Pertemuan 7. A. Tujuan 1. Standar Kompetensi : Mempersiapkan pekerjaan pengoperasian komponen elektronika. b). Komponen Elektronika Pasif

dokumen-dokumen yang mirip
Bab 2 Relay Prinsip dan Aplikasi

2. Prinsip dan aplikasi Relay

SISTEM PROTEKSI TENAGA LISTRIK RELAY

Pengenalan Komponen dan Teori Semikonduktor

ELEKTRONIKA DASAR. Mengenal Komponen Pasif Elektronika

Elektronika Dasar. Materi PERANTI ELEKTRONIKA (Resistor) Drs. M. Rahmad, M.Si Ernidawati, S.Pd. M.Sc. Oleh. Peranti/mrd/11 1

Pertemuan 10 A. Tujuan 1. Standard Kompetensi: Mempersiapkan Pekerjaan Merangkai Komponen

Dalam materi pembelajaran ini akan dibatas tiga komponen passif yakin

Tabel 1.1 Nilai warna pada cincin resistor

ELEKTRONIKA DASAR. Oleh : ALFITH, S.Pd, M.Pd

KOMPONEN AKTIF. Resume Praktikum Rangkaian Elektronika

BAB II LANDASAN TEORI. 2.1 Ohm meter. Pada dasarnya ohm meter adalah suatu alat yang di digunakan untuk

SOAL UJIAN PENDIDIKAN KEWIRAUSAHAAN DAN PRAKARYA REKAYASA TEKNOLOGI (ELEKTRONIKA)

Jenis-jenis Komponen Elektronika, Fungsi dan Simbolnya

KOMPONEN PASIF. Penyusun : TIM FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA

Bab 1 Pendahuluan Otomasi Sistem

KOMPONEN DASAR ELEKTRONIKA. Prakarya X

1. Perhatikan gambar komponen elektronik di atas, merupakan simbol dari komponen. a. b. c. d. e.

PERTEMUAN KE 3 KOMPONEN ELEKTRONIKA. Create : Defi Pujianto, S,Kom

BAB II LANDASAN TEORI

Konduktor dan isolator

Resistor. Gambar Resistor

Tugas 01 Makalah Dasar Elektronika Komponen Elektronika

ELEKTRONIKA DAN INSTRUMENTASI. Ketua kelas: Lutfi: Ario : Souma: Yusriadi: Irul :

ELEKTRONIKA DASAR 105J

BAB II KOMPONEN MULTIVIBRATOR MONOSTABIL. Didalam membuat suatu perangkat elektronik dibutuhkan beberapa jenis

dul Rangkaian Listrik 2017 MODUL I HUKUM OHM

BAB III KARAKTERISTIK SENSOR LDR

RELAY. A. Pengertian Relay

KISI KISI SOAL UKA TEKNIK ELEKTRONIKA (532)

Komponen Pasif. Kegiatan Belajar 1: Komponen Elektronika Pasif

MODUL IV KOMPONEN ELEKTRONIKA

Saklar Manual dalam Pengendalian Mesin

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI

BAB I PENDAHULUAN. pemasangan atau pembuatan barang-barang elektronika dan listrik.

P ERTEM UA N 1 DASAR ELEKTRONIKA INDRA DARMAWAN, ST

BAB II. Dasar Teori. = muatan elektron dalam C (coulombs) = nilai kapasitansi dalam F (farad) = besar tegangan dalam V (volt)

Penggunaan RLC Meter Dalam Pengukuran

SISTEM OTOMATISASI PENGENDALI LAMPU BERBASIS MIKROKONTROLER

Materi ajar. Kapasitor

Tabel 4.1. Komponen dan Simbol-Simbol dalam Kelistrikan. No Nama Simbol Keterangan Meter analog. 1 Baterai Sumber arus

RESISTOR DAN HUKUM OHM

PEMBUATAN WATER LEVEL SEBAGAI PENGENDALI WATER PUMP OTOMATIS BERBASIS TRANSISTOR Indrawan Nugrahanto 7

USER MANUAL ALARM ANTI MALING MATA PELAJARAN : ELEKTRONIKA PENGENDALI DAN OTOMASI

Bab IV. Switch, Relay dan Semikonduktor pengendali daya

APLIKASI PLC PADA PENGENDALIAN MESIN BOR OTOMATIS DENGAN SISTEM MONITORING BERBASIS VISUAL BASIC 6.0

KAPASITOR (KONDENSATOR)

CIRCUIT DASAR DAN PERHITUNGAN

BAB II LANDASAN TEORI. kecepatan, percepatan, panjang gel acoustic, dll

Evaluasi Belajar Tahap Akhir F I S I K A Tahun 2005

SMPK 6 PENABUR JAKARTA ULANGAN AKHIR SEMESTER

BAB II DASAR TEORI 2.1 PLC

BAB III PERANCANGAN DAN PEMBUATAN ALAT

TUGAS AKHIR. Pengendalian Perangkat Listrik Melalui Port Paralel Menggunakan Bahasa Program Borland Delphi 7.0

BAB 2. KOMPONEN PASIF

HANDOUT KENDALI MESIN LISTRIK

II. TINJAUAN PUSTAKA. PLC adalah sebuah alat yang digunakan untuk menggantikan rangkaian sederetan

BAB III KOMPONEN ELEKTRONIKA

BAB III PERANCANGAN DAN REALISASI. blok diagram dari sistem yang akan di realisasikan.

MENGENAL KOMPONEN ELEKTRONIKA

Arti Pole dan Throw pada Relay

Latihan soal-soal PENGHANTAR

BAB II LANDASAN TEORI

SUMBER BELAJAR PENUNJANG PLPG

TENTANG : PENGUASAAN KONSEP-KONSEP FISIKA

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. memudahkan penggunaan elektronik dalam berbagai

KOMPONEN ELEKTRONIKA. By YOICETA VANDA, ST., MT.

TM - 2 LISTRIK. Pengertian Listrik

BAB II PENDEKATAN PEMECAHAN MASALAH. Sebuah modifikasi dan aplikasi suatu sistem tentunya membutuhkan

LAPORAN ELEKTRONIKA DASAR KOMPONEN DASAR ELEKTRONIKA. Disusun untuk melengkapi salah satu tugas Elektronika Dasar. Disusun oleh :

SEMIKONDUKTOR. Komponen Semikonduktor I. DIODE

Kondensator diidentikkan mempunyai dua kaki dan dua kutub yaitu positif dan negatif serta memiliki cairan elektrolit dan biasanya berbentuk tabung.

PEMBAHASAN. R= ρ l A. Secara matematis :

Rangkuman Materi Teori Kejuruan

RANCANG BANGUN SISTEM PENGENDALI MOTOR DC PENGGERAK SOLAR CELL MENGIKUTI ARAH CAHAYA MATAHARI BERBASIS MIKROKONTROLER

Laporan Tugas Akhir Teknik Refrigerasi dan Tata Udara 2012 BAB II DASAR TEORI

BAB III PERANCANGAN ALAT. Dalam perancangan dan realisasi alat pengontrol lampu ini diharapkan

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RINGKASAN MATERI TEGANGAN DAN TAHANAN LISTRIK

REKAYASA HARDWARE [HARDWARE ENGINEERING ]


Mekatronika Modul 10 Sensor / Transducer

BAB II LANDASAN TEORI

KOMPONEN PASIF. TK2092 Elektronika Dasar Semester Ganjil 2015/2016. Hanya dipergunakan untuk kepentingan pengajaran di lingkungan Universitas Telkom 1

BAB I. PRINSIP KERJA SISTEM KENDALI ELEKTROMAGNETIK Pada bab ini akan membahas prinsip kerja sistem pengendali elektromagnetik yang meliputi :

BAB III DESAIN DAN PERANCANGAN

APLIKASI KONTAKTOR MAGNETIK

RESUM MATERI ELEKTRONIKA TENTANG KAPASITOR

Bab 3. Teknik Tenaga Listrik

PERTEMUAN 12 ALAT UKUR MULTIMETER

BAB III LANDASAN TEORI

Bab 1. Komponen Elektronika

Percobaan 1 Hubungan Lampu Seri Paralel

TUGAS AKHIR CALCULATOR RESISTOR BERDASARKAN WARNA BERBASIS IC TTL

ACTUATOR Relay dan SSR

TIN-302 Elektronika Industri

JENIS SERTA KEGUNAAN KONTAKTOR MAGNET

MEMPELAJARI KOMPONEN DALAM RANGKAIAN LISTRIK SERTA MEMBANDINGKAN NILAI ARUS SECARA TEORITIS DAN INSTRUMENTAL

I. Tujuan Praktikum. kapasitor. muatan listrik pada kapasitor. 1. Mengetahui bentuk dan jenis Kapasitor.

Transkripsi:

Pertemuan 7 A. Tujuan 1. Standar Kompetensi : Mempersiapkan pekerjaan pengoperasian komponen elektronika 2. Kompetensi Dasar : Memahami Komponen Elektronika B. Pokok Bahasan : Pembacaan Buku Manual C. Sub Pokok Bahasan : a). Komponen Elektronika b). Komponen Elektronika Pasif D. Dosen Pengampu : Fitri Astutik, MT & Jarir, MT A. Uraian Materi a) Komponen Elektronika Komponen elektronika sangat berperan besar andilnya dalam pengoperasian suatu teknologi dibidang apapun didunia ini. Manusia sangat tergantung dengan teknologi dalam hidupnya. Berdasarkan cara dan system kerjanya, komponen elektronika dibagi menjadi dua macam yaitu komponen pasif dan komponen aktif. Komponen elektronika pasif adalah komponen walaupun diberi arus atau tegangan listrik komponen ini tetap dapat bekerja dan beroperasi dengan baik. Komponen elektronika aktif adalah komponen yang dapat beroperasi jika mendapatkan suntikan arus atau tegangan listrik. Gambar 1 berikut ini merupakan komponen aktif dan pasif elektronika. Gambar 1. Bentuk fisik komponen aktif dan pasif (Sumber : http://hanadasetia.blogspot.co.id/2013/11/komponenpasifdanaktifelektronika.html) 1

b) Komponen Elektronika Pasif Gambar 2. Bagian dari komponen pasif Resistor Resistor atau Tahanan adalah komponen elektronika yang berfungsi untuk mengatur kuat arus yang mengalir. Lambang untuk Resistor dengan huruf R, nilainya dinyatakan dengan cincincincin berwarna dalam OHM (Ω). Macammacam Resistor : Gambar 3. Macammacam resistor Keterangan Gambar 3. : a. Simbol Fixed Resistor b. Fixed Resistor 1 K Ω 5% / 2 Watt c. Fixed Resistor 133 Ω 3% /25 Watt d. Fixed Reistor 0.01 Ω 5% /5 Watt 85 0 C Resistor Tetap Resistor tetap (Fixed Resistor ) adalah hambatan yang nilai hambatannya tetap karena ukuran hambatannya sangat kecil, maka nilai hambatannya untuk yang memiliki 2

daya kecil tidak ditulis pada bodinya melainkan dengan menggunakan kode warna. untuk mengetahui nilai tahanannya, pada bodi Resistor diberi cincincincin berwarna yang menyatakan nilai tahanan Resistor. Sedangkan Resistor yang memiliki Daya Besar, 5 Watt, 10 Watt, 15 Watt, 25 Watt atau lebih nilai resistansinya tidak dituliskan dengan kode warna melainkan langsung ditulis dengan angka. Warnawarna yang dipakai sebagai kode dan arti nilai pada masingmasing cincin/gelang warna pada Resistor tetap : No 1 2 3 4 5 6 7 8 9 10 11 12 Tabel 1 : Tabel Kode Warna Resistor Cincin ke1 Cincin ke2 Cincin ke3 Cincin ke 4 Warna Kode Angka ke1 Angka ke2 Jumlah nol Toleransi Hitam 0 Coklat 1 1 0 1 % Merah 2 2 00 Oranye 3 3 000 Kuning 4 4 0000 Hijau 5 5 00000 Biru 6 6 000000 Ungu 7 7 0000000 Abuabu 8 8 00000000 Putih 9 9 000000000 Emas 0.1 5% Perak 0.01 10% WARNAWARNA KODE RESISTOR R = 270000 Ω 1 % R = 270 K Ω 1 % Gambar 2 : Fixed Resistor red, violet, gold bands represent 27 0.1 = 2.7 blue, green, silver bands represent 56 0.01 = 0.56 The Resistor Colour Code Colour Number Black 0 Brown 1 Red 2 Orange 3 Yellow 4 Green 5 Blue 6 Violet 7 Grey 8 White 9 Contoh : 3

I II III IV I. Kuning = 4 II. Ungu = 7 III.Merah = 00 IV. Perak = 10% R = 4700 Ω 10 % I II III IV V R = 4 K 2 Ω 10 %. I. Merah = 2 II. Merah = 2 III. Hitam = 0 IV. Merah = 00 V. Coklat = 1 % Gambar 4 : Fixed Resistor R = 220 00 1 % R = 22 K Ω 1 % Resistor Tidak Tetap a) Resistor tidak tetap/variabel Resistor adalah Resistor yang nilainya dapat dirubah dengan cara menggeser atau memutar tuas yang terpasang pada komponen seperti tampak pada gambar 4 dibawah. (1) (2) (4) (3) (5) Gambar 5 : Variable Resistor Keterangan Gambar 5 : (1). Simbol Variabel Resistor (4). Modelmodel Potentio (2). Simbol Variabel Resistor (5). Potentio (3). Simbol Variabel Resistor 4

b). Trimpot Nilai hambatan Trimpot dapat diubah ubah dengan cara memutar atau mentrim. Pada radio dan televisi, Trimpot digunakan untuk mengatur besaran arus pada rangkaian Oscilator atau rangkaian Driver berbagai jenis sebagai berikut: (1) (4) (5) (2) (3) (6) Gambar 6 : Trimpot. c). (1). Simbol Trimpot (4). Trimpot 1 K Ohm. (2). Simbol Trimpot (5). Trimpot 47 K Ohm (3). Trimpot 100 K Ohm (6). Berbagai jenis Trimpot. Resistor tidak linier Nilai hambatan tidak linier dipengaruhi oleh faktor lingkungan,misalnya suhu dan cahaya. Contohnya : (1) (2) (3) Gambar 7: PTC (1). Simbol PTC; (2) dan (3) PTC 5

d) Thermistor,nilai hambatanya dipengaruhi oleh suhu. (1) PTC Thermistor (Positive Temperatur Coefisien) (2) Tidak terbuat dari bahan semikonduktor, sehingga makin tinggi suhunya makin besar nilai hambatanya. (a) (b) Gambar 8 : NTC (a) Simbol NTC; (b) NTC (3) NTC Thermistor (Negative Temperatur Coefisien) Terbuat dari bahan semikonduktor, sehingga makin tinggi suhunya makin kecil nilai hambatannya (Gambar 8). (a) (c) (b) Gambar 9 : LDR (a) Simbol LDR. (b) Simbol LDR (c) LDR (4) LDR (Light Dependen Resistor) Nilai hambatan LDR tergantung dari intensitas cahaya yang diterimanya. Makin besar intensitas cahaya yang diterima, nilai hambatan LDR makin kecil. 6

Kapasitor Kondensator/Capasitor adalah komponen pasif, notasinya dituliskan dengan huruf C berfungsi untuk menyimpan energi listrik dalam bentuk muatan listrik banyaknya muatan listrik per detik dalam satuan Qoulomb (Q). Kemampuan Kondensator/Capasitor dalam menyimpan muatan disebut kapasitansi yang satuannya adalah Farad (F), 1 Farad = 1.000.000 F baca (mikro farad), 1 F = 1.000 nf baca (nano Farad) dan 1 nf = 1.000 pf baca (piko Farad). Pada perinsipnya Kondensator/Capasitor terdiri dari dua keping konduktor yang dipisahkan oleh bahan penyekat yang disebut bahan dielektrik, fungsi zat dielektrik adalah untuk memperbesar kapasitansi Kondensator/Capasitor diantaranya adalah : keramik; kertas; kaca; mika; polyister dan elektrolit tertentu. Berikut ini Tabel 1 kode angka dan huruf pada kondensator. Kode angka dan huruf yang terdapat pada sebuah kondensator menentukan nilai kapasitansi dan tegangan kerjanya. Kode Angka Tabel 1 Kode Angka dan Huruf pada Kondensator Gelang 1 (Angka pertama) Gelang 2 (Angka kedua) Gelang 3 (Faktor pengali) 0 0 1 1 1 1 10 1 2 2 2 10 2 3 3 3 10 3 4 4 4 10 4 5 5 5 10 5 6 6 6 10 6 7 7 7 10 7 8 8 8 10 8 9 9 9 10 9 Kode huruf (Toleransi %) F = 1 G = 2 H = 3 I = 4 J = 5 K = 10 M = 20 Contohnya: Kode kapasitor 562 J 100 V, artinya besarnya kapasitansi 56 x 10 2 pf, J: besarnya toleransi 5%, 100 V, kemampuan tegangan kerja 100 Volt. 100 nj, artinya besarnya kapasitansi 100 nf, J: besarnya toleransi 5% Kode kapasitor 100 uf 50 V, artinya besarnya kapasitansi 100 uf, besarnya tegangan kerja 50 Volt. Kondensator yang mempunyai gelang warna nilai kapasitansinya dapat ditentukan dengan cara membaca gelanggelang warna tersebut dari kiri ke kanan, sedangkan nilai dari gelang warna itu adalah seperti tabel 3 di bawah ini (kondensator polikarbonat metal). 7

Tabel 3. Kode Warna pada Kondensator Polikarbionat Metal Gelang 1 Gelang 2 Gelang 3 Gelang 4 Warna (Angka (Angka (Faktor (Toleransi) pertama) kedua) pengali) Hitam 0 1 ± 20% Coklat 1 1 10 1 Tegangan Kerja Merah 2 2 10 2 250 V Oranye 3 3 10 3 Kuning 4 4 10 4 400 V Hijau 5 5 10 5 Biru 6 6 10 6 650 V Ungu 7 7 10 7 Abuabu 8 8 10 8 Putih 9 9 10 9 ± 10% 8

Kapasitas sebuah kondensator adalah sebanding dengan luas pelatpelat yang membentuk kondensator tersebut. Semakin luas pelatpelatnya semakin besar nilai kapasitansinya. Nilai kapasitansi berbanding terbalik dengan jarak dari pelatpelatnya. Semakin kecil jarak kedua plat itu, semakin besar nilai kapasitansinya. Sebaliknya semakin jauh jarak kedua plat itu, semakin kecil nilai kapasitansinya. Nilai kapasitansi sebuah kondensator juga sebanding dengan konstanta dielektrikum dari bahan isolator yang dipasang antara kedua plat itu. Jika nilai konstanta dielektrikumnya mempunyai nilai yang besar, maka nilai kapasitansinya besar. Sebuah kondensator pelat besarnya nilai kapasitansi ditentukan dengan rumus: C = ( o x ( r x A/S dimana: C = kapasitas dalam Farad = 8,885 x 10 12 ( r = konstanta dielektrik relatif dari isolasi yang dipakai A = luas pelat dalam m 2 tiap pelatnya S = jarak pelat dalam m Contoh: Sebuah kondensator pelat mempunyai datadata sebagai berikut: Luas pelat 10 cm 2. Jarak kedua pelat 1 mm. Dielektrikumnya adalah udara (( r = 1). Hitunglah nilai kapasitansinya. Jawab: C = ( o x ( r x A/S C = 8,885 x 10 12 x 1 x 10.10 4 /10 3 C = 8,885 pf Muatan sebuah kondensator dapat dihitung jika nilai kapasitansi dan perbedaan tegangan antara dua pelat itu diketahui dengan menggunakan rumus: Q = C x U Dimana: Q = muatan dalam satuan Coulomb C = kapasitas dalam satuan Farad U = tegangan dalam satuan Volt Contoh Sebuah kondensator dengan nilai kapasitansi 10 uf dipasang pada tegangan 1 volt, maka besarnya muatan Q = C x U = 10uF x 1 V Q = 10 uc (mikro coulomb) = 10 6 C Transformator Transformator (trafo) ialah alat listrik/elektronika yang berfungsi memindahkan tenaga (daya) listrik dari input ke output atau dari sisi primer ke sisi sekunder. Pemindahan daya listrik dari primer ke sekunder disertai dengan perubahan tegangan baik naik maupun turun. 9

Ada dua jenis trafo yaitu trafo penaik tegangan (step up transformer) dan trafo penurun tegangan (step down transformer). Jika tegangan primer lebih kecil dari tegangan sekunder, maka dinamakan trafo step up. Tetapi jika tegangan primer lebih besar dari tegangan sekunder, maka dinamakan trafo step down. Gambar 11. Simbol Trafo Pada setiap trafo mempunyai input yang dinamai gulungan primer dan output yang dinamai gulungan sekunder. Trafo mempunyai inti besi untuk frekuensi rendah dan inti ferrit untuk frekuensi tinggi atau ada juga yang tidak mempunyai inti (intinya udara). Primer Sekunder Gambar 12. Bagan Trafo yang dilalui Arus Listrik Bila pada lilitan primer diberi arus bolakbalik (AC), maka gulungan primer akan menjadi magnit yang arah medan magnitnya juga bolakbalik. Medan magnit ini akan menginduksi gulungan sekunder dan mengakibatkan pada gulungan sekunder mengalir arus bolakbalik (AC). Dimisalkan pada gulungan primer mengalir arus berfasa positip (+), maka pada gulungan sekundernya mengalir arus berfasa negatip (). Karena arus yang mengalir digulungan primer bolakbalik, maka pada gulungan sekunderpun mengalir arus bolakbalik. Besarnya daya pada lilitan primer sama dengan daya yang diberikan pada lilitan sekunder. Jadi Pp = Ps atau Up.Ip = Us.Is Dimana: Pp = Daya primer dalam watt Ps = Daya sekunder dalam watt Up = Tegangan primer dalam volt Us = Tegangan sekunder dalam volt Ip = Arus primer dalam amper Is = Arus sekunder dalam amper 10

Contoh: Sebuah trafo daya dihubungkan dengan tegangan jalajala 220 V, arus yang mengalir pada lilitan primer 0,2 amper. Jika tegangan sekundernya 12 V. Hitunglah besarnya arus sekunder. Penyelesaian: Up.Ip = Us.Is 220.0,2 = 12. Is Is = 44/12 Is = 3,66 amper Perbandingan Transformasi: Pada umumnya jumlah lilitan primer tidak sama dengan jumlah lilitan sekunder. Untuk trafo stepup jumlah lilitan primer lebih sedikit dari jumlah lilitan sekunder, sebaliknya untuk trafo stepdown jumlah lilitan primer lebih banyak dari jumlah lilitan sekunder. Banyaknya lilitan primer dan banyaknya lilitan sekunder menunjukkan besarnya tegangan primer dan besarnya tegangan sekunder. Semakin besar tegangannya semakin banyak pula lilitannya. Jadi banyaknya lilitan berbanding lurus dengan besarnya tegangan dimasingmasing sisi. Jika lilitan sekunder= Ns dan lilitan primer = Np, maka perbandingan jumlah lilitan primer dan lilitan sekunder disebut perbandingan transformasi dan dinyatakan dengan T = Np/Ns. Pada transformator berlaku persamaan: Up/Us = Np/Ns atau T = Up/Us Contoh: Sebuah trafo daya tegangan primernya 220 V, tegangan sekundernya 30 V. Jumlah lilitan primernya 1100 lilit. Hitunglah banyaknya lilitan sekundernya. Penyelesaian: Up/Us = Np/Ns 220/30 = 1100/Ns 7,33 = 1100/Ns Ns = 1100/7,33 Ns = 150.06 lilit Pada teknik elektronika dikenal bermacammacam trafo, baik untuk frekuensi tinggi maupun frekuensi rendah. Contoh trafo untuk frekuensi tinggi yaitu trafo osilator, trafo frekuensi menengah (IF), trafo spull antena (tuner). Sedangkan trafo yang dipakai untuk frekuensi rendah yaitu trafo input, trafo output, trafo filter (choke). Relay Relay merupakan komponen elektronika yang dapat mengimplementasikan logika switching. Relay yang digunakan sebelum tahun 70an, merupakan otak dari rangkaian pengendali. Setelah tahun 70an digantikan posisi posisinya oleh PLC Relay yang paling sederhana ialah relay elektromekanis yang memberikan pergerakan mekanis saat mendapatkan energi listrik. Secara sederhana relay elektromekanis ini didefinisikan sebagai berikut : 11

Alat yang menggunakan gaya elektromagnetik untuk menutup (atau membuka) kontak saklar. Saklar yang digerakkan (secara mekanis) oleh daya/energi listrik. Jadi secara sederhana dapat disimpulkan bahwa Relay adalah komponen elektronika berupa saklar elektronik yang digerakkan oleh arus listrik. Secara umum, relay digunakan untuk memenuhi fungsi fungsi berikut : Remote control : dapat menyalakan atau mematikan alat dari jarak jauh Penguatan daya : menguatkan arus atau tegangan Contoh : starting relay pada mesin mobil Pengatur logika kontrol suatu sistem Prinsip Kerja dan Simbol Relay terdiri dari coil dan contact. Perhatikan gambar 2.2, coil adalah gulungan kawat yang mendapat arus listrik, sedang contact adalah sejenis saklar yang pergerakannya tergantung dari ada tidaknya arus listrik di coil. Contact ada 2 jenis : Normally Open (kondisi awal sebelum diaktifkan open), dan Normally Closed (kondisi awal sebelum diaktifkan close). Secara sederhana berikut ini prinsip kerja dari relay : ketika Coil mendapat energi listrik (energized), akan timbul gaya elektromagnet yang akan menarik armature yang berpegas, dan contact akan menutup. Gambar 13 Skema relay elektromekanik Sumber : Kilian, Christopher T, Modern Control Technology, (West Publishing Co : 1996) Selain berfungsi sebagai komponen elektronik, relay juga mempunyai fungsi sebagai pengendali sistem. Sehingga relay mempunyai 2 macam simbol yang digunakan pada : o Rangkaian listrik (hardware) o Program (software) Berikut ini simbol yang digunakan : 12

Gambar 14 Rangkaian dan simbol logika relay Sumber : Kilian, Christopher T, Modern Control Technology, (West Publishing Co : 1996) Simbol selalu mewakili kondisi relay tidak dienergized. Dalam data sheet, penjelasan untuk coil dan contact terpisah. Hal ini menyebabkan masing masing mempunyai spesifikasi yang berbeda beda juga. Perhatikan tabel berikut. Tabel 4. Contoh datasheet relay G2RS Omron Sumber : OMRON, General Purpose Relay G2RS Datasheet 13

Jenis jenis Relay Seperti saklar, relay juga dibedakan berdasar pole dan throw yang dimilikinya. Berikut definisi pole dan throw: Pole : banyaknya contact yang dimiliki oleh relay Throw : banyaknya kondisi (state) yang mungkin dimiliki contact Berikut ini penggolongan relay berdasar jumlah pole dan throw : SPST (Single Pole Single Throw) DPST (Double Pole Single Throw) SPDT (Single Pole Double Throw) DPDT (Double Pole Double Throw) 3PDT (Three Pole Double Throw) 4PDT (Four Pole Double Throw) Berikut ini rangkaian dan simbol macammacam relay tersebut. Gambar 15 Relay jenis Single Pole Double Throw (SPDT) Sumber : Kilian, Christopher T, Modern Control Technology, (West Publishing Co : 1996) Gambar 15 Relay dengan contact lebih dari satu Sumber : Kilian, Christopher T, Modern Control Technology, (West Publishing Co : 1996) Timing relay adalah jenis relay yang khusus. Cara kerjanya ialah sebagai berikut : jka coil 14

dari timing relay ON, maka beberapa detik kemudian, baru contact relay akan ON atau OFF (sesuai jenis NO/NC contact). Simbol dari timing relay bisa dilihat pada gambar 2.6. Sedang latching relay ialah jenis relay digunakan untuk latching atau mempertahankan kondisi aktif input sekalipun input sebenarnya sudah mati. Cara kerjanya ialah sebagai berikut : jika latch coil diaktifkan, ia tidak akan bisa dimatikan kecuali unlatch coil diaktifkan. Simbol dari latching relay bisa dilihat pada gambar 17. Gambar 16 Simbol coil dan contact dari timing relay Sumber : Rexford, Kenneth B, Electrical Control for Machines, (Delmar Publishers Inc : 1987) Gambar 17 Simbol coil dan contact dari latching relay Sumber : Rexford, Kenneth B, Electrical Control for Machines, (Delmar Publishers Inc : 1987) Relay sebagai pengendali Salah satu kegunaan utama relay dalam dunia industri ialah untuk implementasi logika kontrol dalam suatu sistem. Sebagai bahasa pemrograman digunakan konfigurasi yang disebut ladder diagram atau relay ladder logic. Berikut ini beberapa petunjuk tentang relay ladder logic (ladder diagram): Diagram wiring yang khusus digunakan sebagai bahasa pemrograman untuk rangkaian kontrol relay dan switching. LD Tidak menunjukkan rangkaian hardware, tapi alur berpikir. LD Bekerja berdasar aliran logika, bukan aliran tegangan/arus. Relay Ladder Logic terbagi menjadi 3 komponen : 15

1. Input pemberi informasi 2. Logic pengambil keputusan 3. Output usaha yang dilakukan Diagram sederhana dari sistem kontrol berbasis relay yang menggambarkan penjelasan di atas dapat dilihat pada gambar 18. Dari gambar di atas nampak bahwa sistem kendali dengan relay ini mempunyai input device (misalnya: berbagai macam sensor, switch) dan output device (misalnya : motor, pompa, lampu). Dalam rangkaian logikanya, masingmasing input, output, dan semua komponen yang dipakai mengikuti standard khusus yang unik dan telah ditetapkan secara internasional. Sebagai awal, pada gambar di bawah dapat dilihat aplikasi relay untuk membentuk gerbang gerbang logika sederhana (AND, OR, NOT, dan latching). Gambar 2.9 Relay untuk membentuk gerbang logika Sumber : Kilian, Christopher T, Modern Control Technology, (West Publishing Co : 1996) 16

B. Rangkuman Resistor atau Tahanan adalah komponen elektronika yang berfungsi untuk mengatur kuat arus yang mengalir. Lambang untuk Resistor dengan huruf R, nilainya dinyatakan dengan cincincincin berwarna dalam OHM (Ω). Kondensator/Capasitor adalah komponen pasif, notasinya dituliskan dengan huruf C berfungsi untuk menyimpan energi listrik dalam bentuk muatan listrik banyaknya muatan listrik per detik dalam satuan Qoulomb (Q). Transformator (trafo) ialah alat listrik/elektronika yang berfungsi memindahkan tenaga (daya) listrik dari input ke output atau dari sisi primer ke sisi sekunder. Pemindahan daya listrik dari primer ke sekunder disertai dengan perubahan tegangan baik naik maupun turun. Relay merupakan komponen elektronika yang dapat mengimplementasikan logika switching. Relay yang digunakan sebelum tahun 70an, merupakan otak dari rangkaian pengendali. C. Tugas 1. Isilah tabel dibawah ini dengan berbagai macam jenisjenis komponen pasif seperti ; Resistor, Kapasitor, Transformator, dan Relay. Tabel Tugas 1. Identifikasi Resistor No. Komponen Warna Hasil Pembacaan 1. 2. dst Hasil Pengukuran Tabel Tugas 2. Identifikasi Kondensator No. Komponen Hasil Pembacaan Hasil Pengukuran 1 2 dst Tabel Tugas 3 Identifikasi Transformator No. Komponen Hasil Pembacaan Hasil Pengukuran 1 2 dst 17

Tabel Tugas 4 Identifikasi Relay No. Komponen Hasil Pembacaan Hasil Pengukuran 1 2 dst 2. Buat rangkuman tentang materi komponen Transistor, setelah selesai lalu buat tabel seperti dibawah ini. Tabel Tugas 5 Identifikasi Transistor No. Transistor Urutan PIN Hasil Jenis Transistor 1 2 3 Pengukuran NPN PNP 1. 2. dst. Catatan: Cari bentuk komponen di internet dan berwarna, print dan jilid. D. Daftar Pustaka Komponen elektronika, diunduh di : http://hanadasetia.blogspot.co.id/2013/11/komponenpasifdanaktifelektronika.html Moh Duro, 2012, Fungsi dan jenis relay, diunduh di: http://dienelcom.blogspot.co.id/2012/08/fungsidanjenisjenisrelay.html Handy Wicaksono, Relay, Catatan Mata Kuliah Auomasi 1, Teknik Elektro Universitas Kristen Petra. 18