PENGARUH TEKANAN TERHADAP PENGKONDISIAN UDARA SISTEM EKSPANSI UDARA

dokumen-dokumen yang mirip
STUDI KINERJA MESIN PENGKONDISI UDARA TIPE TERPISAH (AC SPLIT) PADA GERBONG PENUMPANG KERETA API EKONOMI

Laporan Tugas Akhir 2012 BAB II DASAR TEORI

KAJI EKSPERIMENTAL KARAKTERISTIK TERMODINAMIKA DARI PEMANASAN REFRIGERANT 12 TERHADAP PENGARUH PENDINGINAN

BAB 9. PENGKONDISIAN UDARA

BAB III PERANCANGAN.

ANALISA KEBUTUHAN BEBAN PENDINGIN DAN DAYA ALAT PENDINGIN AC UNTUK AULA KAMPUS 2 UM METRO. Abstrak

BAB III DATA ANALISA DAN PERHITUNGAN PENGKONDISIAN UDARA

BAB IV HASIL PENGUJIAN DAN PEMBAHASAN

BAB III DASAR PERANCANGAN INSTALASI AIR CONDITIONING

PENGARUH KECEPATAN PUTAR POROS KOMPRESOR TERHADAP PRESTASI KERJA MESIN PENDINGIN AC

PERHITUNGAN ULANG SISTEM PENGKONDISIAN UDARA PADA GERBONG KERETA API PENUMPANG EKSEKUTIF MALAM (KA. GAJAYANA)

Analisis Konsumsi Energi Listrik Pada Sistem Pendingin Ruangan (Air Conditioning) Di Gedung Direktorat Politeknik Negeri Pontianak

Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin. Galuh Renggani Wilis, ST.,MT

ANALISIS BEBAN PENDINGIN PADA RUANG KULIAH PRODI NAUTIKA JURUSAN KEMARITIMAN

HUBUNGAN TEGANGAN INPUT KOMPRESOR DAN TEKANAN REFRIGERAN TERHADAP COP MESIN PENDINGIN RUANGAN

BAB II LANDASAN TEORI

LAMPIRAN I. Universitas Sumatera Utara

PERENCANAAN PERHITUNGAN SISTEM PENGKONDISIAN UDARA PADA LOKOMOTIF KERET API. Ahmad Nur fahmi 1. Abstraksi

Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik padasistem Water Chiller dengan Penerapan Metode Cooled Energy Storage

Analisis Konsumsi Energi Listrik Pada Sistem Pengkondisian Udara Berdasarkan Variasi Kondisi Ruangan (Studi Kasus Di Politeknik Terpikat Sambas)

BAB III PERENCANAAN, PERHITUNGAN BEBAN PENDINGIN, DAN PEMILIHAN UNIT AC

Pengaruh Variasi Putaran Poros Kompresor Terhadap Performansi Sistem Refrigrasi

BAB IV ANALISIS DAN PERHITUNGAN

Bab IV Analisa dan Pembahasan

BAB I PENDAHULUAN. Tugas Akhir ini diberi judul Perencanaan dan Pemasangan Air. Conditioning di Ruang Kuliah C2 PSD III Teknik Mesin Universitas

BAB I PENDAHULUAN. semakin bertambahnya ketinggian jelajah (altitude) pesawat maka tekanan dan

Bab IV Analisa dan Pembahasan

BAB IV ANALISA DATA PERHITUNGAN BEBAN PENDINGIN

BAGIAN II : UTILITAS TERMAL REFRIGERASI, VENTILASI DAN AIR CONDITIONING (RVAC)

Seminar Nasional Mesin dan Industri (SNMI4) 2008 ANALISIS PERBANDINGAN UNJUK KERJA REFRIGERATOR KAPASITAS 2 PK DENGAN REFRIGERAN R-12 DAN MC 12

JTM Vol. 04, No. 1, Februari

PENENTUAN EFISIENSI DAN KOEFISIEN PRESTASI MESIN PENDINGIN MERK PANASONIC CU-PC05NKJ ½ PK

PENGGUNAAN WATER HEATING PADA MESIN PENGKONDISIAN UDARA SEBAGAI ALAT PENGENDALI KELEMBABAN UDARA DI DALAM RUANG OPERASI DI RUMAH SAKIT

BAB II PERPINDAHAN PANAS DALAM PENDINGINAN DAN PEMBEKUAN

LAPORAN AKHIR PERAWATAN & PERBAIKAN CHILLER WATER COOLER DI MANADO QUALITY HOTEL. Oleh : RIVALDI KEINTJEM

Simposium Nasional Teknologi Terapan (SNTT) 2013 ISSN X

BAB II TINJAUAN PUSTAKA

PENGARUH DEBIT ALIRAN AIR TERHADAP PROSES PENDINGINAN PADA MINI CHILLER

PERANCANGAN SISTEM PENDINGIN UNTUK PEMBEKUAN IKAN PADA KONTAINER KAPASITAS 8 TON

DAFTAR PUSTAKA. W. Arismunandar, Heizo Saito, 1991, Penyegaran Udara, Cetakan ke-4, PT. Pradnya Paramita, Jakarta

Pengantar Sistem Tata Udara

DINAMIKA Jurnal Ilmiah Teknik Mesin

BAB II LANDASAN TEORI

Perancangan Desain Ergonomi Ruang Proses Produksi Untuk Memperoleh Kenyamanan Termal Alami

PENGHITUNGAN BEBAN KALOR PADA GEDUNG AULA UNIVERSITAS SULTAN FATAH DEMAK

PENGARUH JENIS REFRIGERANT DAN BEBAN PENDINGINAN TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN

BAB IV PERHITUNGAN PENDINGIN GEDUNG

PERHI TUNGAN BEBAN PENDI NGI N PADA RUANG LABORATORI UM KOMPUTER PAPSI - I TS

BAB II LANDASAN TEORI

BAB V PENUTUP. Dari hasil penyelesaian tugas akhir dapat ditarik kesimpulan sebagai berikut :

BAB I PENDAHULUAN. 1.1 Latar Belakang Penelitian. Air Conditioning (AC) adalah suatu mesin pendingin sebagai sistem pengkondisi

ANALISA PENGARUH ARUS ALIRAN UDARA MASUK EVAPORATOR TERHADAP COEFFICIENT OF PERFORMANCE

ANALISA KOMPARASI PENGGUNAAN FLUIDA PENDINGIN PADA UNIT PENGKONDISIAN UDARA (AC) KAPASITAS KJ/H

ANALISA WAKTU SIMPAN AIR PADA TABUNG WATER HEATER TERHADAP KINERJA AC SPLIT 1 PK

II. TINJAUAN PUSTAKA. apartemen, dan pusat belanja memerlukan listrik misalnya untuk keperluan lampu

Perhitungan Ulang Beban Pendinginan Pada Ruang Auditorium Gedung Manggala Wanabakti Blok III Kementerian Kehutanan Jakarta

BAB II DASAR TEORI. pengembangan dari teknologi mesin pendingin. Alat ini dipakai bertujuan untuk

BAGIAN III PRINSIP-PRINSIP ESTIMASI BEBAN PENDINGIN TATA UDARA

TUGAS AKHIR PERANCANGAN SISTEM PENDINGIN UNTUK KAPAL NELAYAN KAPASITAS 8 TON

STUDI EVALUASI SISTEM PENGKONDISIAN UDARA DI JURUSAN TEKNIK ELEKTRO KAMPUS BUKIT JIMBARAN DENGAN MENGGUNAKAN SOFTWARE

Jurnal Pembuatan Dan Pengujian Alat Uji Prestasi Sistem Pengkondisian Udara (Air Conditioning)Jenis Split

Analisis Beban Thermal Rancangan Mesin Es Puter Dengan Kompresor ½ PK Untuk Skala Industri Rumah Tangga

Jurnal Teknik Mesin (JTM): Vol. 05, No. 3, Oktober

ANALISA VARIASI BEBAN PENDINGIN UDARA KAPASITAS 1 PK PADA RUANG INSTALASI UJI DENGAN PEMBEBANAN LAMPU. Mustaqim, Rusnoto, Slamet Subedjo ABSTRACT

OPTIMASI SISTEM PENGKONDISIAN UDARA PADA KERETA REL LISTRIK

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda

PERHITUNGAN BEBAN PENDINGIN PADA LANTAI 2 GEDUNG SENTRA BISNIS & DISTRIBUSI PT. CITRA NUSA INSAN CEMERLANG (CNI)

PENGARUH KECEPATAN UDARA PENDINGIN KONDENSOR TERHADAP KOEFISIEN PRESTASI AIR CONDITIONING

Kata kunci : pemanasan global, bahan dan warna atap, insulasi atap, plafon ruangan, kenyamanan

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR

Gambar 5. Skematik Resindential Air Conditioning Hibrida dengan Thermal Energy Storage

PERBANDINGAN UNJUK KERJA FREON R-12 DAN R-134a TERHADAP VARIASI BEBAN PENDINGIN PADA SISTEM REFRIGERATOR 75 W

OPTIMASI RANCANGAN TERMAL SISTEM PENGKONDISIAN UDARA RUANGAN PASCA SARJANA UNISMA BEKASI

BAB III TINJAUAN PUSTAKA

BAB I PENDAHULUAN. ruangan. Untuk mencapai kinerja optimal dari kegiatan dalam ruangan tersebut

STUDI SPESIFIKASI TEKNIK WATER CHILLER VAC IEBE

Ada beberapa rumus cara menentukan PK AC yang sesuai untuk ruangan, saya akan me nuliskan 2 diantaranya.

Perencanaan Ulang Sistem Pengkondisian Udara Pada lantai 1 dan 2 Gedung Surabaya Suite Hotel Di Surabaya

BAB III PERANCANGAN SISTEM

Ahmad Farid* dan Moh. Edi.S. Iman Program Studi Teknik Mesin, Universitas Pancasakti Tegal Jl. Halmahera km 1, Tegal *

BAB III METODOLOGI DATA PERHITUNGAN BEBAN PENDINGIN

PENGARUH BEBAN PENDINGIN TERHADAP TEMPERATUR SISTEM PENDINGIN SIKLUS KOMPRESI UAP DENGAN PENAMBAHAN KONDENSOR DUMMY

PERENCANAAN BEBAN PENDINGIN PADA KABIN PESAWAT AIRBUS

Jurnal Kajian Teknik Mesin Vol. 2 No. 1 April

PENGARUH MEDIA PENDINGIN AIR PADA KONDENSOR TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN

LAPORAN TUGAS AKHIR ANALISA BEBAN KALOR PADA RUANGAN SERVER SEBUAH GEDUNG PERKANTORAN

SURAT KETERANGAN No : 339B /UN /TU.00.00/2015

PERANCANGAN TATA UDARA UNTUK RUANGAN BELAJAR DI GOETHE INSTITUT

KONSERVASI ENERGI PADA SISTEM TATA UDARA DAN SELUBUNG BANGUNAN GEDUNG. Oleh : Ir. Parlindungan Marpaung

PENGARUH KECEPATAN UDARA TERHADAP TEMPERATUR BOLA BASAH, TEMPERATUR BOLA KERING PADA MENARA PENDINGIN

PERANCANGAN COLD STORAGE UNTUK PRODUK REAGEN

BAB III METODELOGI PENELITIAN. Hotel Sapadia Siantar. Hotel Danau Toba International Medan. Rumah Sakit Columbia Asia Medan

III. METODE PENELITIAN. Agar efisiensi operasi AC maximum, masing-masing komponen AC harus

PENGARUH VARIASI BEBAN, WAKTU PENDINGINAN DAN TEMPERATUR RUANG TERHADAP PERFORMASI MESIN PENDINGIN

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air

Heroe Poernomo 1) Jurusan Teknik Permesinan Kapal, Politeknik Perkapalan Negeri Surabaya, Indonesia

BAB III DATA GEDUNG DAN LINGKUNGAN

Pemanfaatan Sistem Pengondisian Udara Pasif dalam Penghematan Energi

BAB II DASAR TEORI. 2.1 Pengertian Sistem Heat pump

ANALISA KINERJA MESIN REFRIGERASI RUMAH TANGGA DENGAN VARIASI REFRIGERAN

Transkripsi:

PENGARUH TEKANAN TERHADAP PENGKONDISIAN UDARA SISTEM EKSPANSI UDARA Sumanto 1), Wayan Sudjna 2), Harimbi Setyowati 3), Andi Ahmad Rifa i Prodi Teknik Industri 1), Prodi Teknik Mesin 2), Prodi Teknik Kimia 3), Institut Teknologi Nasional Malang ABSTRAKSI Pendinginan udara merupakan salah satu hal dari bidang refrigerasi dan pengkondisian udara. Meskipun saling berkaitan, tetapi masingng-masing mempunyai ruang lingkup yang berbeda.teknik pengkondisian udara tidak hanya berfungsi sebagai pendingin,tetapi lebih dari pada itu.definisi pengkondisian udara (Confort air conditioning) adalah proses perlakuan terhadap udara untuk mengatur suhu, kelembapan, kebersihan, dan pendistribusianya secara serentak guna mencapai kondisi nyaman yang dibutuhkan.an tidak menggunakanya.mesin pengkodisian udara yang digunakan pada sistem pengkondisian ini adalah Sistem ekspansi udara dengan komponen kompresor 1/2 PK, evaporator dengan media pendingin air, katup ekspansi, dan ruangan aplikasi. Variabel dalam penelitian adalah : Variabel bebasnya adalah Variasi Tekanan 40 Psi, 50 Psi, dan 60 Psi. Variabel terikatnya adalah pengkondisian udara system ekspansi udara. Variabel kontrol yaitu tekanan udara, temperature udara, tempertur pendingin.dengan variasi tekanan 40 Psi, 50 Psi dan 60 mempunyai pengaruh terhadap pengkondisian udara yaitu pada pengujian dengan variasi tekanan 40 Psi didapat nilai temperatur tertinggi 30 o C, temperatur terendah 20 o C dan tempetratur rata-rata 23,5 o C.Dari pengujian dengan variasi tekanan 50 Psi didat nilai temperatur tertinggi 31,5 o C, temperatur terendah 19,8 o C dan tempetratur rata-rata 23,5 o C.Dari pengujian dengan variasi tekanan 60 Psi didat nilai temperatur tertinggi 34,6 o C, temperatur terendah 19,3 o C dan temperatur rata-rata 23,7 o C. Kata kunci: Tekanan Udara, Sistem Ekspansi Udara. PENDAHULUAN Pengkondisian udara adalah suatu proses pengkondisian atau pengaturan kondisi udara sehingga didapatkan temperatur, kelembaban, kecepatan, dan kebersihan yang sesuai dengan persyaratan kondisi udara suatu ruangan. Persyaratan sifatsifat udara segar diletakkan sesuai dengan penggunaan ruangan misalnya untuk kantor, hotel, gedung pertemuan, rumah sakit, gedung bioskop, dan lain sebagainya. Kebanyakan unit pengkondisian udara digunakan untuk kenyamanan, yaitu untuk menciptakan kondisi udara yang nyaman bagi orang yang berada dalam ruangan. Di daerah yang beriklim panas, sistim pendinginan menciptakan suasana kerja yang nyaman dibandingkan dengan tidak menggunakanya. Dengan adanya permasalahan di atas, maka perlunya diteliti pengaruh teknanan terhadap pengkondisian udara system ekspansi udara. Sistem pengkondisian udara pada umumnya dibagi menjadi dua golongan utama yaitu : Refrigerasi industri, yaitu mengkondisikan udara dari ruangan karena diperlukan oleh proses, bahan, 11

peralatan produksi atau barang yang ada didalam ruangan tersebut. Comfort Air Conditioner, yaitu mengkondisikan udara dari ruangan untuk memberikan kenyamanan bagi penghuni yang melakukan aktivitas didalam ruangan tersebut. METODOLOGI Variabel merupakan obyek penelitian atau apa yang menjadi perhatian oleh para peneliti. Variabel tersebut antara lain : Variabel bebasnya adalah Variasi Tekanan : 40 Psi, 50 Psi, dan 60 Psi. Variabel terikatnya adalah Pengkondisian udara system ekspansi udara. Variabel kontrol yaitu semua faktor yang dapat mempengaruhi hasil kerja yang dilakukan oleh mesin. Adapun faktorfaktor yang mempengaruhi adalah : tekanan udara, temperature udara, tempertur pendinginan dan kelembaban. Gambar 1 Skema instalasi penelitian Prosedur Pengambilan Data Pemeriksaan seluruh peralatan uji dan perlengkapannya merupakan langkah pertama yang harus dilakukan untuk menjaga keamanan dan keselamatan baik penguji maupun peralatan uji. Hal-hal yang perlu diperhatikan antara lain : a. Memeriksa kondisi mesin baik pada komponen yang bergerak maupun komponen yang tidak bergerak. b. Memastikan dan memeriksa suplai listrik yang diperlukan oleh peralatan uji. c. Memeriksa kondisi di dalam evaporator. d. Memastikan pertukaran kalor yang terjadi berlangsung dengan baik dan maksimal. e. Memastikan pipa-pipa dari kebocoran dan memastikan sudah terisolasi termal dengan baik. f. Memeriksa setiap peralatan ukur yang akan digunakan didalam pengambilan data apakah berfungsi dengan baik. Dalam penelitian ini, data yang diperlukan untuk mendukung perhitungan adalah sebagai berikut : 1. Temperatur udara masuk evaporator (T1) 2. Temperatur udara keluar evaporator (T2) 3. Temperatur udara masuk ruangan/aplikasi (T3) 4. Temperatur udara di dalam ruangan/aplikasi (T4) 5. Tekanan udara masuk evaporator (P1) 6. Tekanan udara keluar evaporator (P2) 7. Tekanan masuk ruangan/aplikasi (P3) 8. Temperatur air masuk evaporator 9. Temperatur air keluar evaporator. Data Hasil Pengujian Pada pelaksanaan pengujian tekanan pengambilan data dilakukan 5 menit sekali sampai tiga kali. pengambilan data 12

variasi tekanan seperti yang tercantum pada table di bawah ini: Tabel 1 Hasil Pengujian Dengan Variasi Tekanan 40 Psi, 50 Psi, Dan 60 Psi Varia bel Percobaan 40 ( Psi ) 50 ( Psi ) 60 ( Psi ) P 1 40 40 40 50 50 50 60 60 60 P 2 25 25 25 35 35 35 40 40 40 P 3 5 5 5 7 7 7 10 10 10 T 1 30 30 30 31 31 32 34 35 35 T 2 24 24 24 23 23 23 22 22 22 T 3 20 20 20 20 20 19 19 19 19 T 4 20 20 20 20 20 19 19 19 19 T 5 26 26 26 27 27 26 26 26 25 T 6 27 27 28 28 28 28 28 29 29 ANALISA DAN PEMBAHASAN Beban kalor dari luar ruangan a). Beban kalor dari sinar matahari melalui kaca jendela Beban kalor dari sinar matahari secara langsung, terjadi karena proses penyerapan dan transmisi sinar matahari kedalam ruangan yang di kondisikan melalui kaca. QS 1 = A.PSHG.SF PSHG = Peak solar heat gain (W/m) A= Luas kaca yang langsung terkena radiasi matahari SF= Storage factor b). Beban kalor dari sinar matahari melalui dinding dan atap laju perpindahan kalor melalui dinding atau atap dinyatakan dengan pernyataan(stoecker WF dan Jerold W jones, 1982, hal 75): QS 2 = U.A(t 0 -t r )(W/m) U= Koefisien perpindahan kalor total (W/m 2o C) A= Luas permukaan dinding atau atp (m 2 ) t o = Suhu udara luar ruangan ( o C) t R = Suhu udara didalam ruangan ( o C) Beban Kalor Dari Dalam Ruangan Terjadinya peningkatan panas sensible dan laten pada suatu ruangan dapat disebabkan oleh factor internal dari ruangan tersebut, factor tersebut meliputi: Beban Kalor Dari Penghuni Ruangan Kalor yang di keluarkan akibat dari metabolism tubuh manusia dipengaruhi oleh aktifitas manusia dan temperature ruang tersebut. Besarnya kalor ini dapat dihitung dengan menggunakan persamaan dibawah ini (Stoecker WF dan Jerold W jones, 1982, hal 69 QS 3 = Perolehan perorang.jumlah orang. CLF Perolehan kalor dari penghuni (W) CLF = Faktor-faktor beban perolehan kalor sensible dari orang. Untuk penghuni beban laten, CLF dapat dianggap sama dengan 1,0 Tabel 2. Perolehan Kalor Dari Penghuni Kegiatan Perolehan kalor (W) Perolehan kalor sensible, % Tidur 70 75 Duduk,tenang 100 60 Berdiri 150 50 Berjalan 305 35 Pekerjaan kantor 150 55 Mengajar 175 50 Beban Kalor Dari Lampu Jumlah kalor dari dalam ruangan yang disebabkan oleh penerangan/lampu tergantung pada daya dari lampu dan jenis/cara pemasanganya Persamaan untuk menghitung beban kalor dari lampu adalah (Stoecker WF dan Jerold W jones, 1982, hal 67): QS 4 = (daya lampu,watt).(fu).(fb).(clf) 13

Fu = Faktor penghuni/lampu yang terpasang. Fb = Faktor ballast untuk lampu Fluerescent =1,2 CLF = Faktor beban pendinginan Beban kalor dari udara ventilasi dan infiltrasi Besarnya laju aliran udara infiltrasi ditentukan berdasarkan udara luar yang masuk melalui celah-celah jendela serta melalui pintu yang terbuka. Sedangkan besarnya aliran udara ventilasi ditentukan berdasarkan jumlah orang atau luas dari ruangan yang akan di kondisikan. Beban ventilasi dan infiltrasi terbagi dalam beban kalor sensible dan beban kalor laten. Besarnya masing-masing beban dapat dihitung dengan menggunakan persamaan dibawah ini (CP Arora, Second Edition, Refrigeration And Air Conditioning, New York : Mc Graw Hill Book company, hal 540): OASH = 0,024.CMM.(t o -t R ) OALH = 50.CMM.(w o -w R ) CMM = Jumlah udara infiltrasi, (m 3 /menit) t o = Suhu udara luar ruangan ( o C) t R = Suhu udara dalam ruangan ( o C) w o = Kelembaban udara luar. w R = Kelembaban udara ruang. Beban Kalor Ruangan Beban kalor ruangan merupakan penjumlahan dan beban kalor dari dalam ruangan,beban dari luar ruangan, beban kalor dari ventilasi dan infiltrasi. Beban kalor ini berupa beban kalor sensible (RSH) dan beban kalor laten (RLH). Besarnya beban tersebut dapat dirumuskan menjadi : RSH = QS 1 +QS 2 +QS 3 +QS 4 ) RLH = OASH & OALH Total beban pendingin ruangan adalah = RSH + RLH Hasil Perhitungan Beban Pendinginan Beban kalor dari luar ruangan 1). Beban kalor dari sinar matahari melalui kaca jendela QSb = A.PSHG.SF = 5,788 m 2 x 700 W/m 2 = 4.051,6 Watt QSs = A.PSHG.SF = 19,9 m 2 x 355 W/m 2 = 7.065 Watt QS1 = QSb + QSs = 4.051,6 + 7.065 = 11.116,6 Watt 2). Beban kalor dari sinar matahari melalui dinding atau atap QS2 = U.A.(t o -t R ) (W/m 2 ) = 3,24 W/m2 o C x 39,05 m 2 (32-25) = 126,5 W/ o C x 7 o C = 885,65 Watt Beban Kalor Dari Dalam Ruangan 1). Beban kalor dari penghuni ruangan Jumlah penghuni = 4 orang QS 3 = Perolehan perorang. jumlah orang. CLF = 305 x 4 0rang x 0,66 = 805,2 Watt Ql = Perolehan perorang. Jumlah orang. CLF = 305x 4 orang x 1,0 = 1.220 Watt 2). Beban Kalor Dari Lampu QS4 = (daya lampu, watt).(fu).(fb).(clf) 14

Temperatur oc Jurnal Flywheel, Volume 6, Nomor 1, September 2015 ISSN : 1979-5858 = 18 Watt x 8 buah x 0,84 = 120,96 Watt 3). Beban Kalor dari udara ventilasi dan infiltrasi Data yang diketahui adalah sebagai berikut : Parameter diluar ruangan Tdb 32 oc dengan Rh 82 % Para meter yang dikondisikan Tdb 25 oc dengan RH 64 % Nilai infiltrasi = (1,98 x jumlah pintu x luas pintu) + (2,5 x luas kaca yang berhubungan dengan udara luar) = ( 1,98 x 1 x 3,44 ) + ( 2,5 x 2,2 ) = 6,81 m 2 + 5,5 m 2 = 12,31 OASH = 0,0204.CMM.(t o -t R ) = 0,0204 x 21,28 (30-24) = 3,064 Watt OALH = 50.CMM.(w 0 -w R ) = 50 x 21,28 x (32-25) = 7.448 Watt Keterangan: Bilangan 1,98 & 2,5 di dapat dari (Tabel Arora, hal 660) c). Beban Kalor Ruangan RSH = QS1+QS2+QS3+QS4 = 11.116,6 + 885,65 +803,5 + 120,96 = 12.926 Watt / 12,9 kw RLH = OASH &OALH + Ql = 3,o64 + 7.448 + 1220 = 8.671,064 Watt / 6 kw Total beban pendinginan adalah = RSH + RLH = 12.926 + 8.669,73 = 21.595,73 Watt / 21,60 kw Analisa Pengaruh Beban Pendingin Terhadap Temperatur Tabel 3 Hubungan temperature terhadap beban pendingin Teka nan 40 Psi 50 Psi 60 Psi Tempe Percobaan Rerata ratur 1 2 3 T1 30 30 30 30 T2 24 24 24 24 T3 20 20 20 20 T4 20 20 20 20 T1 31 31 32 31,5 T2 23 23 23 23 T3 20 20 19,6 19,8 T4 20 20 19,5 19,8 T1 34 35 35 34,6 T2 22 22 22 22 T3 19,6 19,5 19 19,3 T4 19,5 19 19 19,1 40 35 30 25 20 15 10 5 0 34.6 30 31.5 24 23 22 20 19.8 19.3 20 19.8 19.1 11.1 0.88 0.8 0.12 Beban pendingin kw Temperatur Rata-rata dari tekanan 40 Psi Temperatur Rata-rata dari tekanan 50 Psi Temperatur Rata-rata dari tekanan 60 Psi Grafik 1 Hubungan Temperatur Terhadap Beban Pendingin Hasil percobaan dengan variasi tekanan 40 Psi, 50 Psi dan 60 Psi dapat yaitu : Pada titik pertama hubungan tekanan dan beban pendingin yaitu 30 o C pada titik kedua temertur mengalami penurunan 24 o C. pada titik ketiga mengalami penurunan tempertur lagi yaitu dengan temperatur 20 o C. Dari pengujian dengan variasi tekanan 40 Psi didat nilai temperatur tertinggi 30 o C, temperatur terendah 20 o C dan tempetratur rata-rata 15

Tekanan Psi Jurnal Flywheel, Volume 6, Nomor 1, September 2015 ISSN : 1979-5858 23,5 o C. Pada titik pertama hubungan tekanan dan beban pendingin yaitu 31,5 o C pada titik kedua temertur mengalami penurunan 23 o C. pada titik ketiga yaitu dengan temperatur 19,8 o C. Dari pengujian dengan variasi tekanan 50 Psi didat nilai temperatur tertinggi 31,5 o C, temperatur terendah 19,8 o C dan tempetratur rata-rata 23,5 o C. Pada titik pertama hubungan tekanan dan beban pendingin yaitu 34,6 o C pada titik kedua temertur mengalami penurunan 22 o C. Tabel 4. Hubungan tekanan dan temperatur Tekanan (Psi) Temperatur ( o C) 40 30,5 50 31,5 60 30 Pada titik ketiga mengalami penurunan tempertur lagi yaitu dengan temperatur 19,3 o C. Dari pengujian dengan variasi tekanan 60 Psi didat nilai temperatur tertinggi 30 o C, temperatur terendah 20 o C dan tempetratur rata-rata 23,7 o C. Dari hasil pengujian dengan memvariasi tekanan 40 Psi, 50 Psi dan 60 Psi, dapat disimpulkan bahwa semakin besar tekanan yang diberikan, maka tempertur yang di hasilkan akan semakin menurun. 70 60 50 40 30 20 10 0 20 26 30 temperatur oc Grafik 2 Hubungan Tekanan Dan Temperatur KESIMPULAN Setelah dilakukan penelitian memvariasi tekanan udara, maka dapat di ambil kesimpulan dari pengaruh tekanan terhadap pengkondisian udara: Variasi tekanan 40 Psi, 50 Psi dan 60 mempunyai pengaruh terhadap pengkondisian udara yaitu 1. Pada titik pertama hubungan tekanan dan beban pendingin yaitu 30 o C pada titik kedua temertur mengalami penurunan 24 o C. pada titik ketiga yaitu dengan temperatur 20 o C. 2. Pada titik pertama hubungan tekanan dan beban pendingin yaitu 31,5 o C pada titik kedua temertur mengalami penurunan 23 o C. pada titik ketiga yaitu dengan temperatur 19,8 o C. 3. Pada titik pertama hubungan tekanan dan beban pendingin yaitu 34,6 o C pada titik kedua temertur mengalami penurunan 22 o C. pada titik ketiga yaitu dengan temperatur 19,3 o C. DAFTAR PUSTAKA 1. Holman. J. P Ir.E. jasjfi M.Sc., Perpindahan Kalor, Erlangga, 1988 2. Arismunandar, W. dan Saito, H., 2002, Penyegaran Udara, Cetakan ke-6, PT Pradnya Paramita, Jakarta. 3. Stoecker, W.F. dan Jerold, W.J., 1996, Refrigerasi dan Penyegaran Udara. TerjemahanSupratman Hara. Penerbit Erlangga. Jakarta 4. Wertenbach, Jurgen. 2003. Energy Analysis of Refrigerant Cycles. SAE Cooperative Research, Scottsdale, AZ 16