Universitas Sumatera Utara

dokumen-dokumen yang mirip
ANALISIS SAMBUNGAN ANTARA RIGID CONNECTION DAN SEMI-RIGID CONNECTION PADA SAMBUNGAN BALOK DAN KOLOM PORTAL BAJA

Perilaku Material Baja dan Konsep Perencanaan Struktur Baja

Universitas Sumatera Utara

Perilaku Material Baja dan Konsep Perencanaan Struktur Baja

Bab II STUDI PUSTAKA

BAB II TINJAUAN PUSTAKA. keliatan dan kekuatan yang tinggi. Keliatan atau ductility adalah kemampuan. tarik sebelum terjadi kegagalan (Bowles,1985).

BAB I PENDAHULUAN. Suatu konstruksi tersusun atas bagian-bagian tunggal yang digabung membentuk

BAB 2 TINJAUAN PUSTAKA. karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari

BAB 1 PENDAHULUAN. metoda desain elastis. Perencana menghitung beban kerja atau beban yang akan

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang

BAB 2 STUDI PUSTAKA. 2.1 Jenis-Jenis Material Baja Yang Ada di Pasaran. Jenis material baja yang ada di pasaran saat ini terdiri dari Hot Rolled Steel

BAB II TEORI DASAR. seorang perencana / desainer harus mempunyai pengetahuan yang baik tentang :

BAB II TINJAUAN PUSTAKA

BAB III METODOLOGI PERENCANAAN

BAB II TINJAUAN PUSTAKA

Henny Uliani NRP : Pembimbing Utama : Daud R. Wiyono, Ir., M.Sc Pembimbing Pendamping : Noek Sulandari, Ir., M.Sc

DESAIN BALOK SILANG STRUKTUR GEDUNG BAJA BERTINGKAT ENAM

PENGGAMBARAN DIAGRAM INTERAKSI KOLOM BAJA BERDASARKAN TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG (SNI ) MENGGUNAKAN MATLAB

ANALISIS KOLOM BAJA WF MENURUT TATA CARA PERENCANAAN STRUKTUR BAJA UNTUK BANGUNAN GEDUNG ( SNI ) MENGGUNAKAN MICROSOFT EXCEL 2002

PERENCANAAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS PADA KOMPONEN BALOK KOLOM DAN SAMBUNGAN STRUKTUR BAJA GEDUNG BPJN XI

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM

BAB II DASAR TEORI. 2.1 Pengertian rangka

ANALISIS SAMBUNGAN PORTAL BAJA ANTARA BALOK DAN KOLOM DENGAN MENGGUNAKAN SAMBUNGAN BAUT MUTU TINGGI (HTB) (Studi Literatur) TUGAS AKHIR

BAB I PENDAHULUAN. Konstruksi bangunan tidak terlepas dari elemen-elemen seperti balok dan

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Perancangan Struktur Baja Kode : CIV 303. Sambungan Baut.

Struktur Baja 2. Kolom

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT

PERENCANAAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK BIASA DAN STRUKTUR RANGKA BAJA BRESING KONSENTRIK KHUSUS TIPE-X TUGAS AKHIR

BAB I PENDAHULUAN. bersifat monolit (menyatu secara kaku). Lain halnya dengan konstruksi yang

BAB II DASAR TEORI. baja yang dipakai adalah Baja Karbon (Carbon Steel) dengan sebutan Baja ASTM

BAB I PENDAHULUAN. lainnya. Material baja pada struktur baja juga tersedia dalam berbagai jenis ukuran

BAB II TINJAUAN PUSTAKA

harus memberikan keamanan dan menyediakan cadangan kekuatan yang kemampuan terhadap kemungkinan kelebihan beban (overload) atau kekurangan

BAB III PEMODELAN STRUKTUR

PERENCANAAN PORTAL BAJA 4 LANTAI DENGAN METODE PLASTISITAS DAN DIBANDINGKAN DENGAN METODE LRFD

MODUL 3 STRUKTUR BAJA 1. Batang Tarik (Tension Member)

PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI DAN FEMA 450

MODUL 4 STRUKTUR BAJA 1. S e s i 1 Batang Tekan (Compression Member) Dosen Pengasuh : Ir. Thamrin Nasution

KONSEP PERENCANAAN STRUKTUR BAJA WEEK 2

PLATE GIRDER A. Pengertian Pelat Girder

BAB II TINJAUAN PUSTAKA

P ndahuluan alat sambung

Pertemuan IX : SAMBUNGAN BAUT (Bolt Connection)

MODUL 6. S e s i 5 Struktur Jembatan Komposit STRUKTUR BAJA II. Dosen Pengasuh : Ir. Thamrin Nasution

BAB I PENDAHULUAN. menggunakan SNI Untuk mendukung penulisan tugas akhir ini

BAB III LANDASAN TEORI

BAB III PEMODELAN DAN ANALISIS STRUKTUR

BAB II TINJAUAN PUSTAKA

DAFTAR ISI. LEMBAR JUDUL... i KATA PENGANTAR... UCAPAN TERIMA KASIH... iii. DAFTAR ISI... iv DAFTAR TABEL... DAFTAR GAMBAR... ABSTRAK...

Torsi sekeliling A dari kedua sayap adalah sama dengan torsi yang ditimbulkan oleh beban Q y yang melalui shear centre, maka:

Sambungan diperlukan jika

Baja merupakan alternatif bangunan tahan gempa yang sangat baik karena sifat daktilitas dari baja itu sendiri.

ANALISIS CELLULAR BEAM DENGAN METODE PENDEKATAN DIBANDINGKAN DENGAN PROGRAM ANSYS TUGAS AKHIR. Anton Wijaya

BAB I PENDAHULUAN. Seiring dengan perkembangan teknologi dan kebutuhan, struktur sipil. yang mutlak harus dipenuhi seperti aspek ekonomi dan kemudahan

BAB II DASAR-DASAR DESAIN BETON BERTULANG. Beton merupakan suatu material yang menyerupai batu yang diperoleh dengan

BAB II TINJAUAN PUSTAKA

BEARING STRESS PADA BASEPLATE DENGAN CARA TEORITIS DIBANDINGKAN DENGAN PROGRAM SIMULASI ANSYS

Analisis Balok Anak Konstruksi Propped pada Portal Tingkat Dua berdasarkan Variasi Jarak Balok dan Portal (Aspek Tehnis dan Biaya)

BAB III METODOLOGI PERENCANAAN

BAB II TINJAUAN PUSTAKA. juga memiliki iki sifat elastis dan daktilitas yang cukup tinggi gi sehingga dapat

BAB 1 PENDAHULUAN. perhitungan analisis struktur akan dihasilkan gaya-gaya dalam dari struktur baja

KOMPUTERISASI SAMBUNGAN LAS YANG MEMIKUL MOMEN SEBIDANG DENGAN METODE KEKUATAN BATAS BERDASARKAN SPESIFIKASI AISC LRFD 1999

PLATE GIRDER A. Pengertian Pelat Girder

STUDI ANALISIS DAN EKSPERIMENTAL PENGARUH PERKUATAN SAMBUNGAN PADA STRUKTUR JEMBATAN RANGKA CANAI DINGIN TERHADAP LENDUTANNYA

ANALISIS DIMENSI PELAT DASAR (BASE PLATE) PADA KOLOM STRUKTUR BAJA YANG MAMPU TAHAN TERHADAP EFEK PRAY

MODIFIKASI PERENCANAAN STRUKTUR BAJA KOMPOSIT PADA GEDUNG PERPUSTAKAAN UNIVERSITAS NEGERI JEMBER

BAB I PENDAHULUAN. meneruskan beban yang ditopang oleh pondasi dan beratnya-sendiri ke dalam tanah

MODUL STRUKTUR BAJA II 4 BATANG TEKAN METODE ASD

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAHAN KULIAH Struktur Beton I (TC214) BAB IV BALOK BETON

PERENCANAAN ELEMEN STRUKTUR BAJA BERDASARKAN SNI 1729:2015

STUDI PERBANDINGAN PENGGUNAAN BALOK ANAK KONSTRUKSI PROPPED PADA BANGUNAN TINGKAT DUA DENGAN VARIASI JARAK BALOK DAN PORTAL DARI SEGI TEKNIK DAN BIAYA

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan

KATA PENGANTAR. telah melimpahkan nikmat dan karunia-nya kepada penulis, karena dengan seizin-

STUDI KUAT LENTUR BALOK PROFIL C GANDA DENGAN PERANGKAI TULANGAN DIAGONAL. Oleh : JONATHAN ALFARADO NPM :

PERENCANAAN STRUKTUR RANGKA BAJA BRESING TAHAN GEMPA

BAB II TINJAUAN PUSTAKA

Filosofi Desain Struktur Baja

BAB IV PERMODELAN STRUKTUR

BAB III METODOLOGI PERANCANGAN. 3.1 Diagram Alir Perancangan Struktur Atas Bangunan. Skematik struktur

ANALISIS METODE ELEMEN HINGGA DAN EKSPERIMENTAL PERHITUNGAN KURVA BEBAN-LENDUTAN BALOK BAJA ABSTRAK

PERILAKU BALOK BERTULANG YANG DIBERI PERKUATAN GESER MENGGUNAKAN LEMBARAN WOVEN CARBON FIBER

STUDI KEKUATAN RANGKA ATAP MONOFRAME MENGGUNAKAN PROFIL C GANDA DENGAN SAMBUNGAN LAS

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN. analisa elastis dan plastis. Pada analisa elastis, diasumsikan bahwa ketika struktur

ABSTRAK. Kata Kunci : LRFD, beban, lentur, alat bantu, visual basic.

5ton 5ton 5ton 4m 4m 4m. Contoh Detail Sambungan Batang Pelat Buhul

a home base to excellence Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 Sambungan Baut Pertemuan - 12

BAB I PENDAHULUAN. Pada suatu konstruksi bangunan, tidak terlepas dari elemen-elemen seperti

Oleh : MUHAMMAD AMITABH PATTISIA ( )

BAB I PENDAHULUAN. berkembang dan telah mempermudah manusia untuk melakukan pekerjaan

ELEMEN STRUKTUR TARIK

BAB II TINJAUAN PUSTAKA

ANALISIS PERILAKU STRUKTUR RANGKA BAJA DENGAN DAN TANPA BRESING V-TERBALIK EKSENTRIK

A. Struktur Balok. a. Tunjangan lateral dari balok

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

MODUL PERKULIAHAN. Struktur Baja 1. Batang Tarik #1

BAB II TINJAUAN PUSTAKA

2- ELEMEN STRUKTUR KOMPOSIT

Transkripsi:

memiliki kekurangan seperti biaya perawatan yang besar, biaya pengadaan anti api yang besar (fire proofing cost), ketahanan terhadap perlawanan tekuk kecil, dan kekuatannya akan berkurang jika dibebani secara berulang/periodik (kondisi leleh atau fatigue) 2.1.1 Klasifikasi baja konstruksi Baja yang akan di gunakan sebagai bahan konstruksi dapat di klasifikasikan menjadi baja karbon, baja panduan mutu tinggi dan baja paduan mutu rendah. Sifat sifat mekanik dari baja tersebut seperti tegangan leleh dan tegangan putusnya diatur didalam ASTM A6/A6M. a. Baja karbon Baja karbon dibagi atas 3 kategori tergantung dari persentase kandungan karbon yang terdapat didalamnya, yaitu: Baja karbon rendah (low carbon steel), dimana kandungan arangnya lebih kecil dari 0,15%. Baja karbon ringan (mild carbon steel), dimana kandungan arangnya berkisar 0,15% - 0,29%. Baja karbon sedang (medium carbon steel), dimana kandungan arangnya berkisar 0,30% - 0,59%. Baja karbon tinggi (high carbon steel), dimana kandungan arangnya berkisar 0,60% - 1,7%. Baja yang sering digunakan dalam perencanaan struktur ialah baja karbon dengan tingkat kandungan yang terdapat didalamnya bermutu karbon ringan (mild carbon steel), misal baja dengan BJ.37 dengan nilai kandungan karbon yang berada didalamnya antara 0,25 0,29 % 13

tergantung dengan tingkat ketebalan dari besi yang akan di cetak. Unsur lain juga terkandung didalam besi tersebut yaitu mangan ( 0.25 % - 1,5 % ), Silikon ( 0.25-0.30% ) fosfor ( maksimal 0.04 % ) dan sulfur (0.05%). Baja karbon menunjukan titik peralihan leleh yang jelas seperti pada gambar grafik dibawah pada (kurva a). Naiknya persentase karbon meningkatkan tegangan leleh namun menurunkan daktalitas, salah satu dampaknya ialah membuat pelaksanaan pekerjaan pengelasan menjadi lebih sulit. Baja karbon umumnya memiliki tegangan leleh (fy) 210 250 Mpa b. Baja paduan mutu tinggi Yang di maksud dalam kategori baja paduan mutu tinggi ( High Stregh Low- Alloy Steel / HSLA ) yaitu baja dengan mempunyai tegangan leleh berkisar antara 290 550 Mpa dengan tegangan putus (fu) antara 415 700 Mpa. Titik peralihan leleh dari baja ini nampak dengan jelas pada (kurva b). Penambahan sedikit bahan bahan paduan seperti chromium, columbium, magan, molybden, nikel, fosfor, vanadium, atau zinkonium dapat memperbaiki sifat-sifat mekaniknya. Jika baja karbon memiliki kekuatannya seiring dengan penambahan persentase karbon, maka bahan bahan paduan ini mampu memperbaiki sifat mekanik baja dengan membentuk mikrostruktur dalam bahan baja yang lebih halus c. Baja paduan mutu rendah Baja paduan mutu rendah ( low alloy ) dapat ditempah dan dipanaskan untuk memperoleh tegangan leleh antara 550 760 Mpa. Titik 14

peralihan tegangan leleh tidak tampak dengan jelas (kurva c). tegangan leleh dari baja paduan mutu rendah ini biasanya ditentukan sebagai tegangan yang terjadi saat timbul regangan permanenn sebesar 0.2 % atau dapat ditentukan pula sebagai tegangan padaa saat regangan mencapai 0.5 %. Baut yang biasa di gunakan sebagai alat pengencang mempunyai tegangan putus minimum 415 Mpa hingga 700 Mpa. Baut mutu tinggi mempunyai kandungan karbon maksimum 0.30 %, dengan tegangan putus berkisar antara 733 Mpa hingga 838 Mpa Kurva C Kurva B Kurva A Gambar 2.2 Hubungan tegangan regangan tipikal (Sumber : Charles G. Salmon dan John E. Johnson,Struktur Baja, 1995) 15

2.1.2 Sifat sifat mekanik baja konstruksi Agar dapat memahami struktur perilaku struktur baja, maka seorang ahli struktur harus memahami pula sifat sifat mekanik dari baja. Model pengujian yang paling tepat untuk mendapatkan sifat sifat mekanik dari material baja adalah dengan melakukan uji tarik terhadap suatu benda uji baja. uji tekan tidak dapat memberikan data yang akurat terhadap sifat sifat mekanik material baja, karena disebabkan beberpa hal antara lain adanya potensi tekuk pada benda uji yang mengakibatkan ketidakstabilan dari benda uji tersebut, selain itu perhitungan tegangan yang terjadi dalam benda uji lebih mudah dihitung pada uji tarik dari pada pada pengujian tekan. Pada gambar dibawah menunjukan suatu hasil uji tarik material baja pada suhu kamar serta memberikan laju regangan yang normal. Tegangan nominal (f) yang terjadi pada benda uji di plot pada sumbu vertical, sedangkann regangan ( ) yang merupakan perbandingan antara pertambahan panjang dengan panjang mula mula ( ) di plot pada sumbu horizontal. Gambar.2.3 Hasil uji tarik benda uji sampai mengalami keruntuhan (Sumber : Agus Setiawan,Struktur Baja Metode LRFD, 2008 ) 16

Gambar.2.4 Perilaku benda uji hingga mencapai regangan sebesar + 2 % (Sumber : Agus Setiawan,Struktur Baja Metode LRFD, 2008 ) Dari gambar 2.3 terlihat 4 zona perilaku yaitu : zona elastik, zona plastis, zona strain hardening dan zona sepanjang peristiwa terjadinya neckling serta diakhiri dengan kegagalan (failure). Keterangan berikut merupakan penjelasan dari kempat zona diatas : Dalam Zona regangan, tegangan dan regangan bersifat proposional, kemiringan linear yang ada merupakan modulus elastisitas / modulus young ( E ). daerah ini dinamakan zona elastik, zona ini berakhir dengan ditandai dengan tercapainya kelelehan material (f y ) Setelah awal kelelehan terjadi zona berbentuk garis datar ( flat plateau ) pada zona ini setiap peningkatan nilaii regangan yang terjadi tidak ada peningkatan nilai tegangan yang mengiringinya. Daerah ini disebut plato plastis 17

Saat zona plasto plastis berakhir, strain hardening mulai terjadi dan secara bertahap meningkatkan nilai tegangan sampai mencapai tegangan ultimate (Fu). Setelah itu tegangan cenderung menurun dengan bertambahnya regangan sebagai nilai indikasi masuknya daerah neckling yang diakhiri dengan kegagalan fraktur ( failure ) Titik titik penting dalam kurva tegangan dan regangan ialah : f p = Batas Proposional fe = Batas Elastis fyu, fy = Tegangan Leleh atas dan bawah fu = Tegangan Putus sb = Regangan saat mulai terjadi efek strain- hardening (penguatan regangan) u = Regangan saat tercapainya tegangan putus Sifat mekanis baja struktural yang digunakan dalam perencanaan yaitu : Modulus elastisitas (E) = 200.000 MPa Modulus geser (G) = 80.000 MPa Nisbah poisson (μ) = 0,3 Koefisien pemuaian (α) = 12 x 10-6 per o C 18

Berdasarkan tegangan leleh dan tegangan putus dari baja, SNI 03-1729-2002 mengklasifikasikan mutu dari material baja menjadi 5 kelas, yaitu : Jenis Baja Tegangan putus minimum f u (MPa) Tegangan leleh minimum f y (MPa) Peregangan minimum (%) BJ 34 340 210 22 BJ 37 370 240 20 BJ 41 410 250 18 BJ 50 500 290 16 BJ 55 550 410 13 Tabel 2.1. Kelas mutu baja berdasarkan tegangan leleh dan putus (Sumber : Standar Nasional Indonesia (SNI) 03-1729-2002) 2.2 Sambungan pada Konstruksi Baja Sambungan ialah satu media yang berfungsi untuk mengabungkan elemen elemen tunggal pada satu konstruksi baja yang digabung secara tersusun sehingga membentuk satu kesatuan konstruksi. Salah satu fungsi utama sebuah sambungan ialah untuk memindahkan gaya-gaya yang bekerja pada titik penyambungan ke elemen-elemen struktur yang disambung. Pada konstruksi baja, selain memindahkan gaya-gaya yang terjadi, fungsi/tujuan lain dilakukannya penyambungan yaitu : menggabungkan beberapa batang baja membentuk kesatuan konstruksi sesuai kebutuhan. mendapatkan ukuran baja sesuai kebutuhan (panjang, lebar, tebal, dan sebagainya). 19

memudahkan dalam penyetelan konstruksi baja di lapangan. memudahkan penggantian bila suatu bagian/batang konstruksi mengalami rusak. Pada sambungan baja sering terdapat kemungkinan adanya bagian/batang konstruksi yang berpindah, contohnya antara lain yaitu peristiwa pemuaian dan penyusutan baja akibat adanya perubahan suhu. Dikarenakan bentuk struktur bangunan baja yang begitu kompleks, kejadian perubahan - perubahan baja tersebut sangat menganggu fungsi kekuatan dan ketahanan struktur tersebut khususnya pada daerah titik sambungan baja konstruksi. Pada umumnya sambungan antara elemen tersebut harus direncanakan dengan matang agar struktur bangunan dapat bertahan sesuai dengan perencanaan yang di rencanakan. Kegagalan dalam sambungan dapat mengakibatkan perubahan fungsi struktur bangunan, dan kegagalan yang paling berbahaya adalah keruntuhan pada struktur tersebut akibat perubahan fungsi. Untuk mencegah hal tersebut, maka kekakuan sambungan antara elemen - elemen tersebut harus memenuhi persyaratan dalam perencanaan sambungan. Terdapat dua filosofi yang biasa digunakan dalam perencanaan struktur baja yaitu: 1. Perencanaan dengan metode peninjauan terhadap tegangan kerja / working stress design ( Allowable Stress Design / ASD ) 2. Perencanaan dengan metode peninjauan kondisi batas / limit states Design ( Load and Resistance Factor Design / LRFD) Jika ditinjau dari perencanaan struktur baja metode tegangan kerja (working stress / ASD), konstruksi baja dibedakan atas tiga kategori sesuai dengan jenis 20

sambungan yang dipakai. Ketiga jenis ini adalah sebagai berikut (Charles G. Salmon dan John E. Johnson, 1995) : 1. Jenis 1 AISC. Sambungan portal kaku (rigid connection), Sambungan ini memiliki kontinuitas penuh sehingga sudut pertemuan antara batang-batang tidak berubah, yakni derajat pengekangan (restraint) sambungan untuk berotasi minimal 90% atau lebih dari yang diperlukan untuk mencegah perubahan sudut. Sambungan ini dipakai baik pada metode perencanaan tegangan kerja maupun perencanaan plastis. 2. Jenis 2 AISC. Sambungan kerangka sederhana (simple framing), Sambungan ini memiliki pengekangan rotasi di ujung-ujung batang dibuat sekecil mungkin. Suatu kerangka dapat dianggap sederhana jika sudut semula antara batang-batang yang berpotongan dapat berubah sampai 80% dari besarnya perubahan teoritis yang diperoleh dengan menggunakan sambungan sendi tanpa gesekan (frictionless) atau derajat pengekangan sambungan untuk berotasi maksimal 20%. Kerangka sederhana tidak digunakan dalam perencanaan plastis, kecuali pada sambungan batang-batang tegak lurus bidang portal yang harus mencapai kekuatan plastis 3. Jenis 3 AISC. Sambungan kerangka semi-kaku ( semi-rigid connection). Sambungan ini memiliki pengekangan rotasi sambungan berkisar antara 20% - 90% dari yang diperlukan untuk mencegah perubahan sudut. Sambungan semi-kaku tidak dipakai dalam perencanaan plastis dan jarang sekali digunakan pada metode tegangan kerja, terutama karena derajat pengekangannya sukar ditentukan. 21

Sedangkan jika di tinjau dari perancanaan struktur baja dengan metode kondisi batas (limit states design / LRFD), konstruksi baja dibedakan atas dua kategori sesuai dengan jenis sambungan yang dipakai, antara lain : 4. Tipe FR (Fully Restrained) Sambungan terkekang penuh Sambungan ini dulu dikenal sebagai sambungan kaku (rigid connection) dimana sambungan ini dianggap memiliki kekakuan yang tinggi untuk menjaga perubahan sudut antara elemen elemen yang disambung. Dengan kata lain, momen yang bekerja ditransfer secara penuh dan juga rotasi perputaran pada sambungan itu berputar secara bersamaan sehingga tidak ada penyimpangan, sambungan ini dikenal sebagai sambungan tipe 1 pada perencanaan metode ASD 5. Tipe PR (Partially Restrained) Sambungan terkekang sebagian Sambungan ini dulu dikenal sebagai sambungan fleksibel (flexible connection) dimana pada sambungan ini, alat penyambung dibuat sefleksibel mungkin sehingga pada kedua ujung komponen struktur yang disambung dianggap bebas momen. Sambungan ini juga dikenal sebagai sambungan tipe 2 pada perencanaan metode ASD 2.2.1 Sambungan Momen (Moment Connections) Sambungan momen adalah salah satu sub bagian dari sambungan tipe -1 dalam perencanaan dengan mengunakan analisa metode ASD atau sambungan tipe-fr dalam perencanaan dengan mengunakan analisa metode LRFD. Sehingga sambungan momen dapat kita didefinisikan sebagai 22

sambungan yang memiliki kekakuan yang tinggi dimana sambungan ini dapat menjaga perubahan sudut yang terjadi antara elemen elemen yang disambung satu dengan yang lainnya. Dengan kata lain, momen yang bekerja pada elemen yang disambung ditransfer secara penuh kepada media penyambung yang kemudian media penyambungan tersebut meneruskan gaya momen ke elemen struktur yang tersambung pada sambungan tersebut hal ini menyebabkan rotasi perputaran elemen elemen struktur pada sambungan itu berputar secara bersamaan sehingga tidak ada penyimpangan sudut atau sangat kecil. Jika kita meninjau sambungan momen berdasarkan metode alat penyambungnya, sambungan ini dapat terbagi atas 2 bagian yaitu : 1. Sambungan momen dengan mengunakan metode las Prinsip kerja dengan mengunakan metode ini yaitu pada komponen elemen struktur pendukung diberikan plat penyambung yang disambung dengan cara pengelasan pada sisi badan dari profil, sementara komponen elemen struktur yang didukung juga di sambung ke plat penyambung dengan mengunakan media las sebagai alat penyambungnya. Sehingga kondisi sambungan tersebut menjadi lebih kaku untuk menjaga perputaran sudut antara elemen struktur yang didukung dengan elemen struktur yang digunakan sebagai pendukung sambungan. Akan tetapi dikarenakan metode pengelasan yang dilakukan pada sistem penyambungan ini maka sifat dari sambungan ini dapat dinyatakan sebagai sambungan definitif atau sambungan tetap 23

Gambar 2.7.a. sambungan balok & kolom

Gambar 2.7.b. sambungan balok & balok Gambar 2.7.c. sambungan kolom & kolom

Gambar 2.7.d. sambungan kolom & pondasi Gambar 2.8.a. Klasifikasi sambungan berdasarkan kekuatan ( strength )

Gambar 2.8.b. Klasifikasi sambungan berdasarkan kekakuan ( rigidity ) Gambar 2.8.c. Klasifikasi sambungan berdasarkan daktailitas ( ductile )

Pada Gambar 2.8.a, sehubungan dengan kekuatan (strength), sambungan diklasifikasikan menjadi full strength, partial strength, dan nominally pinned. Sambungan full strength didefinisikan sebagai sambungan dengan moment resistance M sama atau lebih besar dari moment capacity (M Mcx). Kurva 1, 2, dan 4 menunjukkan sambungan full strength. Sambungan partial strength didefinisikan sebagai sambungan moment resistance M sama atau kurang dari moment capacity (M Mcx). Kurva 3 dan 5 termasuk ke dalam klasifikasi partial strength. Sedangkan nominally pinned adalah sambungan yang cukup fleksibel dengan momen resistance tidak lebih 25% dari moment capacity. Kurva 6 menggambarkan sambungan tipe nominally pinned. Pada Gambar 2.8.b, kekakuan (rigidity) sama dengan kekakuan rotasi dimana kurva 1, 2, 3, dan 4 menunjukkan sambungan rigid. Sedangkan kurva 5 termasuk dalam klasifikasi sambungan semi-rigid. Dalam peraturan BS5950 dijelaskan bahwa garis putus-putus antara rigid dengan semi-rigid diperoleh dari rumus 2EI/L. Pada Gambar 2.8.c, kurva 2, 4, dan 5 adalah sambungan ductile. Kurva 1 tidak ductile dan kurva 3 berada antara ductile dan non-ductile. Kurva 6 merupakan jenis sambungan nominally pinned, sehingga merupakan sambungan sederhana. 30

Dari hasil grafik kurva momen rotasi ( M - ) maka perencanaan sambungan balok berdasarkan tingkat kekuatan sambungan terdapat tipe sambungan yang dikenal dengan istilah sambungan plat ujung / end plat connection. Dimana tipe sambungan plat ujung tersebut dibagi atas 2 jenis tipe sambungan yaitu : 1. Sambungan tipe Flush ( Flush End Plate ) Sambungan ini memiliki bentuk plat penyambung yang lebarnya sama dengan ketinggian balok yang akan disambung sehingga baut yang berguna sebagai media penyambungnya hanya diletakkan pada posisi bagian dalam balok saja 2. Sambungan tipe Extended ( Extended End Plate ) Sambungan ini memiliki bentuk plat penyambung yang lebarnya lebih tinggi dari pada ketinggian balok yang akan disambung sehingga baut yang berguna sebagai media penyambungnya dapat diletakkan pada posisi bagian luar balok penyambung 2.3 Kegagalan yang terjadi pada sambungan baja Perencanaan sambungan struktur konstruksi baja didasari pada konsep yang menyatakan bahwa semua komponen struktur direncanakan untuk tingkat kekuatan dan kekakuan yang sesuai dengan beban yang bekerja. Kekakuan struktur pada umumnya dikaitkan dengan kemampuan layan. Kemampuan layan sendiri terkait dengan kinerja dari suatu struktur atau komponennya selama proses pelayanan terhadap beban. 31

dari gambar dibawah ini untuk daerah yang mengalami perubahan bentuk akibat gaya yang terjadi Gambar 2.9 Tegangan dan Regangan yang terjadi pada sambungan end plat (Sumber : The Steel Construction Institute, 1995 dan AISC 2005) ZONA NOTASI a b c Tegangan d e f g Geser Horizontal h j k Tekanan l m n Geser Vertikal p q PROSEDUR PEMERIKSAAN Tegangan Pada Baut Pembengkokan pada plat penyambung Pembengkokan pada plat sayap kolom Tegangan pada plat badan balok Tegangan pada plat badan kolom Sambungan las plat penyambung ke plat sayap kolom Sambungan las plat badan balok ke plat penyambung Gaya geser pada pelat badan kolom Tekanan pada plat sayap balok Sambungan las plat penyambung ke plat sayap kolom Keruntuhan pada bagian plat badan kolom Tekuk pada bagian plat badan kolom Sambungan las plat penyambung ke plat badan balok Geser pada baut Patahan akibat baut pada plat ataupun sayap 32

2.3.1 Kegagalan akibat tegangan yang terjadi ( failure by tension ) Kegagalan yang terjadi akibat tegangan yang timbul membuat kerusakan dan perubahan beberapa bagian dari sambungan momen antara lain kerusakan yang timbul pada bagian baut penyambung, perubahan pada bagian sayap kolom serta perubahan pada bagian plat penyambung end plate, gaya tegangan yang diberikan pada baut mengakibatkan baut yang terpasangan akan mengalami kegagalan yang mengakibatkan kehancuran ataupun putus pada bagian badan baut. Kekuatan pada masing masing baut pada daerah tegangan tergantung oleh bengkokan yang terjadi pada plat penyambung maupun yang terjadi pada plat sayap untuk kolom pendukung. Dengan menganalisa dan menghitung dari kemampuan perlawanan untuk masing masing barisan baut mengacu pada gambar dibawah ini. Baris 1 Baris 2 Baris 3 Baris 4 Gambar 2.10 Distribusi tahanan baut dari tegangan yang terjadi (Sumber : The Steel Construction Institute, 1995 dan AISC 2005) 33

Dengan perhitungan untuk bagian Pelat Sambungan (end plate) = 0.85 ( pers. 2.1 ) =.. ( pers. 2.2 ) Sedangkan perhitungan untuk sayap pada kolom ( column flange ) = 0.8. ( pers. 2.3 ) = ( pers. 2.4 ) Dimana notasi untuk diatas ; g = Jarak horizontal antara pusat baut ke baut dalam satu baris b p = Lebar dari pelat sambungan ( end plate ) B = Lebar sayap kolom t b = Tebal badan dari balok t c = Tebal badan dari kolom s ww = tebal las dari badan balok ke pelat penyambung s wf = tebal las dari sayap balok ke pelat penyambung Ketentuan untuk plate yang diperlebar bahwa : m x = x 0.85 wf e x = jarak tepi dari plat yang di perlebar ke titik pusat baut n x = nilai minimum antara e x dengan 1,25m x 34

Nilai nilai yang terjadi pada Pr1, Pr2, Pr3 dan seterusnya, dihitung dari urutan baris yang paling atas ( baris 1 ) hingga baris yang paling bawah, dimana beban yang akan terjadi juga dihitung mulai dari baris paling atas kemudian diteruskan sampai baris yang paling bawah dengan mengkombinasikan baris baris sebelumnya. Untuk bagian pembengkokan pada sayap ataupun pada bagian end plate yang mengalami tegangan. Kehancuran yang terjadi di periksa dan dianalisa secara terpisah. Dengan mengasumsikan perlawan yang terjadi maka kegagalan pada bagian sayap ataupun pada bagian end plate dibagi atas 3 bagian antara lain : m Model 1: Sayap melentur dengann sempurna + + n m Model 2: Sayap melentur tetapi baut putus Model 3: S Sayap tidak melentur tetapi baut putus 35

Dalam model 1, mencari persamaan untuk mendapatkan Pr : =... ( pers. 2.5 ) =.. ( pers. 2.6 ) Dalam model 2, mencari persamaan untuk mendapatkan Pr : = ( )... ( pers. 2.7 ) Dalam model 3, mencari persamaan untuk mendapatkan Pr : = Σ.... ( pers. 2.8 ) Dimana notasi untuk diatas ; L eff = panjang efektif garis lentur sesuai persamaan T stub ( lamp. Tabel 2.2, 2.3, 2.4 ) t = tebal sayap kolom ataupun tebal pelat penyambung Py = Kuat rencana dari kolom ataupun pelat penyambung Pr = Kemampuan lawan dari barisan baut ataupun kelompok Pt = Kapasitas tegangan baut ΣPt = total kapasitas tegangan baut dalam satu kelompok m = jarak dari titik pusat baut ke tepi bagian dalam kolom n = jarak dari titik pusat baut ke tepi bagian luar kolom 36

Tabel 2.2 Panjang efektif ( L eff ) untuk persamaan garis lentur (Sumber : The Steel Construction Institute, 1995 dan AISC 2005) 37

Tabel 2.3 Panjang efektif ( L eff ) untuk persamaan garis lentur (Sumber : The Steel Construction Institute, 1995 dan AISC 2005) 38

Tabel 2.4 Panjang efektif ( L eff ) untuk persamaan garis lentur (Sumber : The Steel Construction Institute, 1995 dan AISC 2005) 39

Tegangan juga terjadi pada badan balok dan kolom seperti yang dapat digambarkan di bawah ini, dapat kita lihat pada gambar dibawah, pada bagian badan kolom baris pada posisi baris 2 dan posisi baris 3, sangat rentan terjadinya kegagalan perlawanan tegangan dari baut, sedangkan pada posisi badan balok terdapat baris 3 yang mengalami potensi kerusakan akibat pembebanan tegangan pada baut Jalur kegagalan Pada bagian badan balok Kegagalan badan kolom pada Baris 2 + Baris 3 Jalur kegagalan Pada bagian badan kolom Kegagalan badan balok pada Baris 3 Gambar 2.11 Tegangan pada badan kolom dan juga pada badan balok (Sumber : The Steel Construction Institute, 1995 dan AISC 2005) Adapun kemampuan perlawanan terhadap tegangan tersebut dapat ditententukan dengan mengunakan persamaan sebagai berikut : Pt = L t x t w x P y ( pers. 2.9 ) 40

Dimana notasi diatas sebagai berikut : Lt = panjang regangan efektif pada badan dengan asumsi pelebaran 60 O dari baut kepusat badan seperti pada gambar 2.11 t w = tebal badan atau kolom P y = kekuatan rencana baja kolom ataupun baut 2.3.2 Kegagalan akibat gaya tekan ( failure by compression ) Kegagalan pada sambungan juga timbul akibat gaya tekan yang terjadi pada sambungan tersebut, akibat dari gaya gaya tekan yang terjadi kerusakan pada bagian badan kolom yang menjadi retak ataupun badan kolom yang menjadi tertekuk, perlawanan dari badan kolom diteruskan kepada bagian sayap balok menjadi tertekan dan juga sdikit punter antara bagian badan balok dengan bagian sayap balok. Untuk menghitung tekanan yang terjadi dalam badan kolom Pc, terdapat dua persamaan yang dapat dipakai yang kemudian akan di bandingkan untuk mendapatkan nilai yang terkecil, arah perlawanan dari badan kolom dihitung dari perlawanan badan pada panjang penyebaran kekuatan berikut : Gambar 2.12 Distribusi penyebaran gaya akibat tekan pada bagian kolom (Sumber : The Steel Construction Institute, 1995 dan AISC 2005) 41

Untuk persamaan diatas dapat ditulis sebagai berikut : Pc = (b 1 + n 2 ) x t c x P y (pers. 2.10 ) Dimana notasi diatas sebagai berikut : b 1 = panjang penahan kekakuan berdasarkan 45 0 penyebaran melalui pelat penyambung ke bagian tepi dari las n 2 = t c = P yc = t p = Tc = r = perolehan panjang dari perbandingan 1 : sayap kolom dan radius kaki tebal badan kolom kekuatan rencana kolom tebal dari pelat penyambung tebal sayap kolom radius kaki kolom 2,5 penyebaran untuk melayani gaya tekan yang terjadi bagian badan pada kolom juga mengalami tekuk, hal ini dapat digambarkan sebagai berikut : Gambar 2.13 Distribusi penyebaran tekuk yang terjadi pada badan kolom (Sumber : The Steel Construction Institute, 1995 dan AISC 2005) 42

Untuk persamaan diatas dapat ditulis sebagai berikut : Pc = (b 1 + n 1 ) x t c x P c (pers. 2.11 ) Dimana notasi diatas sebagai berikut : b 1 = panjang penahan kekakuan berdasarkan 45 0 penyebaran melalui pelat penyambung ke bagian tepi dari las n 1 = perolehan panjang dari 45 0 penyebaran melalui setengah dari tiggi penampang kolom, dimana tinggi penampang kolom ( Dc ) t c = P c = t p = tebal badan kolom kekuatan rencana kolom tebal dari pelat penyambung untuk pada melayani gaya tekan yang terjadi bagian sayap dan badan balok, tekanan yang terjadi dapat digambarkan sebagai berikut : Gambar 2.14 Distribusi penyebaran tekuk yang terjadi pada badan kolom (Sumber : The Steel Construction Institute, 1995 dan AISC 2005) 43

Untuk persamaan diatas dapat ditulis sebagai berikut : Pc = 1,4 x P yb x T b x B b (pers. 2.12 ) Dimana notasi diatas sebagai berikut : P yb = t p = Bb = kekuatan rencana balok tebal dari sayap balok Lebar sayap balok 2.3.3 Kegagalan akibat geser horizontal (failure by horizontal shear) Kegagalan pada sambungan juga timbul akibat gaya geser yang terjadi pada sambungan tersebut, untuk dapat memberikan kesetimbangan gaya pada sambungan geser horizontal juga dapat terjadi dalam perencanaan sambngan momen, akibat dari gaya gaya geser yang terjadi kerusakan pada bagian badan kolom yang menjadi retak ataupun badan kolom yang menjadi tertekuk, adapun gaya yang terjadi digambarkan sebagai berikut : Gambar 2.15 Distribusi penyebaran geser horizontal pada badan kolom (Sumber : The Steel Construction Institute, 1995 dan AISC 2005) 44

Untuk persamaan diatas dapat ditulis sebagai berikut : Pv = 0,6 x P yc x t c x D c (pers. 2.13 ) Dimana notasi diatas sebagai berikut : P yc = t c = D c = kekuatan rencana kolom tebal dari badan kolom tinggi dari penampang kolom 2.3.4 Kegagalan akibat geser vertikal (failure by vertical shear) Kegagalan pada sambungan juga timbul akibat gaya geser vertikal yang terjadi pada sambungan tersebut, untuk dapat memberikan kesetimbangan gaya pada sambungan, kapasitas untuk gaya geser vertical dihitung mengunakan pengurangan nilai barisan baut yang beradaa di daerah tegangan, di tambah nilai geser penuh untuk baut yang diabaikan ketika menghitung kapasitas moment, digambarkan sebagai berikut : Gambar 2.16 Distribusi penyebaran geser vertikal pada badan balok (Sumber : The Steel Construction Institute, 1995 dan AISC 2005) 45

Untuk persamaan diatas dapat ditulis sebagai berikut : V < ( n s x P ss ) + ( n t x P st ) (pers. 2.14 ) Dimana notasi diatas sebagai berikut : V = kekuatan geser rencana n s P ss = jumlah baut pada daerah geser = kapasitas geser dari baut tunggal hanya pada daerah geser yang paling kecil dari hasil nilai persamaan berikut : Ps x As ( untuk perhitungan geser baut ) d x tp x Pb. ( untuk perhitungan geser pada pelat ) d x tf x pb.. ( untuk perhitungan geser pada sayap ) P ts = kapasitas geser dari baut tunggal hanya pada daerah tegangan yang paling kecil dari hasil nilai persamaan berikut : 0,4 x Ps x As ( untuk perhitungan geser baut ) d x tp x Pb. ( untuk perhitungan geser pada pelat ) d x tf x pb.. ( untuk perhitungan geser pada sayap ) P s = Kuat geser baut As = daerah geser baut, dianjurkan daerah ulir Ts = tebal sayap kolom tp = tebal end plate Pb = nilai minimum dari kuat tekan untuk kedua baut, Pbb atau bagian sambungan, Pbs 46

2.4 Software Fine Elemen Analisis ( FEA ) ANSYS 2.4.1 Pengertian dan sejarah pengunaan ANSYS ANSYS adalah sebuah software analisis elemen hingga dengan kemampuan menganalisa dengan cakupan yang luas untuk berbagai jenis masalah ( Tim Langlais,1999). ANSYS mampu memecahkan persamaan differensial dengan cara memecahnya menjadi elemenelemen yang lebih kecil. Pada awalnya program ini bernama STASYS (Structural Analysis System), kemudian berganti nama menjadi ANSYS yang ditemukan pertama kali oleh Dr. John Swanson pada tahun 1970. ANSYS merupakan tujuan utama dari paket permodelan elemen hingga untuk secara numerik memecahkan masalah mekanis yang berbagai macam. Masalah yang ada termasuk analisa struktur statis dan dinamis (baik linear dan non-linear), distribusi panas dan masalah cairan, begitu juga dengan ilmu bunyi dan masalah elektromagnetik. Teknologi ANSYS mekanis mempersatukan struktur dan material yang bersifat non-linear. ANSYS multiphysic juga mengatasi masalah panas, struktur, elektromagnetik, dan ilmu bunyi. Program ANSYS dapat digunakan dalam teknik sipil, teknik listrik, fisika dan kimia. 2.4.2 Sistem Kerja analisa program ANSYS bekerja dengan sistem metode elemen hingga, dimana penyelesaiannya pada suatu objek dilakukan dengan memecah satu rangkaian kesatuan menjadi bagian-bagian yang lebih kecil dan dihubungkan dengan node. 47

Gambar 2.17 pemodelan elemen dengan metode pengunaan node Hasil yang diperoleh dari ANSYS ini berupa pendekatan dengan menggunakan analisa numerik. Ketelitiannya sangat bergantung pada cara kita memecah model tersebut dan menggabungkannya Secara umum, suatu solusi elemen hingga dapat dipecahkan dengan mengikuti 3 tahap ini. Ini merupakan panduan mum yang dapat digunakan untuk menghitung analisis elemen hingga. Tahapan pendahuluan, langkah yang disiapkan adalah : - Mendefinisikan titik point, garis, luas, volume - Mendefinisikan jenis elemen material/geometri dan bentuk - Menghubungkan garis, luas, volume sesuai kebutuhan. Tahapan Analisa, langkah yang disiapkan adalah : - menetapkan beban yang ada berupa beban terpusat ataupun terbagi rata, 48

- menetapkan perletakan ( translasi dan rotasi) - terakhir menjalankan analisisnya. Tahapan Hasil Analisa data, dalam hal ini hasil yang dapat di tampilkan oleh software ini adalah : - Tabel perpindahan nodal - Tabel gaya dan momen - Defleksi (penurunan) - Diagram kontur tegangan dan regangan ANSYS juga memiliki sistem satuan di dalamnya, oleh karena itu kita harus menggunakan sistem satuan yang konsisten untuk mengerjakannya. Tabel 2.5 Satuan yang digunakan dalam software ansys Dimana di dalam program ANSYS untuk menyamakan satuannya, maka nantinyaa pada bagian command di ketikkan /units,si. 49