PENGARUH HHO TERHADAP EMISI DAN EFISIENSI MESIN 2 LANGKAH 150 CC EFFECT OF HHO ON EMISSIONS AND EFFICIENCY IN TWO STROKE ENGINE 150 CC

dokumen-dokumen yang mirip
Setiawan M.B., et al., Pengaruh Molaritas Kalium Hidroksida Pada Brown Hasil Elektrolisis Terhadap.

PENGHEMATAN BAHAN BAKAR SERTA PENINGKATAN KUALITAS EMISI PADA KENDARAAN BERMOTOR MELALUI PEMANFAATAN AIR DAN ELEKTROLIT KOH DENGAN MENGGUNAKAN METODE

I. PENDAHULUAN. Motor bensin dan diesel merupakan sumber utama polusi udara di perkotaan. Gas

Mesin uji yang digunakan dalam penelitian ini adalah sepeda motor 4-

Pengaruh Penambahan Senyawa Acetone Pada Bahan Bakar Bensin Terhadap Emisi Gas Buang

ELEKTROLISIS UNTUK EFISIENSI BAHAN BAKAR BENSIN DAN PENINGKATAN KUALITAS GAS BUANG KENDARAAN BERMOTOR

BAB II TINJAUAN PUSTAKA

Spesifikasi Bahan dan alat :

BAB I PENDAHULUAN. merupakan suatu campuran komplek antara hidrokarbon-hidrokarbon sederhana

IV. HASIL DAN PEMBAHASAN. Setelah melakukan pengujian, penulis memperoleh data-data hasil pengujian

Jurnal Ilmiah Pendidikan Teknik Kejuruan (JIPTEK)

BAB I PENDAHULUAN 1.1 Latar Belakang

PENGARUH JUMLAH SEL PADA HYDROGEN GENERATOR TERHADAP PENGHEMATAN BAHAN BAKAR

STUDI KARAKTERISTIK GENERATOR GAS HHO DRY CELL DAN APLIKASINYA PADA KENDARAAN BERMESIN INJEKSI 1300 CC

BAB IV PENGUJIAN DAN ANALISA

BAB II LANDASAN TEORI

BAB IV HASIL DAN ANALISA. 4.1 Perhitungan konsumsi bahan bakar dengan bensin murni

PENGARUH JARAK ANTAR CELL ELEKTRODA TERHADAP PERFORMA GENERATOR HHO TIPE DRY CELL

PENGARUH PENGGUNAAN FREKUENSI LISTRIK TERHADAP PERFORMA GENERATOR HHO DAN UNJUK KERJA ENGINE HONDA KHARISMA 125CC

BAB IV HASIL DAN PEMBAHASAN

ANALISIS PERBANDINGAN KADAR GAS BUANG PADA MOTOR BENSIN SISTEM PENGAPIAN ELEKTRONIK (CDI) DAN PENGAPIAN KONVENSIONAL

Analisis emisi gas buang dan daya sepeda motor pada volume silinder diperkecil

BAB III METODE PENELITIAN

ANALISIS PENGARUH JARAK TEMPUH, PERIODE SERVIS DAN UMUR MESIN TERHADAP KONSENTRASI CO, HC,

Fahmi Wirawan NRP Dosen Pembimbing Prof. Dr. Ir. H. Djoko Sungkono K, M. Eng. Sc

BAB I PENDAHULUAN A. Latar Belakang Masalah

BAB I PENDAHULUAN. udara terbesar mencapai 60-70%, dibanding dengan industri yang hanya

Pengaruh Penambahan Gas HHO Terhadap Unjuk Kerja Mesin Diesel Putaran Konstan Dengan Variasi Massa Katalis KOH pada Generator Gas HHO

PENGARUH SISTEM PEMBAKARAN TERHADAP JENIS DAN KONSENTRASI GAS BUANG PADA SEPEDA MOTOR

a. Harga minyak dunia naik BBM dalam negeri naik

BAB I PENDAHULUAN A. Latar Belakang Masalah

PENGARUH PEMASANGAN KAWAT KASA DI INTAKE MANIFOLD TERHADAP KONSUMSI BAHAN BAKAR DAN EMISI GAS BUANG PADA MESIN BENSIN KONVENSIONAL TOYOTA KIJANG 4K

BAB III METODOLOGI PENELITIAN

LEMBAR PERSETUJUAN ABSTRAK ABSTRACT KATA PENGANTAR

PENGARUH VARIASI ELEKTROLIT KALIUM HIDROKSIDA (KOH) PADA GENERATOR HHO TERHADAP UNJUK KERJA & EMISI GAS BUANG MESIN SUPRA X PGMFi 125 cc

BAB I PENDAHULUAN. Banyaknya jumlah kendaraan bermotor merupakan konsumsi terbesar pemakaian

I. PENDAHULUAN. premium dan solar. Kelangkaan terjadi hampir di seluruh kabupaten dan kota di

ANALISA DAN PEMBUATAN SISTEM WATER COOLANT INJECTION PADA MOTOR BENSIN TERHADAP PERFORMA DAN EMISI GAS BUANG

BAB II TINJAUAN LITERATUR

UJI PERFORMANSI MESIN OTTO SATU SILINDER DENGAN BAHAN BAKAR PREMIUM DAN PERTAMAX PLUS

ANALISIS PENCAMPURAN BAHAN BAKAR PREMIUM - PERTAMAX TERHADAP KINERJA MESIN KONVENSIONAL

ANALISA PERBANDINGAN UNJUK KERJA MESIN SEPEDA MOTOR DENGAN MENGGUNAKAN GENERATOR HHO DRY CELL DAN TANPA MENGGUNAKAN GENERATOR HHO DRY CELL

PENGARUH VARIASI SUDUT BUTTERFLY VALVE PADA PIPA GAS BUANG TERHADAP UNJUK KERJA MOTOR BENSIN 4 LANGKAH

Ahmad Nur Rokman 1, Romy 2 Laboratorium Konversi Energi, Jurusan Teknik Mesin, Fakultas Teknik Universitas Riau 1

Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Hasanuddin Makassar 2

BAB IV PENGOLAHAN DAN ANALISA DATA

BAB II TINJAUAN PUSTAKA/ LANDASAN TEORI

ANALISIS PENGARUH LETAK MIXERHYDROGEN BOOSTER TERHADAP KUALITAS GAS BUANG DAN KONSUMSI BAHAN BAKAR MESIN BENSIN

BAB II TINJAUAN PUSTAKA

PENGARUH PENAMBAHAN ADITIF PADA PREMIUM DENGAN VARIASI KONSENTRASI TERHADAP UNJUK KERJA ENGINE PUTARAN VARIABEL KARISMA 125 CC

BAB IV HASIL DAN PEMBAHASAN

FINONDANG JANUARIZKA L SIKLUS OTTO

III. METODOLOGI PENELITIAN. Alat-alat dan bahan yang digunakan dalam proses pengujian ini meliputi : mesin

KAJI EKSPERIMENTAL GEET REACTOR SEBAGAI PENGGANTI KARBURATOR DALAM UPAYA PERBAIKAN KADAR EMISI GAS BUANG MOTOR SATU SILINDER 4-TAK

PENINGKATAN EFISIENSI KOMPOR GAS DENGAN PENGHEMAT BAHAN BAKAR ELEKTROLIZER

METODOLOGI PENELITIAN. 1. Spesifikasi sepeda motor bensin 4-langkah 100 cc. uji yang digunakan adalah sebagai berikut :

BAB I PENDAHULUAN. meningkatnya pembangunan fisik kota dan pusat-pusat industri, kualitas udara

I. PENDAHULUAN. aktifitas yang diluar kemampuan manusia. Umumnya mesin merupakan suatu alat

PENGARUH PENAMBAHAN GENERATOR HHO TERHADAP UNJUK KERJA MESIN DIESEL OTOMOTIF KAPASITAS BESAR. Tugas Akhir Konversi Energi TEKNIK MESIN FTI-ITS

MODIFIKASI MESIN MOTOR BENSIN 4 TAK TIPE 5K 1486 cc MENJADI BAHAN BAKAR LPG. Oleh : Hari Budianto

BAB IV HASIL DAN ANALISA

: exhaust gas emissions of CO and HC, electric turbo, modified of air filter

BAB IV HASIL DAN PEMBAHASAN

2.2.3 Persentil Konsep Perancangan dan Pengukuran Concept Scoring Hidrogen Karbon Monoksida 2-25

RANCANG BANGUN ALAT PENGHASIL GAS HIDROGEN UNTUK BAHAN BAKAR KOMPOR

BAB IV HASIL DAN PEMBAHASAN

PENGARUH INJEKSI GAS HIDROGEN TERHADAP KINERJA MESIN BENSIN EMPAT LANGKAH 1 SILINDER

ANALISIS VARIASI TEMPERATUR LOGAM KATALIS TEMBAGA

SKRIPSI MOTOR BAKAR. Disusun Oleh: HERMANTO J. SIANTURI NIM:

PENGARUH PENAMBAHAN ZAT ADITIF PADA BAHAN BAKAR TERHADAP EMISI GAS BUANG MESIN SEPEDA MOTOR

KAJIAN EKSPERIMENTAL TENTANG PENGARUH INJEKSI UAP AIR PADA SALURAN INTAKE DAN EXHAUST TERHADAP KINERJA MOTOR BENSIN 2 LANGKAH 110 CC

BAB II LANDASAN TEORI

VARIASI PENGGUNAAN IONIZER DAN JENIS BAHAN BAKAR TERHADAP KANDUNGAN GAS BUANG KENDARAAN

TUGAS SARJANA PENGUJIAN PENGGUNAAN ALAT PENGHEMAT BBM PADA MESIN BERBAHAN BAKAR BENSIN DAN SPIRITUS DITINJAU DARI ASPEK EMISI GAS BUANG

SWIRL SEBAGAI ALAT PEMBUAT ALIRAN TURBULEN CAMPURAN BAHAN BAKAR DAN UDARA PADA SALURAN INTAKE MANIFOLD

Pemanfaatan Elektrolisis Sebagai Alternatif Suplemen Bahan Bakar Motor Diesel Untuk Mengurangi Polusi Udara

STUDI PENGARUH JARAK TEMPUH DAN UMUR MESIN KENDARAAN BERMOTOR RODA EMPATTERHADAP KONSENTRASI EMISI KARBON MONOKSIDA (CO) DAN NITROGEN OKSIDA

KAJI EKSPERIMENTAL PENGARUH PENGGUNAAN MEDAN MAGNET TERHADAP KINERJA MOTOR BENSIN

BAB III METODOLOGI PENELITIAN

SFC = Dimana : 1 HP = 0,7457 KW mf = Jika : = 20 cc = s = 0,7471 (kg/liter) Masa jenis bahan bakar premium.

PENGGUNAAN GENERATOR HHO PADA SEPEDA MOTOR DENGAN MENGGUNAKAN SISTEM BI-FUEL DENGAN VARIASI LARUTAN ELEKTROLIT ABSTRACT

SKRIPSI PENGARUH VARIASI RASIO KOMPRESI DAN PENINGKATAN NILAI OKTAN TERHADAP EMISI GAS BUANG PADA SEPEDA MOTOR EMPAT LANGKAH

ANALISA EMISI GAS BUANG MESIN EFI DAN MESIN KONVENSIONAL PADA KENDARAAN RODA EMPAT

Ma ruf Ridwan K

A rasy Fahruddin Program Studi Teknik Mesin, Universitas Muhammadiyah Sidoarjo. Generator HHO, wet cell, dan pelat berlubang.

BAB III METODOLOGI PENELITIAN

yang digunakan adalah sebagai berikut. Perbandingan kompresi : 9,5 : 1 : 12 V / 5 Ah Kapasitas tangki bahan bakar : 4,3 liter Tahun Pembuatan : 2004

PERFORMA MESIN DAN EMISI GAS BUANG MOTOR BENSIN BERBAHAN BAHAN BAKAR LPG DENGAN PENAMBAHAN GAS HHO

BAB I PENDAHULUAN. campuran beberapa gas yang dilepaskan ke atmospir yang berasal dari

BAB IV ANALISA DATA DAN PERHITUNGAN

BAB I PENDAHULUAN.

ANALISIS APLIKASI TURBO CYCLONE, HIDROGEN BOOSTER, DAN WATER INJEKSI TERHADAP KONSUMSI BAHAN BAKAR DAN EMISI GAS BUANG MOTOR BENSIN 110 CC

LAPORAN TUGAS AKHIR. PERUBAHAN CO YANG BERAKIBAT TERHADAP BATAS NYALA PADA MESIN AVANZA 1300 cc

BAB II LANDASAN TEORI. Gas HHO merupakan hasil dari pemecahan air murni ( H 2 O (l) ) dengan proses

BAB I PENDAHULUAN. hidup manusia karena hampir semua aktivitas kehidupan manusia sangat tergantung

I. PENDAHULUAN. tahun 2010 hanya naik pada kisaran bph. Artinya terdapat angka

PENGARUH PENAMBAHAN BROWN S GAS TERHADAP KINERJA MOTOR BENSIN YAMAHA VEGA ZR 115 CC. Jl. MT Haryono193 Malang

I. PENDAHULUAN. produksi minyak per tahunnya 358,890 juta barel. (

Pengujian Emisi Gas Buang Pada Sepeda Motor Dengan Rasio Kompresi Dan Bahan Bakar Yang Berbeda

Imam Mahir. Jurusan Teknik Mesin, Fakultas Teknik, Universitas Negeri Jakarta Jalan Rawamangun Muka, Jakarta

Transkripsi:

ISSN : 2355-9365 e-proceeding of Engineering : Vol.4, No.1 April 217 Page 821 PENGARUH HHO TERHADAP EMISI DAN EFISIENSI MESIN 2 LANGKAH 15 CC EFFECT OF HHO ON EMISSIONS AND EFFICIENCY IN TWO STROKE ENGINE 15 CC 1 J. W. Paletekan, 1 Drs. Suwandi, M.Si., 1 Tri Ayodha Ajiwiguna, S.T., M.Eng., 2 Dipl -Ing Eddy Ariffin 1,2,3 Prodi S1 Teknik Fisika, Fakultas Teknik Elektro, Universitas Telkom 4 Prodi S1 Teknik Fisika, Fakultas Teknik dan Sains, Universitas Nasional 1 juniorwantopaletekan@gmail.com, 2 suwandi.sains@gmail.com, 3 tri.ayodha@gmail.com, 4 eddyempel@yahoo.com Abstrak Emisi yang dihasilkan oleh kendaraan bermotor merupakan salah satu bentuk pencemaran lingkungan serta dapat mengganggu kesehatan, terlebih lagi pada mesin 2 langkah yang emisinya lebih besar dibandingkan dengan mesin 4 langkah. Pada penelitian ini, mesin 2 langkah akan diberikan penambahan HHO yang berasal dari reaktor dengan proses elektrolisis. Metode pengujian menggunakan metode idle pada rpm yang ingin diujikan dengan menggunakan SNI 19-7118.3-25. Hal ini dilakukan agar emisi yang dihasilkan pada mesin 2 langkah menjadi turun. Penambahan HHO dilakukan dengan cara meneruskan gas melalui selang pada bubbler dan masuk mengikuti selang filter pada karburator. Reaktor yang dibuat diberikan elektrolit sebanyak 4 ml serta penambahan katalis berupa KOH dengan konsentrasi yang berbeda-beda. Pemberian katalis dengan konsentrasi yang berbeda akan mempengaruhi laju aliran HHO. Sebelum adanya penambahan HHO, kadar HC yang dihasilkan sebesar 6453 ppm pada 6 rpm dan turun sebesar 31,66% ketika diberi penambahan HHO. Penurunan ini juga terjadi pada CO, dimana kadar CO dapat turun hingga 1,75% dari 2,56% sebelum penambahan HHO. Kadar CO2 bertambah dengan adanya HHO yakni hingga 4,22% dari 2,23% sebelum penambahan HHO. Pada penelitian ini didapatkan bahwa penggunaan HHO dengan laju 147 mlpm adalah yang terbaik. Selain berpengaruh terhadap penurunan emisi, penambahan HHO juga dapat meningkatkan efisiensi pada mesin. Efisiensi naik sebesar 5,13% pada kondisi 6 rpm. Kata kunci: emisi kendaraan, elektrolisis, HHO, efisiensi Abstract Emissions generated by motor vehicles is one of the environmental pollution and it can interfere with the health, especially on 2-stroke engine that emissions are greater than 4-stroke engine. In this study, 2-stroke engine will be given the addition of HHO that is derived from the reactor with the process of electrolysis. Test method using the "idle" in the rpm wishing to be tested by using SNI 19-7118.3-25. This is done so that the emissions generated on 2-stroke engine to be down. The addition of HHO done by forwarding the gas through the hose on bubbler and entry to a hose filter in the carburetor. The reactors are made given electrolytes as much as 4 ml and the addition of a catalyst such as KOH with different concentrations. Giving catalysts with different concentrations will affect the rate of flow of HHO. Prior to the addition of HHO, levels of HC generated at 6453 ppm at 6 rpm and decreased by 31.66% when given the addition of HHO. This decrease also occurred in CO, where the levels of CO can fall to 1.75% from 2.56% before the addition of HHO. CO2 levels increased with the HHO that is up to 4.22% from 2.23% before the addition of HHO. In this study, it was found that the use of HHO at a rate of 147 mlpm is the best. Besides an effect on emissions, the addition of HHO can also improve the efficiency of the engine. Efficiency rose by 5.13% on the condition of 6 rpm. Keywords: emissions of vehicles, electrolysis, HHO, efficiency 1. Pendahuluan Saat ini banyak masyarakat menggunakan kendaraan bermotor dalam mendukung aktifitasnya sehari-hari. Hal ini disebabkan tingginya laju pertumbuhan penduduk yang berdampak pada peningkatan jumlah transportasi sebagai sarana aktifitas dalam pemenuhan kebutuhan hidupnya [5]. Penggunaan kendaraan bermotor tergolong efektif dan dapat dikatakan tidak memerlukan biaya. Namun, kendaraan bermotor juga dapat membawa dampak yang negatif pada kesehatan dan lingkungan sekitar karena dalam emisi yang dihasilkannya terdapat polutan (bahan pencemar), diantaranya karbon monoksida (CO), nitrogen oksida (NOx), hidrokarbon (HC), sulfur dioksida (SO 2), timah hitam

ISSN : 2355-9365 e-proceeding of Engineering : Vol.4, No.1 April 217 Page 822 (Pb) dan karbon dioksida (CO 2). Salah satu polutan yang paling banyak dikeluarkan oleh kendaraan bermotor adalah karbon monoksida (CO) [4]. Penelitian ini dilakukan agar emisi yang dihasilkan oleh mesin 2 langkah 15 cc menjadi berkurang dengan adanya peran HHO. Penambahan HHO pada mesin 4 langkah 125 cc dapat mengurangi kadar CO sebesar 4% dan kadar HC sebesar 38%. Penambahan HHO pada penelitian ini terjadi dengan adanya elektrolisis dan ini dipilih karena jumlah air yang terdapat di bumi sangat melimpah. Nantinya HHO yang dihasilkan dari proses elektrolisis akan dihubungkan pada selang yang menuju intake manifold sehingga bahan bakar akan tercampur sebelum masuk ke ruang pembakaran. Setelah itu kadar emisi yang dihasilkan akan diuji dengan merubah rpm antara 15 (idle) hingga 9 dan hasil yang diperoleh akan dibandingkan dengan kadar emisi tanpa adanya penambahan HHO. 2. Dasar Teori 2.1 Mesin 2 Langkah Cara kerja dalam mesin 2 langkah adalah saat piston bergerak dari titik mati bawah (TMB) ke titik mati atas (TMA), maka pergerakan piston ini menjalankan langkah hisap dan langkah kompresi, di mana ketika piston naik katup hisap akan terbuka sehingga masuk pencampuran udara, bahan bakar, dan pelumas. Setelah pencampuran tersebut masuk, piston akan mengkompresi gas yang terjebak di dalam ruang bakar. Sebelum mencapai TMA, busi akan menyala untuk membakar gas dalam ruang bakar. Saat piston bergerak dari TMA ke TMB, piston akan menjalankan langkah ekspansi dan langkah buang, di mana piston akan menekan ruang sehingga tekanan meningkat. Saat melewati lubang pembuangan, gas dalam ruang bakar akan keluar. Piston akan terus menekan hingga titik mati bawah (TMB). Pembakaran bahan bakar dalam mesin dapat berlangsung secara sempurna maupun tidak sempurna. Pembakaran dikatakan tidak sempurna jika menghasilkan karbon monoksida dan uap air. Seluruh unsur C yang dikandung dalam bahan bakar bereaksi dengan oksigen dan gas tidak seluruhnya menjadi CO 2. Sedangkan pembakaran sempurna terjadi ketika senyawa hidrokarbon menghasilkan CO 2 dan H 2O serta campuran bahan bakar dan oksigen (dari udara) mempunyai perbandingan yang tepat. Secara teori dapat dihitung jumlah oksigen yang diperlukan agar dicapai pembakaran sempurna. Akan tetapi dalam praktik, pembakaran tidak pernah ideal. Udara harus disuplai berlebih agar pembakaran sempurna dapat tercapai. Kelebihan jumlah udara ini dikenal dengan sebutan excess air. Jika udara yang diberikan terlalu banyak, maka hal ini dapat mengurangi panas hasil pembakaran. Dengan adanya perubahan dari excess air ini, maka rasio pencampuran antara bahan bakar dan O 2 pastinya akan berubah. Perubahan dari excess air ini diketahui melalui pengukuran menggunakan O 2 analyzer. 2.2 Reaktor Gas Hidrogen Pada reaktor yang dibuat, gas hidrogen dihasilkan dari proses elektrolisis. Ion positif yang terdapat pada katoda akan menyerap elektron dan menghasilkan molekul ion H 2 dan ion negatif akan bergerak menuju anoda untuk melepaskan elektron dan menghasilkan molekul ion O 2. Brown melakukan penelitian dengan elektrolisa air murni yang dapat menghasilkan gas HHO sehingga dinamakan serta dipatenkan atas nama Brown s Gas [2]. Pembuatan reaktor ini menggunakan akrilik serta HDPE sebagai wadah yang berdimensi 14x6x14 cm dan elektroda yang digunakan adalah stainless steel dengan tipe 316L. Stainless steel dipilih karena tahan karat dan mempunyai lapisan oksida yang stabil. Unsur chromium yang terdapat pada jenis baja ini setidaknya 1,5% yang merupakan pelindung terhadap pengaruh kondisi lingkungan [3]. Sumber tegangan yang dibutuhkan pada penelitian ini bersumber dari aki motor yakni sebesar 12,43 volt. Reaktor yang akan dibuat pada penelitian ini di dalamya akan terdapat elektrolit, elektroda, dan selang yang akan mengalirkan HHO dari proses elektrolisis. Udara akan masuk melewati saringan udara dan nantinya akan bercampur dengan HHO sebelum masuk ke karburator. Bahan-bahan yang digunakan dalam pembuatan reaktor ini diantaranya akrilik, mur dan baut, HDPE dan karet, plat stainless steel, ring dan lem. Reaktor yang telah dibuat akan diuji ada tidaknya HHO yang mengalir pada selang dengan menyulutkan api pada bibir selang keluaran HHO. Gambar 1. Skematik Desain Alat Uji

ISSN : 2355-9365 e-proceeding of Engineering : Vol.4, No.1 April 217 Page 823 2.3 Efisiensi Efisiensi termal didapatkan dengan terlebih dahulu mengetahui nilai torsi yang dihasilkan oleh mesin serta laju aliran massa dari bahan bakar. Nilai torsi ini diketahui dengan uji dynotest pada mesin, sedangkan laju aliran massa diketahui dengan pengujian menggunakan stopwatch. Persamaan dari efisiensi adalah sebagai berikut: = τ x n x 2π (1) 6 x V = x 36 (2) ƞ h = v (3) c Dimana: = daya poros (W) τ = torsi (Nm) n = putaran mesin (rpm) = laju aliran massa bahan bakar (kg/jam) = spesifik gravity bensin (,739 gr/ml) V = volume bahan bakar (ml) = waktu menghabiskan bahan bakar (s) ƞ h = efisiensi termal = nilai kalor bahan bakar (9766,4 kcal/kg) c 3 Metodologi 3.1 Kerangka Berpikir Penelitian Tahapan dalam kerangka berpikir bertujuan agar Tugas Akhir yang dilakukan sesuai dengan yang diharapkan. Penelitian ini menggunakan metode eksperimental, yakni dengan melakukan pengamatan terhadap efek atau pengaruh ketika suatu kondisi tersebut dimanipulasi. Langkah-langkah yang dilakukan dalam metodologi penelitian ini dapat dilihat pada gambar 1. Pembuatan Reaktor HHO Pengujian Adanya HHO Pemasangan Sel Elektrolisis Pengujian Emisi Gambar 2. Diagram Alir Metodologi Penelitian 4 Hasil Uji dan Analisis 4.1 Pengujian Reaktor Reaktor yang dibuat diuji terlebih dahulu dengan memberikan elektrolit serta katalis dengan konsentrasi yang berbeda untuk mengetahui banyaknya HHO yang dihasilkan. Pada grafik di bawah ini menjelaskan produksi HHO yang dihasilkan terhadap banyaknya KOH yang diberikan. Laju Aliran (mlpm) 3 25 2 15 1 5 25 53 84 116 147 174 24 233 255 268 276 2 4 6 8 1 12 14 16 18 2 22 Konsentrasi KOH (gram) Gambar 3. Grafik Laju Produksi HHO

ISSN : 2355-9365 e-proceeding of Engineering : Vol.4, No.1 April 217 Page 824 Dari grafik pada gambar 3, dapat dilihat bahwa dengan adanya penambahan konsentrasi KOH, maka kecepatan HHO per menit akan meningkat. Dengan demikian akan semakin banyak pula HHO yang dihasilkan hingga mencapai produksi maksimum. Pada grafik juga diperlihatkan bahwa ketika pemberian KOH sebanyak 2 gram, produksi HHO mulai mencapai titik maksimum. Hal ini dapat dipengaruhi oleh luas permukaan dari elektroda sehingga produksi HHO menjadi terbatas. Konsentrasi KOH yang diberikan adalah 2 gram hingga 22 gram per 4 ml aquades serta tegangan yang diberikan adalah melalui aki motor yakni sebesar 12.43 Volt. 4.2 Pengujian Emisi Emisi yang dicatat dalam pengujian adalah berupa HC, CO, CO 2. Pengujian emisi ini menggunakan metode idle pada rpm yang ingin diujikan dengan menggunakan SNI 19-7118.3-25. Pada pengujian ini yang dilakukan adalah dengan memberikan HHO yang mempunyai laju produksi 53 mlpm, 116 mlpm, 147 mlpm, 174 mlpm, 24 mlpm, dan 233 mlpm. Pengambilan data dilakukan pada mesin dengan nomor KR15KEP39931 dan dengan bantuan karyawan Balai Pengujian Kendaraan Bermotor Kota Bandung. 1 8 CO (%) HC (ppm) 6 4 2 Idle 6 rpm 7 rpm 8 rpm 9 rpm Gambar 4. Grafik Hidrokarbon yang Dihasilkan Dari grafik pada gambar 4, dapat dilihat bahwa banyaknya HHO yang diberikan akan berpengaruh pada kadar HC yang dikeluarkan. Pada kondisi idle, mesin tanpa diberikan HHO menunjukkan kadar HC sebesar 5556 ppm, sedangkan dengan laju HHO 233 mlpm menunjukkan kadar HC sebesar 4638 ppm yang menunjukkan penurunan sebesar 16,523%. Semakin tinggi rpm yang diberikan, maka akan semakin besar kadar HC yang dikeluarkan. 5 4 3 2 1 Idle 6 rpm 7 rpm 8 rpm 9 rpm Gambar 5. Grafik Karbon Monoksida yang Dihasilkan Pada grafik yang ditunjukkan oleh gambar 5 terlihat bahwa terjadi penurunan kadar CO yang dihasilkan dengan penambahan HHO pada ruang bakar. Namun semakin tinggi rpm yang diberikan, maka kadar karbon monoksida juga akan meningkat. Hal ini disebabkan adanya penambahan jumlah campuran bahan bakar dan udara akibat kenaikan putaran mesin untuk meningkatkan daya, sehingga pembakaran yang sempurna tidak tercapai [1]. Perubahan terbesar terjadi ketika adanya penambahan HHO dengan laju 147 mlpm. Jika dibandingkan dengan mesin tanpa adanya penambahan HHO, maka terjadi penurunan CO dari 2,5% menjadi,5% pada kondisi idle.

ISSN : 2355-9365 e-proceeding of Engineering : Vol.4, No.1 April 217 Page 825 5 4 CO2 (%) 3 2 1 Idle 6 rpm 7 rpm 8 rpm 9 rpm Gambar 6. Grafik Karbon Dioksida yang Dihasilkan Pada grafik yang ditunjukkan oleh gambar 6 terlihat bahwa CO 2 rata-rata mengalami peningkatan ketika diberikan penambahan HHO. Namun peningkatan terbesar pada kondisi idle terjadi pada HHO dengan laju 174 mlpm dari 3,88% menjadi 4,5% ketika dibandingkan antara tanpa dan adanya penambahan HHO. Kenaikan yang sedikit pada kondisi idle disebabkan karena campuran udara dan bahan bakar masih dalam keadaan basah atau kaya, sehingga pembakaran yang terjadi tidak sempurna. Pembakaran yang hampir sempurna ditandai dengan banyaknya kadar CO 2 dan sedikitnya kadar CO yang dikeluarkan. Dengan demikian, pada kondisi 7 rpm dapat dikatakan pembakaran yang terjadi hampir sempurna. 4.3 Pengujian Efisiensi Efisiensi didapatkan dengan terlebih dahulu melakukan dynamo test pada mesin, hal ini bertujuan untuk mendapatkan nilai torsi pada rpm tertentu yang kemudian dihitung hingga mendapatkan efisiensinya. Dengan adanya nilai torsi, maka nilai efisiensi dapat dihitung dan hasil tersebut dapat dilihat pada tabel dibawah ini. Efisiensi 4,% 35,% 3,% 25,% 2,% 15,% 1,% 5,%,% 6 rpm 7 rpm 8 rpm 9 rpm Gambar 7. Grafik Efisiensi dengan Penambahan HHO Grafik pada gambar 7 menunjukkan bahwa efisiensi terbesar terjadi pada kondisi 7 rpm. Efisiensi naik dengan adanya penambahan HHO. Efisiensi didapatkan dengan adanya nilai torsi yang menunjukkan bahwa torsi maksimal terjadi antara 6 rpm hingga 7 rpm. Setelah kondisi rpm tersebut, maka efisiensi yang didapatkan akan menurun. Selain dipengaruhi oleh torsi, konsumsi bahan bakar juga mempengaruhi efisiensi yang dihasilkan. Semakin cepat konsumsi bahan bakar habis, maka akan semakin mengurangi efisiensi mesin.

ISSN : 2355-9365 e-proceeding of Engineering : Vol.4, No.1 April 217 Page 826 4.4 Kemampuan Reaktor Reaktor yang dibuat dengan tambahan katalis pasti mempunyai kemampuan dimana suatu saat laju HHO dari pemberian katalis akan mengalami penurunan atau dapat dikatakan tidak tetap dalam kondisi yang optimal. Berikut ini adalah grafik mengenai kemampuan reaktor dengan mengetahui kadar HC yang dihasilkan. HC (ppm) 335 33 325 32 315 31 35 3 295 29 285 3 6 9 12 15 18 21 24 27 3 33 36 39 42 45 48 Waktu (menit) Gambar 8. Grafik Lamanya Kemampuan Reaktor terhadap Perubahan HC Pada grafik di atas menunjukkan bahwa waktu pengujian dilaksanakan selama 8 jam dengan kondisi motor pada keadaan idle. Pemberian katalis yakni 1 gram KOH atau dengan kecepatan produksi HHO sebesar 147 mlpm. Pada keadaan awal, hidrokarbon yang dihasilkan sebesar 3289 ppm. Namun setelah 3 menit, kadar hidrokarbon yang dihasilkan turun menjadi 3138 ppm. Hingga 8 jam berlalu, kadar HC masih dapat dikatakan stabil. Namun, tren yang dihasilkan pada menit ke-39 menurun sehingga kemampuan reaktor untuk menghasilkan produksi HHO sebesar 147 mlpm terjadi hingga menit ke-39. 5 Kesimpulan Dari hasil penelitian yang dilakukan, dapat diperoleh kesimpulan sebagai berikut. 1. Penambahan HHO pada mesin menurunkan kadar HC hingga 3331 ppm pada kondisi idle, 441 ppm pada 6 rpm, 5 ppm pada 7 rpm, 5656 ppm pada 8 rpm, dan 6525 ppm pada 9 rpm. Menurunkan kadar CO hingga,5% pada kondisi idle, 1,75% pada 6 rpm, 1,98% pada 7 rpm, 2,86% pada 8 rpm, dan 3,15% pada 9 rpm. Menaikkan kadar CO 2 hingga 4,5% pada kondisi idle, 4,22% pada 6 rpm, 4,3% pada 7 rpm, 3,33% pada 8 rpm, dan 2,92% pada 9 rpm, menaikkan kadar O 2 hingga 13,55% pada kondisi idle, 12,75% pada 6 rpm, 13,1% pada 7 rpm, 13,5% pada 8 rpm, dan 13,62% pada 9 rpm. 2. Efisiensi yang dihasilkan dengan adanya penambahan HHO mengalami perubahan, yakni dapat naik hingga 8,98% dari nilai efisiensi semula. Kenaikan ini juga dipengaruhi oleh torsi yang dihasilkan pada rpm tertentu sesuai dengan laju HHO yang diberikan serta waktu yang diperlukan dalam mengonsumsi bahan bakar. 3. Reaktor yang dibuat dapat mempertahankan laju produksi HHO secara optimal hingga menit ke-39 atau hingga 6,5 jam. 4. Penambahan HHO dengan laju 147 mlpm adalah yang paling optimal. 6 Daftar Pustaka: [1] Bosch, G. R. 1999. Emission Control for Gasoline Engines Edisi 3. Stuttgart. [2] Chang, R. 25. Kimia Dasar Jilid 2. Jakarta: Erlangga. [3] Outokumpu. 213. Handbook of Stainless Steel. Espoo: Outokumpu Oyj. [4] Sengkey, L. S., Jansen, F., dan Wallah, S. 211. Tingkat Pencemaran Udara CO Akibat Lalu Lintas dengan Model Prediksi Polusi Udara Skala Mikro. Jurnal Ilmiah Media Engineering. 1:2 119-126. [5] Suhadiyah, S., Leong, S., dan Surni. 211. Studi Adsorbsi Timbal (Pb) pada Kulit Batang Kersen (Muntingia calabura) dan Glodogan Tiang (Polyathia longifolia Bent & Hook. F. Var Pendula) di Makassar, Sulawesi Selatan. Jurnal Penelitian.