dalam tugas akhir ini dibuat berdasarkan blok diagram berikut:

PERBANDINGAN KINERJA ANTARA OFDM DAN OFCDM PADA TEKNOLOGI WiMAX

ANALISIS UNJUK KERJA EKUALIZER PADA SISTEM KOMUNIKASI DENGAN ALGORITMA GODARD

Analisis Nilai Bit Error Rate pada Sistem MIMO MC-CDMA. dengan Teknik Alamouti-STBC. Oleh Sekar Harlen NIM:

ABSTRAK (1) Dimana : Gambar 1. Blok SIC Detektor untuk Pengguna ke-1 [4] Sinyal yang diterima berdasarkan gambar 1. dapat ditulis:

BAB I 1.1 Latar Belakang

Analisa Kinerja Kode Konvolusi pada Sistem Successive Interference Cancellation Multiuser Detection CDMA Dengan Modulasi QPSK Berbasis Perangkat Lunak

Sistem Mimo dan Aplikasi Penggunaannya

BAB I PENDAHULUAN. Seluruh mata rantai broadcasting saat ini mulai dari proses produksi

PENGUJIAN TEKNIK FAST CHANNEL SHORTENING PADA MULTICARRIER MODULATION DENGAN METODA POLYNOMIAL WEIGHTING FUNCTIONS ABSTRAK

BAB II DASAR TEORI. Bab 2 Dasar Teori Teknologi Radio Over Fiber

BAB II LANDASAN TEORI

TEKNOLOGI WIMAX UNTUK LINGKUNGAN NON LINE OF SIGHT (Arni Litha)

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

Fitur Utama OFDM dan OFDMA. bagi Jaringan Komunikasi Broadband

Estimasi Doppler Spread pada Sistem Orthogonal Frequency Division Multiplexing (OFDM) dengan Metode Phase Difference

Transkripsi:

Analisis Kinerja SISO dan MIMO pada Mobile WiMAX 80.6e Mustofa Agung Prasetya, Wirawan Jurusan Teknik Elektro FTI - ITS Abstrak Perkembangan teknologi Mobile WiMAX yang mengarah kepada pemenuhan akan kebutuhan kapasitas yang tinggi, serta penggunaan bandwidth yang efisien dan kemampuan dalam menghadapi gangguan selama transmisi yang berujung pada minimnya error. Maka digunakanlah teknologi multiple input multiple output (MIMO) yang sangat mendukung dalam hal tersebut. Teknologi MIMO yang digunakan pada Mobile WiMAX adalah Space Time Block Coding (STBC) dan Spatial Multiplexing (SM). Tugas akhir ini merancang dan menyimulasikan pemodelan sistem MIMO-STBC Alamouti dan Spatial Multiplexing (SM) yang memenuhi spesifikasi standar Mobile WiMAX 80.6e. Sistem yang digunakan dalam simulasi mengacu pada parameter-parameter yang ada dalam Mobile WiMAX. Jumlah antena MIMO yaitu antena pengirim dan antena penerima, model kanal yang digunakan adalah Rayleigh fading dan noise AWGN. Dari kedua sistem MIMO yaitu MIMO-STBC Alamouti dan MIMO-Spatial Multiplexing dibandingkan dengan sistem SISO, berdasarkan performansi nilai versus SNR. Kata kunci Mobile WiMAX, MIMO, STBC Alamouti, Spatial Multiplexing. I. PENDAHULUAN erdapat dua macam jenis WiMAX berdasar jenis band Tyang digunakan yaitu Fixed WiMAX dan Mobile WiMAX. Ada banyak Standar Mobile WiMAX tetapi pada bulan Desember 005 IEEE menyelesaikan amandemen 80.6e-005 [], yang menambah beberapa fitur baru mendukung aplikasi mobile dan menyediakan layanan handoff serta roaming. Standar yang dihasilkan sering disebut sebagai Mobile WiMAX. Mobile WiMAX sudah menggunakan Scalable Orthogonal Frequency Division Multiplexing Access (SOFDMA), yaitu suatu teknik multi-carrier modulation yang menggunakan subkanalisasi. Pada awalnya WiMAX menggunakan teknologi antena single input single output (SISO) untuk transmisinya, akan tetapi seiring perkembangan teknologi WiMAX yang membutuhkan kehandalan dalam transfer dan akses data, maka digunakanlah teknologi multiple input multiple output (MIMO) yang sangat mendukung dalam hal tersebut. Mobile WiMAX mendukung penuh berbagai teknik antena cerdas, termasuk Beamforming, Spatial Transmit Diversity dan Spatial Multiplexing (SM). Beamforming atau lebih khusus eigen beamforming membutuhkan channel state information (CSI) di pemancar []. Mobile WiMAX juga mendukung teknik Adaptive MIMO Switching (AMS) untuk memilih skema MIMO terbaik. Spatial transmit diversity dicapai dengan menerapkan Alamouti Space Time Coding untuk downlink (DL) []. II. TEORI PENUNJANG A. Space Time Block Coding (STBC) Bentuk STC yang paling sederhana yang diperkenalkan oleh Siavash M, Alamouti pada tahun 998 yang penerapannya terbatas pada sistem dengan dua antena transmitter. Pada sistem STBC Alamouti, aliran data yang sama dipancarkan melalui kedua antena transmitter. Namun, sebelum siap dipancarkan, aliran data yang menuju ke setiap antena mengalami perlakuan yang berbeda. STBC yang diciptakan oleh Alamouti dapat digunakan untuk sistem yang menggunakan dua antena pengirim. STBC tersebut dapat dinyatakan dalam matriks berikut []: * s 0 s * (.) s s0 Dimana s menyatakan simbol dan * menyatakan bilangan kompleks konjugat. Untuk mengirimkan dua simbol dibutuhkan dua time slot, namun pada antena kedua urutan simbolnya dibalik, dikonjugasikan, dan salah satunya dinegatifkan, tujuannya adalah untuk memudahkan pemisahan kedua simbol pada penerima sehingga deteksi dua simbol yang semula harus dilakukan bersamaan pada sinyal campuran sekarang dapat dipecah menjadi dua proses deteksi simbol yang terpisah. Gambar menunjukkan skema Alamauti x, dimana pada skema tersebut terdiri dari antena transmitter dan antena receiver. Gambar Skema Alamouti X []

Tabel Definisi Kanal Pada Antena Transmitter dan Receiver rx antenna 0 rx antenna tx antenna 0 h 0 h tx antenna h h Tabel Notasi Sinyal Pada Antena Receiver rx antenna 0 rx antenna time t r 0 r Time t + T r r r 0 = h 0 s 0 + h s + n 0 r = -h 0 s * + h s * 0 + n () r = h s 0 + h s + n r = -h s * + h s * 0 + n Dimana n 0, n, n dan n adalah variable random kompleks yang merupakan representasi dari noise dan interferensi. Pada gambar dari combiner dua sinyal yang dikirimkamkan ke maximum likelihood detector dapat ditulis: * * * * s0 = h0r0 + hr + hr + hr () * * * * s = h r h0r + hr hr Setelah persamaan tersebut disubtitusi seperti pada skema konvensional didapatkan: * * * * s0 = ( α0 + α + α + α ) s0 + h0n0 + hn + hn + hn () * * * * s = ( α + α + α + α ) s h n + h n h n + h n 0 0 B. Spatial Multiplexing [4] Konsep Spatial Multiplexing berbeda dengan konsep spacetime coding yang mementingkan kualitas sinyal yang diterima dan meningkatkan diversity gain. Spatial Multiplexing dapat dinotasikan dengan matriks [s s ] T. Dimana simbol ditransmisikan secara paralel oleh dua antena pemancar dengan notasi s dan s, masing-masing menunjukkan respon saluran dari antena pemancar (Tx) i ke antena penerima (Rx) j oleh kanal hji (i,j=,), sinyal yang diterima oleh dua antena penerima dapat dinyatakan sebagai : r = hs + hs + n (4) r = hs + hs + n Persamaan 4 dapat ditulis dalam bentuk matrik sebagai : r h h s = + n (5) r h h s n Konsep Spatial multiplexing yang mengirim deretan simbol yang akan dipecah menjadi beberapa paralel deretan simbol, yang kemudian ditransmisikan secara simultan dengan bandwidth yang sama pada masing-masing antenna. Sehingga teknik Spatial multiplexing akan memberikan peningkatan laju data, dan dapat menambah spektrum efisiensi sehingga dapat menambah kecepatan transmisi data. 0 Gambar Perbandingan Sinyal Single-Carrier dengan Sinyal OFDM Dalam sistem OFDM, aliran data input dibagi menjadi beberapa aliran data paralel dengan data rate yang lebih rendah dari data rate sebelumnya (durasi simbol bertambah) dan masing-masing aliran data pararel tersebut dimodulasi dan ditransmisikan melalui sub-carrier terpisah yang saling ortogonal. Karena sinyal OFDM dikirimkan pada beberapa carrier berpita sempit(narrowband) yang saling ortogonal. Gambar menunjukkan perbandingan antara sinyal OFDM dan sinyal single-carrier, sinyal OFDM dikirimkan secara paralel dan sinyal single-carrier dikirimkan secara serial. Kemampuan untuk mengatasi delay spread, multipath, dan Inter-Symbol Interference (ISI) memungkinkan kita untuk dapat mengirim data rate yang lebih tinggi dan dapat bekerja pada lingkungan NLOS. Oleh karena itu sangat mudah untuk mengekualisasi satu carrier OFDM dibandingkan dengan mengekualisasi sinyal single carrier dengan bandwidth yang lebih lebar. D. Kanal Nirkabel (Wireless Channel) Pada proses transmisi, sinyal sampai ke penerima tidak hanya melalui satu jalur tetapi datang dari berbagai jalur (multipath). Pada sistem ini, karakteristik kanal diwakili oleh dua gejala yaitu multipath fading dan adanya noise yang berdistribusi Gaussian, yaitu Additive White Gaussian Noise (AWGN). - AWGN (Additive White Gaussian Noise) [7] Pada kanal transmisi selalu terdapat penambahan noise yang timbul karena akumulasi thermal noise dari perangkat penerima. Additive White Gaussian Noise (AWGN) merupakan model kanal sederhana dan umum dalam suatu sistem komunikasi. Model kanal ini dapat digambarkan seperti gambar. C. Teknologi OFDM [5,6,7] Orthogonal Frequency Division Multiplexing (OFDM) merupakan suatu teknik multiplexing yang membagi-bagi bandwidth menjadi beberapa frekuensi sub-carrier. OFDM merupakan bentuk khusus dari multi-carrier modulation. Gambar Pemodelan Kanal AWGN

Sinyal yang dikirim X(t), pada kanal akan terkena derau AWGN n(t). Sehingga sinyal yang diterima menjadi Y(t) = X(t) + n(t). - Kanal Multipath [5,7] Dalam sistem komunikasi wireless, kondisi lingkungan yang terdiri dari berbagai objek sangat mempengaruhi penjalaran sinyal dari pengirim menuju penerima, akibatnya sinyal yang dipancarkan oleh suatu pengirim akan melewati berbagai lintasan dan mengalami peredaman, penguatan, hamburan, difraksi dll. Di sisi penerima total sinyal yang diterima adalah sinyal yang telah mengalami variasi amplitudo dan fasa. Efek seperti ini dikenal sebagai multipath propagation atau multipath fading. III. PEMODELAN DAN SIMULASI SISTEM A. Pemodelan Sistem Secara umum, akan ada tiga model sistem yang digunakan untuk simulasi, yaitu :. Sistem transmisi SISO.. Sistem transmisi MIMO-STBC Alamouti x.. Sistem transmisi MIMO-Spatial Multiplexing x. Pemodelan secara umum dapat dilihat pada gambar 4. Gambar 6 Diagram Blok Simulasi MIMO STBC Alamouti Gambar 7 Diagram Blok Simulasi MIMO Spatial Multiplexing Gambar 4 Diagram Alir Pemodelan Sistem Data Bits Convolutional Encoder Modulation (QPSK, M-QAM) Sub-channel Maping IFFT Rayleigh Fading + AWGN Data Viterbi Decoder Demodulation Symbol Sub-channel Demaping IFFT B. Parameter Sistem Dalam sistem Mobile WiMAX yang akan disimulasikan pada Tugas Akhir ini menggunakan parameter-parameter dasar yang ada dalam sistem Mobile WiMAX secara keseluruhan. Parameter OFDM yang digunakan untuk simulasi terdapat pada tabel. Modulasi yang digunakan adalah QPSK, 6-QAM, 64-QAM dengan code rate bervarisi /, /, dan /4. Koding yang digunakan untuk error control coding adalah Convolutional Encoder. Tabel code rate untuk modulasi di tunjukkan tabel 4. Untuk mensimulasikan kanal transmisi digunakan rayleigh fading dan AWGN. Rayleigh fading divariasikan dengan parameter kecepatan (v) gerak relatif mobile station dengan base station. Variasi kecepatan gerak juga merupakan variasi pergeseran maksimum frekuensi Doppler (Doppler shift). Nilai kecepatan (v) dalam simulasi ini adalah Km/Jam. Noise Gambar 5 Diagram Blok Simulasi SISO

Tabel Parameter OFDM Parameter Value Channel bandwidth (MHz) 5 Sampling frequency Fs (MHz) 5.6 Sampling period / Fs (μs) 0.8 FFT Size (NFFT) 5 Subcarrier frequency spacing Δf=Fs /NFFT (khz) 0.94 Useful symbol period Tb=/Δf(μs) 9.4 Guard Time Tg=Tb/4 (μs).8 OFDMA symbol duration Ts=Tb+Tg (μs) 4. Number of used subcarriers (Nused) 4 Number of pilot subcarriers 60 Number of data subcarriers 60 Number of data subcarriers/subchannel 4 Number of subchannels 5 Tabel 4 Tabel Code Rate Modulasi Code Rate QPSK ½ QPSK ¾ 6-QAM ½ 6-QAM ¾ 64-QAM / 64-QAM ¾ IV. ANALISA DATA DAN PEMBAHASAN A. Analisa Hasil Simulasi Pemodelan Antena Tunggal (SISO) Gambar 8 adalah kurva dari data yang dimodulasikan dibandingkan terhadap nilai SNR. Dapat diamati pada gambar 8 terlihat bahwa modulasi QPSK dengan code rate / dan /4 nilai mencapai ketika SNR sekitar 6 db dan 9,5 db. Untuk Modulasi 6-QAM dengan code rate / dan /4 nilai mencapai ketika SNR sekitar,5 db dan sekitar 5,5 db. Sedang untuk Modulasi 64-QAM dengan code rate / dan /4 nilai mencapai Ketika SNR sekitar 9,5 db dan sekitar,5 db. B. Analisa Hasil Simulasi Pemodelan Sistem MIMO-STBC Alamouti x Pada gambar 9 dapat dilihat bahwa modulasi QPSK dengan code rate / dan /4 mencapai ketika SNR sekitar db dan sekitar 4.5 db. Untuk modulasi 6-QAM dengan code rate / dan /4 nilai mencapai ketika SNR sekitar 7.5 db dan sekitar.5 db. Sedang untuk Modulasi 64-QAM dengan code rate / dan /4 nilai mencapai ketika SNR sekitar 6.5 db dan sekitar 8.5 db. C. Analisa Hasil Simulasi Pemodelan Sistem MIMO-Spatial Multiplexing x. Pada Gambar 0 dapat dilihat bahwa modulasi QPSK dengan code rate / mencapai nilai Ketika SNR sekitar 4 db dan sekitar 7.5 db. Untuk Modulasi 6-QAM dengan code rate / dan /4 nilai mencapai ketika SNR sekitar db dan 7 db. Sedang untuk Modulasi 64- QAM dengan code rate / dan /4 nilai mencapai ketika SNR sekitar.5 db dan sekitar db. SISO QPSK / QPSK /4 6-QAM / 6-QAM /4 64-QAM / 64-QAM /4 0-5 0 5 0 5 0 5 Gambar 8 Kurva Hasil Simulasi Pemodelan Antena Tunggal (SISO) MIMO-STBC Alamouti x QPSK / QPSK /4 6-QAM / 6-QAM /4 64-QAM / 64-QAM /4 0-5 0 5 0 5 0 5 Gambar 9 Kurva Hasil Simulasi Pemodelan Sistem MIMO-STBC Alamouti x. MIMO Spatial Multiplexing x QPSK / QPSK /4 6-QAM / 6-QAM /4 64-QAM / 64-QAM /4 0-5 0 5 0 5 0 5 Gambar 0 Kurva Hasil Simulasi Pemodelan Sistem MIMO-Spatial Multiplexing x. Terlihat pada gambar 8, gambar 9, dan gambar 0 ketika bernilai kinerja Modulasi yang sama dengan code rate yang lebih lebih tinggi memiliki kinerja yang lebih baik 4

dari pada modulasi dengan code rate yang lebih rendah, yaitu code rate / lebih baik dibandingkan dengan code rate /4, dan code rate / lebih baik dibandingkan dengan code rate /4. Penggunaan code rate yang lebih tinggi dapat menekan nilai yang dihasilkan. Nilai perbedaan gain yang dihasilkan dengan code rate yang berbeda untuk sistem SISO adalah berkisar - db, untuk Sistem MIMO-STBC Alamouti dan Sistem MIMO-Spatial Multiplexing adalah berkisar - db. Jika diamati lebih lanjut pada gambar 8, gambar 9, dan gambar 0 dengan nilai SNR yang sama, terlihat nilai sistem yang menggunakan modulasi 64-QAM lebih besar dibanding dua jenis modulasi lainnya. Modulasi 6 QAM, memiliki nilai relatif lebih besar dibanding modulasi QPSK. Kedua hal tersebut dilihat sebagai sesuatu yang wajar, karena modulasi QPSK hanya menggunakan simbol, sedangkan modulasi 6-QAM dan 64 QAM memodulasikan 4 dan 6 simbol, sehingga lebih rentan terhadap noise selama transmisi. Dapat dilihat bahwa nilai dari semua modulasi memiliki kecenderungan nilai semakin kecil seiring makin naiknya nilai SNR. Hal ini di sebabkan karena pada nilai SNR yang besar mempresentasikan perbandingan varian sinyal yang besar dibandingkan dengan varian noisenya. Oleh karena itu, nilai varian noise yang jauh lebih kecil daripada varian sinyalnya akan menyebabkan nilai yang kecil. Karena error yang terjadi akan lebih kecil dibandingkan data yang dikirim. D. Analisa Hasil Simulasi Pemodelan Sistem SISO, MIMO- STBC Alamouti x, dan MIMO-Spatial Multiplexing x untuk Modulasi QPSK dengan Code Rate /. Dari gambar dapat diamati tentang perbandingan modulasi QPSK dengan code rate / untuk sistem SISO, MIMO-STBC Alamouti x, dan MIMO-Spatial Multiplexing x. Dapat dilihat pada SNR bernilai 0 db sampai 7 db, nilai sistem SISO lebih besar dari nilai sistem MIMO- Spatial Multiplexing, dan nilai sistem MIMO-Spatial Multiplexing lebih besar dari nilai sistem MIMO-STBC Alamouti. Dapat dilihat pada SNR bernilai db nilai untuk sistem MIMO-STBC Alamouti, MIMO-Spatial Multiplexing, dan SISO secara berurutan bernilai sekitar, x, dan 4x. Jika dilihat ketika nilai kinerja sistem MIMO-STBC Alamouti memiliki perbaikan nilai SNR sebesar db, dan sistem MIMO-Spatial Multiplexing memiliki perbaikan sebesar db terhadap sistem SISO. Terlihat bahwa modulasi QPSK dengan code rate / Sistem MIMO-STBC Alamouti memiliki kinerja yang lebih baik, karena pada SNR yang sama MIMO-STBC Alamouti telah mencapai nilai yang kecil dibandingkan dengan sistem MIMO-Spatial Multiplexing, dan sistem MIMO-Spatial Multiplexing masih lebih baik dari sistem SISO. PERBANDINGAN MODULASI QPSK / MIMO STBC QPSK / MIMO SM QPSK / SISO QPSK / 0-5 0 4 5 6 7 8 9 0 Gambar Kurva Perbandingan Hasil Simulasi Pemodelan Sistem SISO, MIMO-STBC Alamouti x, dan MIMO-Spatial Multiplexing x untuk Modulasi QPSK dengan Code Rate /. PERBANDINGAN MODULASI 6-QAM / MIMO STBC 6-QAM / SISO 6-QAM / MIMO SM 6-QAM / 0-5 0 4 6 8 0 4 6 8 0 Gambar Kurva Perbandingan Hasil Simulasi Pemodelan Sistem SISO, MIMO-STBC Alamouti x, dan MIMO-Spatial Multiplexing x untuk Modulasi 6-QAM dengan Code Rate /. PERBANDINGAN MODULASI 64-QAM / MIMO STBC 64-QAM / SISO 64-QAM / MIMO SM 64-QAM / 0-5 0 5 0 5 0 5 Gambar Kurva Perbandingan Hasil Simulasi Pemodelan Sistem SISO, MIMO-STBC Alamouti x, dan MIMO-Spatial Multiplexing x untuk Modulasi 64-QAM dengan Code Rate /. 5

E. Analisa Hasil Simulasi Pemodelan Sistem SISO, MIMO- STBC Alamouti x, dan MIMO-Spatial Multiplexing x untuk Modulasi 6-QAM dengan Code Rate /. Dari gambar dapat diamati tentang perbandingan modulasi 6-QAM dengan code rate / untuk sistem SISO, MIMO-STBC Alamouti x, dan MIMO-Spatial Multiplexing x. Dapat dilihat pada SNR 0 db sampai db kinerja dari ketiga sistem relatif sama, tetapi setelah SNR lebih dari db terlihat perbedaan. Dapat dilihat pada SNR bernilai 9 db nilai untuk sistem MIMO-STBC Alamouti, MIMO- Spatial Multiplexing, dan SISO secara berurutan bernilai sekitar,, dan 8x. Jika dilihat ketika nilai kinerja sistem MIMO- STBC Alamouti memiliki perbaikan nilai SNR sebesar.5 db, dan sistem MIMO Spatial Multiplexing mengalami penurunan nilai SNR sebesar.5 db terhadap sistem SISO. Terlihat bahwa modulasi 6-QAM dengan code rate / Sistem MIMO-STBC Alamouti memiliki kinerja yang lebih baik, karena pada SNR yang sama MIMO-STBC Alamouti telah mencapai yang kecil dibandingkan dengan sistem MIMO-Spatial Multiplexing ataupun SISO. Akan tetapi Sistem MIMO-Spatial Multiplexing memiliki kinerja yang lebih buruk dibandingkan dengan sistem SISO. F. Analisa Hasil Simulasi Pemodelan Sistem SISO, MIMO- STBC Alamouti x, dan MIMO-Spatial Multiplexing x untuk Modulasi 64-QAM dengan Code Rate /. Dari gambar dapat diamati tentang perbandingan modulasi 64-QAM dengan code rate / untuk sistem SISO, MIMO STBC Alamouti x, dan MIMO Spatial Multiplexing x. Dapat dilihat pada SNR 0 db sampai 0 db kinerja dari ketiga sistem relatif sama, tetapi setelah SNR lebih dari 0 db terlihat perbedaan. Dapat dilihat pada SNR bernilai 7 db nilai untuk sistem MIMO STBC Alamouti, MIMO Spatial Multiplexing, dan SISO secara berurutan bernilai sekitar 5x,, dan 8x. Jika dilihat ketika nilai kinerja sistem MIMO STBC Alamouti memiliki perbaikan nilai SNR sebesar db, dan sistem MIMO Spatial Multiplexing mengalami penurunan nilai SNR sebesar db terhadap sistem SISO. Terlihat bahwa modulasi 6-QAM dengan code rate /4 Sistem MIMO-STBC Alamouti memiliki kinerja yang lebih baik, karena pada SNR yang sama MIMO-STBC Alamouti telah mencapai nilai yang kecil dibandingkan dengan sistem MIMO-Spatial Multiplexing ataupun SISO. Dan sistem MIMO-Spatial Multiplexing memiliki kinerja yang lebih buruk dibandingkan dengan sistem SISO. Dari pengamatan gambar sampai gambar terlihat jelas bahwa nilai dari sistem MIMO-STBC alamouti selalu lebih kecil dari sistem model lain, ini terjadi karena sistem ini dirancang untuk memperbaiki kualitas sinyal pada sistem komunikasi nirkabel yang rentan terhadap multipath fading.. Sistem MIMO-STBC Alamouti pada Mobile WiMAX mampu meningkatkan performansi secara signifikan dibandingkan dengan sistem SISO. Hal ini merujuk pada kurva yang ditunjukkan pada gambar 4.4 sampai gambar 4.9. Pada saat nilai SNR yang sama, nilai sistem MIMO-STBC Alamouti lebih kecil daripada nilai dari sistem SISO.. Sistem MIMO-Spatial Multiplexing pada Mobile WiMAX memiliki kinerja yang buruk untuk mentransmisikan modulasi dengan orde yang besar yaitu modulasi 6-QAM dan 64-QAM, dibandingkan dengan sistem SISO. Hal ini merujuk pada kurva yang ditunjukkan pada gambar 4.6 sampai gambar 4.9. Pada saat nilai SNR yang sama, nilai sistem MIMO-Spatial Multiplexing lebih besar daripada nilai dari sistem SISO.. Sistem MIMO-Spatial Multiplexing pada Mobile WiMAX memiliki rentang kerja yang panjang yaitu mencapai 5 db, untuk sistem SISO mencapai 4 db, sedangkan untuk sistem MIMO-STBC Alamouti hanya mencapai db. DAFTAR PUSTAKA [] IEEE Std 80.6e -005, Part 6: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, Feb. 006. [] J. G. Andrews, A. Ghosh and R. Muhamed, Fundamentals of WiMAX : Understanding Broadband Wireless Networks, Prentice Hall, Feb. 007. [] M. Alamouti, A Simple Transmit Diversity Technique for Wireless Communications, IEEE JSAC, Vol. 6, No. 8, Oct. 998. [4] Kwang-Cheng Chen, J. Roberto B. de Marca, MobileWiMAX, JohnWiley & Sons, Ltd. 008 [5] Jinliang Huang, A Matlab/Octave Simulation Environment for SDR With Application to OFDM and MIMO, Thesis Master Sience, Stockholm, Apr. 005 [6] Tito Ilyasa, OFDM pada Komunikasi Digital Pita Lebar,Teknik Elektro,Universitas Indonesia, 007 [7] Rustam E, Limited Feedback Precoding Dan Mimo Spatial Multiplexing Untuk Aplikas 80.6e, Thesis Magister, STTTelkom, Bandung, 007 RIWAYAT PENULIS Mustofa Agung Prasetya, dilahirkan di Malang 6 Maret 986. Merupakan putra pertama dari tiga bersaudara pasangan Gatot Eko Priono dan Royati. Lulus dari SDN Tamankuncaran I tahun 998 dan melanjutkan ke SLTPN I Tirtoyudo lulus tahun 00. Kemudian melanjutkan ke SMKN I Singosari lulus pada tahun 004. Setelah menamatkan SMK, penulis melanjutkan studinya di Jurusan Teknik Elektro Politeknik Negeri Malang lulus pada tahun 007. Pada bulan Januari 009 penulis melanjutkan studinya ke jenjang S di Jurusan Teknik Elektro ITS Surabaya. Pada bulan Juni 0 penulis mengikuti seminar dan ujian tugas akhir di bidang studi Telekomunikasi Multimedia Jurusan Teknik Elektro FTI-ITS Surabaya. Sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Elekto. V. KESIMPULAN Beberapa kesimpulan yang diperoleh dari hasil simulasi pada tugas akhir ini adalah: 6