REAKSI TERMOKIMIA PADUAN AlFeNi DENGAN BAHAN BAKAR U 3 Si 2

dokumen-dokumen yang mirip
ANALISIS SIFAT TERMAL PADUAN AlFeNi SEBAGAI KELONGSONG BAHAN BAKAR REAKTOR RISET

KARAKTERISASI SIFAT TERMAL PADUAN AlFe(2,5%)Ni(1,5%) DAN AlFe(2,5%)Ni(1,5%)Mg(1%) UNTUK KELONGSONG BAHAN BAKAR REAKTOR RISET

PENGUKURAN SIFAT TERMAL ALLOY ALUMINIUM FERO NIKEL MENGGUNAKAN ALAT DIFFERENTIAL THERMAL ANALYZER

PENENTUAN SIFAT THERMAL PADUAN U-Zr MENGGUNAKAN DIFFERENTIAL THERMAL ANALYZER

ANALISIS SIFAT TERMAL LOGAM URANIUM, PADUAN UMo DAN UMoSi MENGGUNAKAN DIFFERENTIAL THERMAL ANALYZER

ANALISIS SIFAT TERMAL LOGAM URANIUM, PADUAN UMo DAN UMoSi MENGGUNAKAN DIFFERENTIAL THERMAL ANALYZER

PENGARUH UNSUR Zr PADA PADUAN U-Zr DAN INTERAKSINYA DENGAN LOGAM Al TERHADAP PEMBENTUKAN FASA

ANALSIS TERMAL PADUAN AlMgSi UNTUK KELONGSONG BAHAN BAKAR U 3 Si 2 -Al DENSITAS TINGGI

ANALISIS KOMPOSISI BAHAN DAN SIFAT TERMAL PADUAN AlMgSi-1 TANPA BORON HASIL SINTESIS UNTUK KELONGSONG ELEMEN BAKAR REAKTOR RISET

IDENTIFIKASI SENYAWA YANG TERBENTUK AKIBAT REAKSI TERMOKIMIA PADA INGOT BAHAN BAKAR

PENGARUH KANDUNGAN MOLIBDENUM TERHADAP PERUBAHAN FASA DAN KAPASITAS PANAS INGOT PADUAN UMo

KOMPARASI ANALISIS REAKSI TERMOKIMIA MATRIK Al DENGAN BAHAN BAKAR UMo/Al DAN U 3 Si 2 /Al MENGGUNAKAN DIFFERENTIAL THERMAL ANALYSIS

PENGARUH KADAR Ni TERHADAP SIFAT KEKERASAN, LAJU KOROSI DAN STABILITAS PANAS BAHAN STRUKTUR BERBASIS ALUMINIUM

KOMPATIBILITAS MATRIK AI DENCAN BAHAN BAKAR JENIS UMo

KARAKTERISASI KOMPOSISI KIMIA, LUAS PERMUKAAN PORI DAN SIFAT TERMAL DARI ZEOLIT BAYAH, TASIKMALAYA, DAN LAMPUNG

PENGEMBANGAN PADUAN AlFeNi SEBAGAI BAHAN STRUKTUR INDUSTRI NUKLIR

KARAKTERISASI SIFAT TERMAL DAN MIKROS- TRUKTUR PELAT ELEMEN BAKAR (PEB) U 3 SI 2 -AL DENSITAS 4,8 GU/CM 3 DENGAN PADUAN ALMGSI SEBAGAI KELONGSONG

FORMASI FASA DAN MIKROSTRUKTUR BAHAN STRUK- TUR PADUAN ALUMINIUM FERO-NIKEL HASIL PROSES SINTESIS

ANALISIS KESTABILAN PANAS BAHAN POLIMER MENGUNAKAN METODE THERMAL GRAVIMETRY

PENGARUH PROSES QUENCHING TERHADAP LAJU KOROSI BAHAN BAKAR PADUAN UZr

ANALISIS TERMAL GARAM CAMPURAN MgCl 2 -NaCl

KARAKTER TERMAL SERBUK U-6Zr DAN U-10Zr SEBAGAI BAHAN BAKAR REAKTOR RISET

KARAKTERISASI PADUAN AlFeNiMg HASIL PELEBURAN DENGAN ARC FURNACE TERHADAP KEKERASAN

PENGARUH POROSITAS MEAT BAHAN BAKAR TER- HADAP KAPASITAS PANAS PELAT ELEMEN BAKAR U 3 Si 2 -Al

PENGARUH TEMPERATUR TERHADAP SIFAT BAHAN PADUAN ALUMINIUM FERO NIKEL

KARAKTERISASI SIFAT MEKANIK DAN MIKROSTRUKTUR PADUAN INTERMETALIK AlFeNi SEBAGAI BAHAN KELONGSONG BAHAN BAKAR

KEUNGGULAN SIFAT METALURGI DAN LAJU KOROSI PADUAN AlMgSi UNTUK KELONGSONG BAHAN BAKAR U 3 Si 2 -Al DENSITAS 4,8 gu/cm 3

Pengaruh Temperatur Heat-Treatment terhadap Kekerasan dan Struktur Mikro Paduan Al-Fe-Ni

PENGARUH WAKTU PEMANASAN TERHADAP SIFAT MEKANIK DAN STRUKTUR FASA PADUAN ALUMINIUM FERO NIKEL

BAB IV HASIL DAN PEMBAHASAN. No Jenis Pengujian Alat Kondisi Pengujian

KETAHANAN KOROSI BAHAN STRUKTUR AlMg-2 DALAM MEDIA AIR PASCA PERLAKUAN PANAS DAN PENDINGINAN

PENINGKATAN SIFAT MEKANIK BAHAN STRUKTUR PADUAN ALUMINIUM FERO NIKEL DENGAN PENGUATAN FASA KEDUA DAN STRUKTUR BUTIR

SINTESIS PADUAN ALUMINIUM FERO NIKEL SEBAGAI BAHAN STRUKTUR CLADDING ELEMEN BAKAR NUKLIR

PENGARUH UNSUR Zr TERHADAP PERUBAHAN SIFAT TERMAL BAHAN BAKAR DISPERSI U-7Mo-xZr/Al

KOMPARASI ANALISIS KOMPOSISI PADUAN AlMgSI1 DENGAN MENGGUNAKAN TEKNIK X RAY FLUOROCENCY (XRF) DAN EMISSION SPECTROSCOPY (

KARAKTERISASI PADUAN U-7%Mo DAN U-7%Mo-x%Si (x = 1, 2, dan 3%) HASIL PROSES PELEBURAN DALAM TUNGKU BUSUR LISTRIK

PENINGKATAN SIFAT MEKANIK BAHAN STRUKTUR PADUAN ALUMINIUM FERO NIKEL DENGAN PENGUATAN FASE KEDUA DAN STRUKTUR BUTIR

INTERAKSI TERMOKIMIA BAHAN BAKAR U 3 SI 2 TMU 2,96 GU/CM 3 DENGAN MATRIKSS AL DAN KELONGSONG ALMG 2

PENENTUAN LAJU KOROSI PADA SUHU 150 ac UNTUK BAHAN STRUKTUR AIMg2 PASCA PERLAKUAN PANAS

KARAKTERISASI PANAS JENIS ZIRCALOY-4 SN RENDAH (ELS) DENGAN VARIABEL KONSENTRASI Fe

KARAKTERISASI INGOT PADUAN U-7Mo-Zr HASIL PROSES PELEBURAN MENGGUNAKAN TUNGKU BUSUR LISTRIK

STUDI LAJU KOROSI PADUAN Zr-Mo-Fe-Cr DALAM MEDIA UAP AIR JENUH PADA TEMPERATUR C

1 BAB I BAB I PENDAHULUAN

KAJIAN SINTESA PADUAN U-Mo DENCAN tara PELEBURAN

ANALISIS MIKROSTRUKTUR DAN KIMIA TERHADAP HASIL KOROSI PADA INGOT AlFeNiMg

PENENTUAN RASIO O/U SERBUK SIMULASI BAHAN BAKAR DUPIC SECARA GRAVIMETRI

SINTESIS PADUAN AIFeNi DEN CAN METODA PELEBURAN

PENGARUH PENAMBAHAN KOMPOSISI Al PADA PADUAN Fe-Ni-Al

PENGARUH KANDUNGAN NIOBIUM TERHADAP MIKROSTRUKTUR, KOMPOSISI KIMIA DAN KEKERASAN PADUAN Zr Nb Fe Cr

PENGARUH PENAMBAHAN NIKEL (Ni) TERHADAP STRUKTUR KRISTAL, MORFOLOGI, DAN KEKERASAN PADA PADUAN Al (2-x) FeNi (1+x)

PEMUNGUTAN SERBUK U 3 Si 2 DARI GAGALAN PRODUKSI PEB DISPERSI BERISI U 3 Si 2 -Al SECARA ELEKTROLISIS MENGGUNAKAN ELEKTRODA TEMBAGA

KARAKTERISASI INGOT PADUAN U-7Mo-xTi HASIL PROSES PELEBURAN MENGGUNAKAN TUNGKU BUSUR LISTRIK

PENENTUAN KODUKTIVITAS PANAS KOMPOSIT MATRIKS KERAMIK SILIKON KARBIDA MENGGUNAKAN DIFFERENTIAL SCANNING CALORIMETRY

PENGARUH DEFORMASI DINGIN TERHADAP KARAKTER PADUAN Zr-0,3%Mo-0,5%Fe-0,5%Cr PASCA PERLAKUAN PANAS

Aslina Br.Ginting, Nusin Samosir, Suparjo,Hasbullah Nasution Pusat Pengembangan Teknologi Bahan Bakar dan Daur Ulang

Gambar 3.1 Diagram alir penelitian

PEMBUATAN GREEN PELLET U-ZrHx UNTUK BAHAN BAKAR PWR

PENCIRIAN PADUAN ALUMINIUM-BESI-NIKEL SEBAGAI KELONGSONG ELEMEN BAICAR BERDENSITAS TINGGI ASEP ARY RAMMELYADI

PEMERIKSAAN MIKROSTRUKTUR, KOMPOSISI KIMIA DAN KEKERASAN HASIL PENGELASAN PADUAN Al-6061

BAB I PENDAHULUAN. Kebutuhan energi di dunia akan terus meningkat. Hal ini berarti bahwa

INTERAKSI BAHAN BAKAR U3Si2-Al DENGAN KELONGSONG AlMg2 PADA ELEMEN BAKAR SILISIDA TMU 2,96 gu/cm 3 PASCA IRADIASI

PENGARUH JARAK DARI TEPI CETAKAN TERHADAP KEKUATAN TARIK DAN KEKERASAN PADA CORAN ALUMINIUM

PENGARUH PENAMBAHAN TEMBAGA (Cu) TERHADAP SIFAT MEKANIK DAN STRUKTUR MIKRO PADA PADUAN ALUMINIUM-SILIKON (Al-Si) MELALUI PROSES PENGECORAN

PEMBUATAN SAMPEL INTI ELEMEN BAKAR U 3 Si 2 -Al

PEMBUATAN PELAT ELEMEN BAKAR MINI U-7Mo/Al

PEMBUATAN SERBUK U-6Zr DENGAN PENGKAYAAN URANIUM 19,75 % UNTUK BAHAN BAKAR REAKTOR RISET

Perbaikan Sifat Mekanik Paduan Aluminium (A356.0) dengan Menambahkan TiC

KALIBRASI ALAT THERMAL GRAVIMETRI DIFFERENTIAL THERMAL ANALYSIS

VERIFIKASI METODE STEP DAN KONTINYU UNTUK PENENTUAN KAPASITAS PANAS MENGGUNAKAN THERMAL ANALYZER

BAB V HASIL DAN PEMBAHASAN

ANALISIS STRUKTUR DAN KOMPOSISI FASE PADUAN U-7%Mo-x%Zr (x = 1, 2, 3% berat) HASIL PROSES PELEBURAN

Diterima tanggal 19 September 1998, disetujui untuk dipublikasikan 5 April 1999

PEMBUATAN DAN KARAKTERISASI PADUAN UMo SEBAGAI KANDIDAT BAHAN BAKAR NUKLIR TIPE DISPERSI

BAB IV HASIL DAN PEMBAHASAN. Pada pembuatan dispersi padat dengan berbagai perbandingan

PENGENALAN DAUR BAHAN BAKAR NUKLIR

RANCANG BANGUN AUTOCLAVE MINI UNTUK UJI KOROSI

LOGO. STUDI EKSPANSI TERMAL KERAMIK PADAT Al 2(1-x) Mg x Ti 1+x O 5 PRESENTASI TESIS. Djunaidi Dwi Pudji Abdullah NRP

PENGEMBANGAN MEKANISME DAN KUALITAS PRODUKSI SEPATU KAMPAS REM BERBAHAN ALUMUNIUM DAUR ULANG DENGAN METODE PENGECORAN SQUEEZE

BAB IV HASIL PENELITIAN DAN ANALISIS

PENGARUH TEMPERATUR TUANG DAN TEMPERATUR CETAKAN PADA HIGH PRESSURE DIE CASTING (HPDC) BERBENTUK PISTON PADUAN ALUMINIUM- SILIKON

VARIASI PENAMBAHAN FLUK UNTUK MENGURANGI CACAT LUBANG JARUM DAN PENINGKATAN KEKUATAN MEKANIK

Pengaruh Waktu Penahanan Artificial Aging Terhadap Sifat Mekanis dan Struktur Mikro Coran Paduan Al-7%Si

Pengaruh Tekanan dan Temperatur Die Proses Squeeze Casting Terhadap Kekerasan dan Struktur Mikro Pada Material Piston Komersial Lokal

PENGARUH PEROLAN: TERHADAP KARAKTERISTIK TERMAL AIMg/

4.1 ANALISA STRUKTUR MIKRO

HASIL DAN PEMBAHASAN. dengan menggunakan kamera yang dihubungkan dengan komputer.

PENGARUH MEDIA PENDINGIN PADA PROSES HARDENING MATERIAL BAJA S45C

Peningkatan Sifat Mekanik Paduan Aluminium A356.2 dengan Penambahan Manganese (Mn) dan Perlakuan Panas T6

UJI KETAHANAN KOROSI TEMPERATUR TINGGI (550OC) DARI LOGAM ZIRKONIUM DAN INGOT PADUAN

BAB III KARAKTERISTIK DESAIN HTTR DAN PENDINGIN Pb-Bi

ABSTRAK PENDAHULUAN. ISSN HasH-hasH Penelitian EBN Tahun 2010

BAB II ALUMINIUM DAN PADUANNYA

KARAKTERISTIK SIFAT MEKANIK DAN MIKROSTRUKTUR PADUAN UZrNb PASCA PERLAKUAN PANAS

Pengaruh Penambahan Yttrium Terhadap Struktur Mikro, Sifat Mekanik Dan Ketahanan Termal Pada Paduan Mg-6Zn Sebagai Aplikasi Engine Block

PENYIAPAN LARUTAN URANIL NITRAT UNTUK PROSES KONVERSI KIMIA MELALUI EVAPORASI

ANALISA PENGARUH AGING 400 ºC PADA ALUMINIUM PADUAN DENGAN WAKTU TAHAN 30 DAN 90 MENIT TERHADAP SIFAT FISIS DAN MEKANIS

PENGARUH TEMPERATUR ANIL TERHADAP JENIS DAN UKURAN PRESIPITAT FASE KEDUA PADA PADUAN Zr-1%Nb-1%Sn-1%Fe

PENGARUH KEVAKUMAN TERHADAP ANALISIS UNSUR TI DAN SI DALAM AlMg 2 MENGGUNAKAN XRF (X-RAY FLUORESCENCE)

BAB 7 ANALISA TERMAL

PENGARUH KANDUNGAN Si TERHADAP MIKROSTRUKTUR DAN KEKERASAN INGOT Zr-Nb-Si

Transkripsi:

ISSN 1907 2635 Reaksi Termokimia Paduan AlFeNi dengan Bahan Bakar U 3Si 2 (Aslina Br.Ginting, M. Husna Al Hasa) REAKSI TERMOKIMIA PADUAN AlFeNi DENGAN BAHAN BAKAR U 3 Si 2 Aslina Br. Ginting dan M. Husna Al Hasa Pusat Teknologi Bahan Bakar Nuklir BATAN, Serpong ABSTRAK REAKSI TERMOKIMIA PADUAN AlFeNi DENGAN BAHAN BAKAR U 3 Si 2. Reaksi termokimia paduan AlFeNi pada komposisi Fe 2,5% dan Ni 1,5% dengan bahan bakar U 3 Si 2 serta reaksi termokimia kelongsong AlMg2 dengan bahan bakar U 3 Si 2 telah dipelajari. Analisis dilakukan untuk mengetahui fenomena reaksi termokimia paduan AlFeNi dengan U 3 Si 2 yang dibandingkan dengan reaksi termokimia kelongsong AlMg2 dengan U 3 Si 2 menggunakan metode Differential Thermal Analysis. Tujuan analisis ini adalah untuk mengetahui kompatibilitas panas paduan AlFeNi dan AlMg2 dengan bahan bakar U 3 Si 2 jika nanti paduan AlFeNi digunakan sebagai kelongsong bahan bakar. Hasil analisis menunjukkan bahwa paduan AlFeNi pada komposisi Fe 2,5% dan Ni 1,5% dengan bahan bakar U 3 Si 2 mengalami reaksi endotermik pada temperatur 672,65 C dengan panas reaksi ΔH = 108,1812 J/g dan mengalami reaksi eksotermik membentuk senyawa pada temperatur 693,24 C dengan panas reaksi ΔH= -117,322 J/g. Sedangkan pada temperatur 659,20 C kelongsong AlMg2 dengan bahan bakar U 3 Si 2 mengalami reaksi endotermik dengan membutuhkan panas sebesar ΔH = 235,4043 J/g dan pada temperatur 737,66 C mengalami reaksi eksotermik dengan melepaskan panas sebesar ΔH = -47,4639 J/g. Dari fenomena reaksi termokimia tersebut dapat diketahui bahwa kompatibilitas panas paduan AlFeNi dengan U 3 Si 2 sebagai kelongsong bahan bakar hingga temperatur 600 C relatif baik dan cenderung relatif sama dengan kelongsong AlMg2. KATA KUNCI: reaksi termokimia, paduan AlFeNi, bahan bakar U 3 Si 2, kelongsong AlMg2, Differential Thermal Analysis, entalpi ABSTRACT THERMOCHEMICAL REACTION OF AlFeNi ALLOY WITH U 3 Si 2 FUEL ELEMENT. The thermochemical reaction between AlFeNi alloy at a composition of 2,5% Fe and 1.5% Ni and U 3 Si 2 fuel element and that between AlMg2 cladding and U 3 Si 2 fuel element have been studied. Analyses were conducted to determine the thermochemical reaction phenomenon between AlFeNi alloy and U 3 Si 2 compared with that between AlMg2 cladding and U 3 Si 2 using Differential Thermal Analysis method. The purpose of the analyses is to understand the compatibility of AlFeNi alloy and AlMg2 with U 3 Si 2 fuel element if later AlFeNi alloy is used as fuel element cladding. Results of the analyses indicate that the AlFeNi alloy with a composition of 2.5% Fe and 1.5% Ni reacted with the U 3 Si 2 fuel through an endothermic reaction at a temperature of 672.65 o C with a heat of reaction ΔH = 108.1812 J/g, and an exothermic reaction at a temperature of 693.24 C with a heat of reaction ΔH= -117.322 J/g. Meanwhile, AlMg2 cladding with U 3 Si 2 fuel element underwent an endothermic reaction at a temperature of 659.20 C with a heat of reaction ΔH = 235.4043 J/g, and an exothermic reaction at a temperature of 737.66 C with a heat of reaction ΔH = -47.4639 J/g. From the thermochemical reaction phenomena above, it is concluded that the compatibility of AlFeNi alloy with U 3 Si 2 as fuel element cladding is relatively satisfactory up to a temperature of 600 o C, and the trend is similar for AlMg2 cladding. 13

J. Tek. Bhn. Nukl. Vol. 5 No. 1 Januari 2009: 1 52 ISSN 1907 2635 14 FREE TERMS: thermochemical reaction, AlFeNi alloy, U 3 Si 2 fuel element, Differential Thermal Analysis, enthalphy I. PENDAHULUAN Pada penelitian sebelumnya telah dilakukan analisis termal paduan AlFeNi dengan variasi kandungan Fe dan Ni masing-masing 1% hingga 15%, dimana dalam bahasannya dijelaskan bahwa paduan AlFeNi dapat digunakan sebagai kelongsong bahan bakar reaktor riset [1]. Karakterisasi termal yang dilakukan meliputi analisis temperatur lebur, entalpi lebur, entalpi pembentukan senyawa Al-FeAl 3 dan Al-NiAl 3, dan analisis kapasitas panas. Analisis dilakukan dengan menggunakan alat Thermal Gravimetry Differential Thermal Analysis (TG-DTA) dan Differential Scanning Calorimetry (DSC) [2,3]. Hasil analisis menunjukkan bahwa paduan AlFeNi dengan komposisi Fe 1% dan Ni 4% mempunyai temperatur lebur sebesar 647,68 C dan entalpi lebur sebesar ΔH = 246,228 J/g. Peleburan Al menyebabkan terjadinya interaksi lelehan Al dengan Fe dan Ni sehingga terjadi pembentukan senyawa Al- FeAl 3 atau Al-NiAl 3 dengan entalpi sebesar ΔH = -90,143 J/g hingga ΔH = -94,851 J/g dan kapasitas panas sebesar 0,67 J/g o C hingga 1,12 J/g C pada rentang temperatur 50 C hingga 450 C. Sedangkan paduan AlFeNi dengan komposisi Fe dan Ni 6% hingga 15% mempunyai temperatur lebur yang hampir sama dengan AlFeNi pada komposisi 1% sampai 4%, namun mempunyai entalpi peleburan dan kapasitas panas lebih kecil serta mempunyai entalpi pembentukan senyawa Al-FeAl 3 dan Al-NiAl 3 yang cukup besar. Paduan AlFeNi dengan komposisi 6% sampai 15% mempunyai entalpi peleburan sebesar ΔH = 172,134 J/g hingga ΔH = 225,047 J/g, entalpi pembentukan senyawa Al-FeAl 3 dan Al-NiAl 3 sebesar ΔH = - 268,150 J/g dan ΔH = -681,43 J/g serta mempunyai kapasitas panas sebesar 0,41 J/g C hingga 0,68 J/g C pada rentang temperatur 50 C hingga 450 C. Besarnya reaksi eksotermik atau entalpi reaksi pembentukan senyawa paduan AlFeNi pada komposisi 6% sampai 15% sangat dipengaruhi oleh besarnya lelehan Al yang berinteraksi dan bereaksi secara langsung dengan Fe dan Ni. Lelehan Al secara langsung bereaksi dengan Fe dan Ni membentuk senyawa Al- FeAl 3 dan Al-NiAl 3 secara eksotermik dengan melepaskan panas yang cukup besar yang menyebabkan terjadinya penurunan kapasitas panas. Fenomena ini dalam kelongsong bahan bakar tidak diinginkan karena dapat mengurangi kekuatan mekanik dan mengubah sifat bahan kelongsong AlFeNi karena dapat menyebabkan paduan AlFeNi yang berfungsi sebagai kelongsong atau pembungkus bahan bakar menjadi tidak kompatibel. Dari hasil analisis tersebut dapat dinyatakan bahwa paduan AlFeNi dengan kandungan Fe dan Ni sekitar 1% sampai 4% mempunyai sifat termal yang lebih baik jika dibandingkan dengan paduan AlFeNi dengan komposisi Fe dan Ni sebesar 6% sampai 15%. Untuk mengetahui apakah paduan AlFeNi dengan komposisi Fe dan Ni masing-masing 1% sampai 4% dapat digunakan sebagai alternatif kelongsong bahan bakar U 3 Si 2 -Al, pada penelitian lanjutan ini akan dipelajari besarnya reaksi termokimia paduan AlFeNi pada komposisi Fe 2,5% dan Ni 1,5% dengan bahan bakar U 3 Si 2 -Al, karena besaran reaksi termokimia kelongsong dengan bahan bakar menunjukkan kompatibilitas kelongsong tersebut dengan bahan bakar yang dikungkung. Hasil kajian yang dilakukan di beberapa negara menunjukkan bahwa paduan AlFeNi memiliki sifat kestabilan panas, sifat mekanik dan ketahanan korosi yang baik. Namun dari pustaka belum diketahui karakter paduan AlFeNi secara menyeluruh, khususnya karakter termal [4,5]. Untuk itu perlu dilakukan analisis kemampuan reaksi termokimia paduan AlFeNi

ISSN 1907 2635 Reaksi Termokimia Paduan AlFeNi dengan Bahan Bakar U 3Si 2 (Aslina Br.Ginting, M. Husna Al Hasa) dengan U 3 Si 2 -Al dan akan dibandingkan dengan reaksi termokimia kelongsong AlMg2 dengan U 3 Si 2 -Al. Tujuan kedua analisis tersebut adalah untuk mengetahui kompatibilitas panas kedua paduan tersebut dengan bahan bakar U 3 Si 2 -Al jika nanti paduan AlFeNi digunakan sebagai kelongsong bahan bakar. Reaksi termokimia yang dialami oleh bahan bakar U 3 Si 2 -Al diduga akan berpengaruh terhadap kompatibilitas bahan bakar dengan kelongsong. Hipotesis ini diambil berdasarkan fenomena terjadinya peleburan Al dari paduan AlFeNi, dimana lelehan Al tersebut secara langsung berinteraksi dengan bahan bakar U 3 Si 2 secara eksotermik membentuk senyawa UAl x, sedangkan dengan AlFeNi akan membentuk senyawa AlFeAl 3 dan AlNiAl 3 [5]. Pembentukan senyawa tersebut akan mempengaruhi kompatibilitas kelongsong AlFeNi dengan bahan bakar U 3 Si 2. Hasil analisis ini diharapkan dapat digunakan sebagai suatu langkah awal untuk mengetahui dan mempelajari karakter paduan AlFeNi apabila digunakan sebagai kelongsong bahan bakar nuklir pengganti AlMg2. II. TATA KERJA Penelitian ini menggunakan bahan paduan AlFeNi dengan komposisi Fe 2,5% dan Ni 1,5%, bahan bakar U 3 Si 2 -Al dengan tingkat muat uranium 2,96 g/cm 3 dan kelongsong AlMg2 dari Batan Teknologi Persero. Alat yang digunakan untuk mengerjakan penelitian ini adalah seperangkat peralatan Thermal Gravimetry Differential Thermal Analysis (TG-DTA) merk SETARAM dan timbangan analitik. Paduan AlFeNi dengan kandungan Fe 2,5% dan Ni 1,5 % ditimbang seberat 100 mg, kemudian ditambahkan bahan bakar U 3 Si 2 seberat 50 mg. Bahan yang sudah diketahui komposisi dan beratnya dimasukkan ke dalam krusibel alumina dan kemudian diletakkan di dalam chamber TG-DTA rod. Chamber selanjutnya divakum sampai tekanan 10-2 bar. Setelah vakum tercapai, gas argon UHP dialirkan dengan tekanan 2,5 bar. Selanjutnya DTA rod dipanaskan dengan temperatur 30 C sampai 1000 C dengan kecepatan pemanasan 10 C/menit. Hasil analisis berupa termogram DTA dievaluasi untuk mengetahui temperatur lebur, entalpi, kestabilan panas, perubahan fase dan temperatur reaksi termik. Hal yang sama dan kondisi operasi yang sama dilakukan terhadap kelongsong AlMg2, bahan bakar U 3 Si 2, dan dilakukan evaluasi terhadap interaksi paduan AlFeNi dengan U 3 Si 2 maupun interaksi kelongsong AlMg2 dengan U 3 Si 2. III. HASIL DAN PEMBAHASAN Telah dilakukan analisis reaksi termokimia terhadap paduan AlFeNi dengan kandungan Fe 2,5% dan Ni 1,5%, kelongsong AlMg2, bahan bakar U 3 Si 2, paduan AlFeNi dengan U 3 Si 2, dan kelongsong AlMg2 dengan U 3 Si 2. Hasil analisis yang diperoleh berupa besaran entalpi, temperatur lebur, dan pembentukan senyawa yang ditandai dengan adanya perubahan aliran panas (heat flow) dengan terjadinya pembentukan puncak endotermik dan eksotermik pada termogram DTA dari AlFeNi dengan kandungan Fe 2,5% dan Ni 1,5%, kelongsong AlMg2, bahan bakar U 3 Si 2, paduan AlFeNi dengan U 3 Si 2, dan kelongsong AlMg2 dengan U 3 Si 2 seperti yang terlihat pada Gambar 1 6. Dari Gambar 1, dapat diketahui bahwa untuk paduan AlFeNi dengan kandungan Fe 2,5% dan Ni 1,5% terlihat adanya puncak endotermik yang terjadi pada temperatur 180 C. Hal ini tidak menunjukkan adanya fenomena reaksi termokimia tetapi merupakan karakteristik kemampuan DTA rod 1750 C yang digunakan mulai stabil pada 15

J. Tek. Bhn. Nukl. Vol. 5 No. 1 Januari 2009: 1 52 ISSN 1907 2635 temperatur 200 C. Pada temperatur 300 C paduan AlFeNi mengalami reaksi endotermik, yang menunjukkan adanya perubahan aliran panas paduan AlFeNi dimana kemungkinan paduan AlFeNi mengalami perubahan struktur kristal ortorombik dan monoklinik. Hal ini lebih lanjut harus dibuktikan dengan XRD. Pada temperatur 653,44 C hingga 667,03 C, paduan AlFeNi mengalami reaksi peleburan membentuk puncak endotermik dengan membutuhkan panas sebesar ΔH = 246,939 J/g. Reaksi endotermik tersebut menunjukkan terjadinya peleburan unsur Al yang terkandung di dalam paduan AlFeNi. Lelehan unsur Al tersebut secara langsung bereaksi dengan unsur Fe dan Ni pada temperatur 690,09 C hingga temperatur 709,48 C pada titik eutektiknya dan membentuk senyawa Al-FeAl 3 dan Al- NiAl 3 [1,3]. Adanya reaksi antara lelehan Al dengan Fe dan Ni ditunjukkan oleh reaksi eksotermik yang terjadi secara langsung dengan melepaskan sejumlah panas sebesar ΔH= - 90,1432 J/g. Gambar 1. Termogram DTA paduan AlFeNi dengan kandungan Fe 2,5% dan Ni 1,5% Hasil analisis termal terhadap kelongsong AlMg2 menunjukkan bahwa paduan AlMg2 cukup stabil terhadap panas hingga temperatur 600 C, namun di atas temperatur 600 C kelongsong AlMg2 mengalami reaksi peleburan pada temperatur 648,63 C dengan membutuhkan panas untuk melakukan reaksi peleburan tersebut sebesar ΔH = 359,32 J/g, seperti ditunjukkan pada Gambar 2. Setelah mengalami peleburan, kelongsong AlMg2 mengalami penurunan kapasitas panas hingga temperatur pengukuran berakhir pada temperatur 1000 C. Penurunan kapasitas panas jelas terlihat dengan terjadinya penurunan aliran panas (heat flow) kelongsong AlMg2, seperti yang ditunjukkan pada Gambar 2. Terjadinya penurunan aliran panas disebabkan oleh tumbukan antar atom menjadi berkurang karena bentuk logam AlMg2 padat telah berubah menjadi AlMg2 amorf [6,7]. 16

ISSN 1907 2635 Reaksi Termokimia Paduan AlFeNi dengan Bahan Bakar U 3Si 2 (Aslina Br.Ginting, M. Husna Al Hasa) Gambar 2. Termogram DTA paduan AlMg2 Hasil analisis termal yang dilakukan terhadap bahan bakar U 3 Si 2 menunjukkan bahwa serbuk U 3 Si 2 tidak mengalami reaksi termokimia hingga temperatur 1000 C, seperti yang ditunjukkan pada Gambar 3. Namun dari termogram DTA tersebut terlihat jelas bahwa terjadi pengurangan aliran panas (heat flow). Hal ini menunjukkan bahwa bahan bakar U 3 Si 2 mengalami penurunan konduktivitas panas dan kapasitas panas. Penurunan konduktivitas panas dan kapasitas panas dalam bahan bakar U 3 Si 2 tidak diinginkan, sehingga penting untuk ditanggulangi dengan cara penambahan matrik Al ke dalam bahan bakar U 3 Si 2. Matrik Al dapat meningkatkan konduktivitas panas maupun kapasitas panas bahan bakar sehingga aliran panas dari inti elemen bakar dapat dihantarkan dengan baik ke air pendingin reaktor melalui kelongsong bahan bakar. Hal ini dibuktikan dengan analisis termal terhadap bahan bakar U 3 Si 2 -Al seperti yang terlihat pada Gambar 4. Penambahan matrik Al ke dalam bahan bakar U 3 Si 2 menyebabkan aliran panas semakin meningkat hingga temperatur 600 C, tetapi pada temperatur 658 C bahan bakar U 3 Si 2 -Al mengalami peleburan matrik Al sehingga menyebabkan terjadinya reaksi endotermik yang diikuti oleh reaksi termokimia eksotermik yang menunjukkan terjadinya interaksi lelehan matrik Al dengan U 3 Si 2 membentuk senyawa UAl x, seperti yang ditunjukkan pada Gambar 4. Gambar 3. Termogram DTA bahan bakar U 3 Si 2 17

J. Tek. Bhn. Nukl. Vol. 5 No. 1 Januari 2009: 1 52 ISSN 1907 2635 Gambar 4. Termogram DTA bahan bakar U 3 Si 2 -Al 18 Gambar 5. Termogram DTA paduan AlFeNi dengan bahan bakar U 3 Si 2 Dari Gambar 5 dapat diketahui bahwa paduan AlFeNi dengan bahan bakar U 3 Si 2 mengalami reaksi termokimia endotermik pada temperatur 300 C. Reaksi termokimia pada temperatur tersebut menunjukkan adanya temperatur perubahan paduan AlFeNi yang kemungkinan mengalami struktur kristal ortorombik dan monoklinik [8]. Hal ini perlu dibuktikan dengan XRD. Selain itu dimungkinkan juga terjadi reaksi peleburan unsur-unsur pengotor sebagai kontaminan dalam paduan AlFeNi yang mempunyai titik cair relatif lebih rendah. Pada temperatur 672,65 C terjadi reaksi endotermik yang menunjukkan terjadinya reaksi peleburan Al yang terdapat dalam paduan AlFeNi dengan membutuhkan panas sebesar ΔH = 108,1812 J/g. Reaksi endotermik tersebut diikuti oleh reaksi termokimia eksotermik yang menunjukkan terjadinya reaksi antara lelehan unsur Al dengan unsur Fe dan Ni secara langsung pada temperatur 683,70 C hingga

ISSN 1907 2635 Reaksi Termokimia Paduan AlFeNi dengan Bahan Bakar U 3Si 2 (Aslina Br.Ginting, M. Husna Al Hasa) temperatur 693,24 C pada titik eutektiknya [1,2]. Terjadinya reaksi termokimia eksotermik tersebut menyebabkan terjadinya pembentukan senyawa Al-FeAl 3 dan Al-NiAl 3 dengan melepaskan panas sebesar ΔH = -117,322 J/g. Selain terjadi pembentukan senyawa Al-FeAl 3 dan Al-NiAl 3 [1], reaksi termokimia eksotermik tersebut juga menunjukkan terjadinya reaksi pembentukan senyawa UAl x yang merupakan hasil interaksi lelehan Al dengan bahan bakar U 3 Si 2 [3]. Hal ini terlihat dari termogram DTA pada Gambar 5, dimana puncak reaksi termokima eksotermik berlangsung dalam 2 tahap. Reaksi eksotermik tahap pertama menunjukkan terjadi reaksi pembentukan senyawa Al-FeAl 3 dan Al-NiAl 3, dan reaksi eksotermik tahap kedua menunjukkan terjadinya reaksi pembentukan senyawa UAl x. Dari Gambar 5 diketahui pula bahwa aliran panas setelah mengalami reaksi termokimia eksotermik relatif stabil. Hal ini menandakan sifat hantaran panas paduan AlFeNi + U 3 Si 2 tidak mengalami perubahan pada temperatur relatif tinggi hingga 1000 C. Fenomena ini sangat berbeda bila dibandingkan dengan termogram DTA dari AlFeNi seperti yang terlihat pada Gambar 1, dimana terlihat aliran panas paduan AlFeNi menurun setelah mengalami reaksi eksotermik membentuk senyawa Al-FeAl 3 dan Al-NiAl 3. Fenomena ini menunjukkan konduktivitas panas paduan AlFeNi tersebut berkurang setelah mengalami reaksi termokimia eksotermik tersebut. Gambar 6. Termogram DTA kelongsong AlMg2 dengan bahan bakar U 3 Si 2 Analisis termal juga dilakukan terhadap paduan kelongsong AlMg2 dengan bahan bakar U 3 Si 2 dimana diperoleh hasil bahwa hingga temperatur 600 C paduan tesebut sangat stabil terhadap panas, seperti yang terlihat pada Gambar 6. Namun pada temperatur 659,20 C terjadi reaksi termokimia endotermik yang menunjukkan terjadinya peleburan kelongsong AlMg2 dengan panas yang dibutuhkan sebesar ΔH = 235,4043 J/g. Reaksi endotermik tersebut diikuti oleh reaksi eksotermik pada temperatur 702,37 C hingga temperatur 737,66 C yang menunjukkan terjadinya reaksi difusi antara lelehan Al dengan bahan bakar U 3 Si 2 membentuk senyawa U(Al,Si) x dengan mengeluarkan panas sebesar ΔH = -47,4639J/g. Reaksi pembentukan senyawa U(Al,Si) x tersebut terjadi sangat kecil. Hal ini terlihat dari puncak eksotermik yang terbentuk sangat kecil dan kandungan Al di dalam paduan AlMg2 juga terikat dengan Mg cukup stabil. Namun setelah mengalami reaksi termokimia eksotermik dan membentuk senyawa U(Al,Si) x, paduan AlMg2 + 19

J. Tek. Bhn. Nukl. Vol. 5 No. 1 Januari 2009: 1 52 ISSN 1907 2635 U 3 Si 2 tersebut mengalami penurunan aliran panas yang menunjukkan hantaran panas dalam paduan menjadi berkurang dibanding dengan sebelum paduan tersebut mengalami reaksi termokimia endotermik, seperti yang terlihat pada Gambar 6 di atas. IV. KESIMPULAN Paduan AlFeNi pada komposisi Fe 2,5 % dan Ni 1,5 % dengan bahan bakar U 3 Si 2 mengalami reaksi endotermik pada temperatur 672,65 C dengan membutuhkan panas sebesar ΔH = 108,1812 J/g. Pada temperatur 683,70 C hingga temperatur 693,24 C terjadi reaksi termokimia eksotermik yang menunjukkan terjadinya reaksi antara lelehan unsur Al dengan unsur Fe dan Ni secara langsung membentuk senyawa Al-FeAl 3 dan Al-NiAl 3. Selain terjadi pembentukan senyawa Al-FeAl 3 dan Al-NiAl 3 juga terjadi reaksi pembentukan senyawa UAl x. Sedangkan kelongsong AlMg2 dengan bahan bakar U 3 Si 2 tidak mengalami reaksi termokimia hingga temperatur 600 C. Namun pada temperatur 659,20 C bahan tersebut mengalami reaksi endotermik yang menunjukkan terjadinya peleburan kelongsong AlMg2 dengan panas yang dibutuhkan sebesar ΔH = 235,4043 J/g. Selain terjadi reaksi peleburan pada temperatur 702,37 C hingga temperatur 737,66 C, terjadi pula reaksi termokimia eksotermik yang relatif kecil yang menunjukkan adanya reaksi difusi antara lelehan Al dengan bahan bakar U 3 Si 2 membentuk senyawa U(Al,Si) x dengan mengeluarkan panas sebesar ΔH = -47,4639 J/g. Dari kedua reaksi termokimia tersebut dapat diketahui bahwa kompatibilitas paduan AlFeNi dengan U 3 Si 2 sebagai kelongsong bahan bakar hingga temperatur 600 C relatif baik dan cenderung relatif sama dengan kelongsong AlMg2. Namun di atas temperatur 600 C, kompatibilitas paduan AlFeNi dengan U 3 Si 2 kurang baik karena telah terjadi interaksi kelongsong AlFeNi dengan bahan bakar U 3 Si 2 membentuk senyawa baru. V. DAFTAR PUSTAKA 11. ASLINA GINTING, Analisis Sifat Termal Paduan AlFeNi sebagai Kelongsong Bahan Bakar Reaktor Riset, Jurnal Teknologi Bahan Nuklir, PTBN-BATAN, No ISSN 1907-2635, 2008. 12. ASLINA GINTING, Analisa Termal Pelat Elemen Bakar U 3 Si 2 -Al Variasi Tingkat Muat Uranium, Presentasi Peneliti Muda P2TBDU, Serpong, 19-20 November, 2002. 13. ASLINA BR. GINTING, Kompatibilitas Bahan Bakar UMo dengan Matrik Al, Laporan Hasil Penelitian P2TBDU-BATAN, Serpong, 2005. 14. BALLAGNY, A., Main Technical of the Jules Horowitz Reactor Project to Achieve High Flux Performances and High Safety Level, http/www.anl.gov, akses 2007. 15. BALLAGNY, A., Situation of Technological Irradiation Reactor. A Progress Report on the Jules Horowitz Reactor Project, http/www.anl.gov, akses 2007. 16. MONDOLFO, L.E., Aluminium Alloy Structure and Properties, Butterworths, London- Boston, 1976, pp.532-945. 17. HATCH, J.E., Aluminium Properties and Physical Metallurgy, American Society for Metals, Metals Park, Ohio, 1984, p.154. 18. SMITH, W. F., Principle of Materials Science and Engineering, 2 nd ed., McGraw-Hill, New York, 1976, pp.134-243. 20