Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder

dokumen-dokumen yang mirip
Performansi Kolektor Surya Tubular Terkonsentrasi Dengan Pipa Penyerap Dibentuk Anulus Dengan Variasi Posisi Pipa Penyerap

Analisa Performansi Kolektor Surya Pelat Bergelombang untuk Pengering Bunga Kamboja

BAB IV HASIL DAN PEMBAHASAN. 1. Temperatur udara masuk kolektor (T in ). T in = 30 O C. 2. Temperatur udara keluar kolektor (T out ). T out = 70 O C.

BAB II TINJAUAN PUSTAKA

BAB IV HASIL DAN PEMBAHASAN. 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah :

BAB II TINJAUAN PUSTAKA

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING

BAB II KAJIAN PUSTAKA. untuk membuat agar bahan makanan menjadi awet. Prinsip dasar dari pengeringan

Analisa performansi kolektor surya pelat bergelombang dengan variasi kecepatan udara

Pengaruh variasi jenis pasir sebagai media penyimpan panas terhadap performansi kolektor suya tubular dengan pipa penyerap disusun secara seri

PENGANTAR PINDAH PANAS

Analisis Performa Kolektor Surya Pelat Bersirip Dengan Variasi Luasan Permukaan Sirip

RANCANG BANGUN KONVERSI ENERGI SURYA MENJADI ENERGI LISTRIK DENGAN MODEL ELEVATED SOLAR TOWER

SISTEM PEMANFAATAN ENERGI SURYA UNTUK PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNGAN. Fatmawati, Maksi Ginting, Walfred Tambunan

ANALISA KARAKTERISTIK ALAT PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNG PARABOLA

BAB II DASAR TEORI. Gambar 2.1 Self Dryer dengan kolektor terpisah. (sumber : L szl Imre, 2006).

BAB II TINJAUAN PUSTAKA

PERPINDAHAN PANAS DAN MASSA

Satuan Operasi dan Proses TIP FTP UB

PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP PANAS YANG DIHASILKAN SOLAR WATER HEATER (SWH)

BAB IV ANALISA DAN PERHITUNGAN

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan

TEKNOLOGI ALAT PENGERING SURYA UNTUK HASIL PERTANIAN MENGGUNAKAN KOLEKTOR BERPENUTUP MIRING

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar

PENGARUH BENTUK DAN OPTIMASI LUASAN PERMUKAAN PELAT PENYERAP TERHADAP EFISIENSI SOLAR WATER HEATER ABSTRAK

Preparasi pengukuran suhu kolektor surya dan fluida kerja dengan Datapaq Easytrack2 System

II. TINJAUAN PUSTAKA. Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi

Analisa Performa Kolektor Surya Pelat Datar Bersirip dengan Aliran di Atas Pelat Penyerap

BAB II TINJAUAN PUSTAKA

Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik TAMBA GURNING NIM SKRIPSI

DAFTAR ISI. LEMBAR PERSETUJUAN... i. LEMBAR PENGESAHAN... ii. LEMBAR PERNYATAAN... iii. ABSTRAK... iv. ABSTRACT... v. KATA PENGANTAR...

Pengaruh Tebal Plat Dan Jarak Antar Pipa Terhadap Performansi Kolektor Surya Plat Datar


Analisa Kinerja Alat Destilasi Penghasil Air Tawar dengan Sistem Evaporasi Uap Tenaga Surya

SUDUT PASANG SOLAR WATER HEATER DALAM OPTIMALISASI PENYERAPAN RADIASI MATAHARI DI DAERAH CILEGON

Jurnal Flywheel, Volume 2, Nomor 1, Juni 2009 ISSN :

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE

BAB I PENDAHULUAN 1.1. Latar Belakang

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam

collectors water heater menggunakan

Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer

BAB II LANDASAN TEORI

Analisa Performansi Kolektor Surya Plat Datar Dengan Penambahan Sirip Berlubang Berdiameter Berbeda Yang Disusun Secara Staggered

BAB II DASAR TEORI. Gambar 2.1 Proses perpindahan panas secara konduksi Sumber : (maslatip.com)

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di Bengkel Pertanian Jurusan Teknik Pertanian

Suhu dan kalor 1 SUHU DAN KALOR

Eddy Elfiano 1, M. Natsir Darin 2, M. Nizar 3

SKRIPSI ANALISA PERFORMANSI KOLEKTOR SURYA PELAT BERGELOMBANG UNTUK PENGERING BUNGA KAMBOJA DENGAN EMPAT SISI KOLEKTOR. Oleh :

STUDI EKSPERIMENTAL PENGARUH SUDUT KEMIRINGAN TERHADAP PERPINDAHAN KALOR PADA MODUL PHOTOVOLTAIC UNTUK MENINGKATKAN DAYA KELUARAN

Pengaruh Jarak Kaca Ke Plat Terhadap Panas Yang Diterima Suatu Kolektor Surya Plat Datar

Proceeding Seminar Nasional Tahunan Teknik Mesin XI (SNTTM XI) & Thermofluid IV Universitas Gadjah Mada (UGM), Yogyakarta, Oktober 2012

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI

Karakteristik Pengering Surya (Solar Dryer) Menggunakan Rak Bertingkat Jenis Pemanasan Langsung dengan Penyimpan Panas dan Tanpa Penyimpan Panas

PENINGKATAN KAPASITAS PEMANAS AIR KOLEKTOR PEMANAS AIR SURYA PLAT DATAR DENGAN PENAMBAHAN BAHAN PENYIMPAN KALOR

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap

OPTIMALISASI PENYERAPAN RADIASI MATAHARI PADA SOLAR WATER HEATER MENGGUNAKAN VARIASI SUDUT KEMIRINGAN

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu

Analisa Performansi Kolektor Surya Pelat Datar Dengan Lima Sirip Berdiameter Sama Yang Disusun Secara Sejajar

HEAT TRANSFER METODE PENGUKURAN KONDUKTIVITAS TERMAL

BAB V RADIASI. q= T 4 T 4

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat

PENGUJIAN MESIN PENGERING KAKAO ENERGI SURYA

BAB II DASAR TEORI. 2.1 Energi Matahari

PENGARUH VARIASI KETEBALAN ISOLATOR TERHADAP LAJU KALOR DAN PENURUNAN TEMPERATUR PADA PERMUKAAN DINDING TUNGKU BIOMASSA

JURNAL TEKNIK ITS Vol. 4, No. 1, (2015) ISSN: ( Print)

BAB IV. HASIL PENGUJIAN dan PENGOLAHAN DATA

Gambar 2. Profil suhu dan radiasi pada percobaan 1

PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA

KALOR SEBAGAI ENERGI B A B B A B

SUMBER BELAJAR PENUNJANG PLPG

PENGARUH SUHU TERHADAP PERPINDAHAN PANAS PADA MATERIAL YANG BERBEDA. Idawati Supu, Baso Usman, Selviani Basri, Sunarmi

MARDIANA LADAYNA TAWALANI M.K.

HIDROMETEOROLOGI TATAP MUKA KEEMPAT (RADIASI SURYA)

KARAKTERISTIK KOLEKTOR SURYA PLAT DATAR DENGAN VARIASI JARAK (KAJIAN PUSTAKA)

BAB I PENDAHULUAN 1.1 Latar Belakang Jenis Energi Unit Total Exist

Konsep Dasar Pendinginan

KALOR. Peta Konsep. secara. Kalor. Perubahan suhu. Perubahan wujud Konduksi Konveksi Radiasi. - Mendidih. - Mengembun. - Melebur.

Pengaruh Sudut Kemiringan Kolektor Surya Pelat Datar terhadap Efisiensi Termal dengan Penambahan Eksternal Annular Fin pada Pipa

II. TINJAUAN PUSTAKA. kehidupan di dalamnya dari hubungan energi dengan musim, pemenuhan

POTENSI PENGGUNAAN KOMPOR ENERGI SURYA UNTUK KEBUTUHAN RUMAH TANGGA

Analisa Performa Kolektor Surya Tipe Parabolic Trough Sebagai Pengganti Sumber Pemanas Pada Generator Sistem Pendingin Difusi Absorpsi

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) G-184

KEGIATAN BELAJAR 6 SUHU DAN KALOR

DAFTAR ISI. i ii iii iv v vi

PENGARUH BENTUK PLAT ARBSORBER PADA SOLAR WATER HEATER TERHADAP EFISIENSI KOLEKTOR. Galuh Renggani Wilis ST.,MT. ABSTRAK

BAB II TINJAUAN PUSTAKA

PENDEKATAN TEORITIS. Gambar 2 Sudut datang radiasi matahari pada permukaan horizontal (Lunde, 1980)

PERFORMANCE ANALYSIS OF FLAT PLATE SOLAR COLLECTOR WITH ADDITION OF DIFFERENT DIAMETER PERFORATED FINS ARE COMPILED BY STAGGERED

ANALISA PERFORMA KOLEKTOR SURYA TIPE PARABOLIC TROUGH SEBAGAI PENGGANTI SUMBER PEMANAS PADA GENERATOR SISTEM PENDINGIN DIFUSI ABSORBSI

TEKNOLOGI PEMANAS AIR MENGGUNAKAN KOLEKTOR TIPE TRAPEZOIDAL BERPENUTUP DUA LAPIS

PEMBUATAN KOLEKTOR PELAT DATAR SEBAGAI PEMANAS AIR ENERGI SURYA DENGAN JUMLAH PENUTUP SATU LAPIS DAN DUA LAPIS

Bab II Teori Dasar. Gambar 2.1 Pemanas air surya pelat datar

BAB I PENDAHULUAN I.1.

Analisa Performansi Kolektor Surya Pelat Datar Dengan Sepuluh Sirip Berdiameter Sama Yang Disusun Secara Staggered

Analisa Performansi Destilasi Air Laut Tenaga Surya Menggunakan Penyerap Radiasi Surya Tipe Bergelombang Berbahan Dasar Beton

Laporan Tugas Akhir BAB I PENDAHULUAN

PERCOBAAN PENENTUAN KONDUKTIVITAS TERMAL BERBAGAI LOGAM DENGAN METODE GANDENGAN

Transkripsi:

Analisis performansi kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder Ketut Astawa, I Ketut Gede Wirawan, I Made Budiana Putra Jurusan Teknik Mesin, Universitas Udayana, Bali-Indonesia awatsa@yahoo.com Abstrak Penggunaan energi di Indonesia meningkat pesat sejalan dengan pertumbuhan ekonomi dan pertambahan penduduk. Sebagai negara tropis, Indonesia mempunyai potensi energi surya yang cukup besar. Untuk memanfaatkan potensi energi surya tersebut digunakan alat kolektor surya. Pada proses pemanasan air digunakan alat kolektor surya terkonsentrasi menggunakan receiver berbentuk silinder dengan media penyimpan panas minyak goreng. Pengujian untuk mengetahui efisiensi sesaat dari kolektor surya terkonsentrasi dilaksanakan dari pukul 1. sampai 18. WITA, dengan memvariasikan temperatur air masuk 35 C, 4 C, 45 C dan laju aliran volume tetap,21 l/s. Data hasil pengujian kemudian diolah dan dianalisa untuk mendapatkan efisiensi sesaat dan efesiensi ratarata harian. Dari hasil pengujian kolektor surya terkonsentrasi didapatkan bahwa efisiensi sesaat tertinggi 8.54 % pada temperatur air masuk 45 C, Kata kunci: Terkonsentrasi, Minyak goreng, Efisiensi. 1. Latar belakang Radiasi matahari dapat digunakan untuk menghasilkan energi termal untuk air, bisa juga digunakan sebagai sumber pemanas pada siklus pemanas mesin sebagai tenaga gerak. Kegunaan yang lain dari energi matahari adalah menghasilkan listrik dari melalui penggunaan sel photovoltaic. Terdapat banyak jenis alat konversi energi surya yang telah dikembangkan, baik yang bersifat termal maupun listrik. Kolektor termal surya merupakan suatu peralatan yang digunakan untuk menyerap energi surya, yang kemudian mengubah energi surya menjadi energi termal, dan mentrasfer energi tersebut ke fluida kerja untuk kemudian digunakan secara langsung atau disimpan terlebih dahulu pada suatu unit penyimpanan panas. Dalam penelitian ini penulis mencoba membuat alat kolektor surya terkonsentrasi dengan media penyimpan panas minyak goreng yang dimasukkan ke dalam receiver dengan memvariasikan temperatur air masuk. Receiver yang digunakan adalah berbentuk silinder karena daerah permukaan silinder memungkinkan menangkap sinar matahari langsung maupun dari pantulan konsentrator itu sendiri. Penggunaan minyak goreng sendiri bertujuan agar pada saat intensitas matahari berkurang, minyak goreng diharapkan dapat memanaskan air yang mengalir didalam absorber. Temperatur air masuk divariasikan bertujuan untuk mendapatkan efisiensi mana yang terbaik dari temperatur air masuk yang divariasikan tersebut. 2. Landasan Teori 2.1. Energi Matahari Alat pemanas air tenaga surya terkonsentrasi adalah suatu alat yang dipergunakan untuk memanaskan air dengan memanfaatkan energi panas dari sinar matahari dengan cara mengkonsentrasikannya, sehingga didapatkan panas dengan temperatur tinggi. Prinsip kerja dari alat pemanas air tenaga surya terkonsentrasi adalah sinar matahari yang menimpa permukaan cermin (konsentrator) nantinya akan dipantulkan (dikonsentrasikan) menuju pipa berbentuk silinder (receiver) sehingga panas tersebut akan diserap oleh minyak goreng. Panas yang telah diserap oleh minyak goreng akan diteruskan menuju pipa tembaga yang didalamnya telah dialiri air. Panas yang diterima oleh pipa kemudian diteruskan menuju air yang mengalir didalam pipa, sehingga temperatur air menjadi meningkat. 2.2. Jenis-Jenis Perpindahan Panas Perpindahan panas atau heat transfer adalah ilmu yang mempelajari tentang perpindahan energi sebagai akibat adanya perbedaan temperatur diantara benda atau benda dengan fluida, dimana energi yang berpindah tersebut dinamakan kalor atau panas. Panas akan berpindah dari medium yang bersuhu lebih tinggi ke medium yang suhu lebih rendah sampai terjadi kesetimbangan suhu antara kedua medium tersebut. Kepustakaan perpindahan panas pada umumnya mengenal tiga cara perpindahan panas yang berbeda: radiasi (radiation), konduksi (conduction ; juga dikenal dengan istilah hantaran), dan konveksi (convection; juga dikenal dengan istilah ilian). 2.2.1 Radiasi Jika suatu benda ditempatkan di dalam sebuah ruangan, dan suhu dinding dinding ruangan lebih rendah dari pada suhu benda maka suhu benda tersebut akan turun sekalipun ruangan tersebut ruang hampa. Proses dengan perpindahan panas dari suatu benda terjadi berdasarkan suhunya tanpa bantuan dari suatu zat antara (medium) disebut radiasi termal. Defenisi lain dari radiasi termal ialah radiasi elektromagnetik yang dipancarkan oleh suatu benda karena suhunya. Prosiding Konferensi Nasional Engineering Hotel IV, Universitas Udayana, Bali, 27-28 Juni 213 137

2.2.1.1 Sifat Sifat Radiasi Bila energi radiasi menimpa permukaan suatu bahan, maka sebagian radiasi itu dipantulkan (refleksi), sebagian diserap (absorpsi), dan sebagian lagi diteruskan (transmisi). Gambar 2.1. Bagan Menunjukan Pengaruh Radiasi Datang (Sumber : Duffie) Jika ρ disebut refleksifitas, disebut absorptivitas (α), disebut transmitivitas (τ), maka (α) hubungan ketiganya adalah : ρ + α + τ = 1 Karena benda padat tidak meneruskan radiasi termal, maka transmisivitas dianggap nol. Sehingga : ρ + ρ = 1. Ada dua fenomena refleksi yang dapat diamati bila radiasi menimpa suatu permukaan. Jika sudut jatuhnya sama dengan sudut refleksi, maka dapat dikatakan refleksi itu spekular (specular). Di lain pihak, apabila berkas yang jatuh itu tersebar merata ke segala arah sesudah refleksi maka refleksi itu disebut baur (diffuse). (a) (b) Gambar 2.2. Refleksi cahaya (a) Spekular, (b) Baur (Sumber : Duffie,198) Releksi spekular memberikan bayangan cermin dari sumber itu kepada pengamat. Tetapi tidak ada permukaan yang sebenarnya yang hanya spekular atau baur. Sebuah cermin biasa tentu bersifat spekular untuk cahaya tampak tetapi belum tentu bersifat spekular untuk keseluruhan rentang panjang gelombang radisi termal. Biasanya, permukaan kasar lebih menunjukkan sifat baur dari pada permukaan yang mengkilap. 2.2.1.2 Daya Emisi dan Emisivitas Benda Daya emisi (emissive power) E suatu benda ialah energi yang dipancarkan benda itu persatuan luas per satuan waktu. Dalam suatu ruangan tertutup terbuat dari benda hitam sempurna yaitu yang menyerap seluruh radisi yang menimpanya,ruang itu juga akan memancarkan radiasi. Benda hitam (black body) memancarkan energi dengan laju yang sebanding dengan pangkat empat suhu absolut benda itu dan berbanding lurus dengan luas permukaan : (Sumber : Holman, J. P) q pancaran = σ A T 4 (2.1) Pertukaran radiasi dalam ruang kurung antara dua permukaan dengan luas A dan emisivitas benda є berbanding lurus dengan perbedaan suhu absolut pangkat empat : q pertukaran netto = σ A є (T 1 4 T 2 4 ) (2.2) 2.2.1.3 Radiasi surya Radiasi surya (solar radiation) merupakan suatu bentuk radiasi thermal yang mempunyai distribusi panjang gelombang khusus. Intensitasnya sangat bergantung dari kondisi atmosfer, saat dalam tahun, dan sudut timpa (angle of incidence) sinar matahari dipermukaan bumi. Pada batas luar atmosfer, iradiasi surya total ialah 1395 W/m 2 bilamana bumi berada pada jarak rata-ratanya dari matahari. Angka ini disebut konstanta surya (solar constant). Tidak seluruh energi yang disebutkan dalam konstanta surya mencapai permukaan bumi, karena terdapat absorpsi yang kuat dari karbondioksida dan uap air di atmosfer. Radiasi surya yang menimpa permukaan bumi juga bergantung dari kadar debu dan zat pencemar lainnya dalam atmosfer. Energi surya yang maksimum akan mencapai permukaan bumi bilamana berkas sinar itu langsung menimpa permukaan bumi, karena terdapat bidang pandang yang lebih luas terhadap fluks surya yang datang dan berkas sinar surya menempuh jarak yang lebih pendek di atmosfer, sehingga mengalami absorpsi lebih sedikit daripada jika sudut timpanya miring terhadap normal. Prosiding KNEP IV 213 ISSN 2338-414X 138

2.2.2 Konduksi Konduksi adalah proses dengan panas mengalir dari daerah yang bersuhu lebih tinggi kedaerah yang bersuhu lebih rendah didakam suatu medium (padat, cair atau gas) atau antara medium medium yang berlainan yang bersinggungan secara langsung. Energi berpindah secara konduksi (conduction ) atau hantaran dan bahwa laju perpindahan kalor itu berbanding dengan gradien suhu normal: q konduksi = - k A φt/φx (2.3) dimana : q = Laju perpindahan panas ( Watt ) k = Konduktifitas Termal yang searah dengan perpindahan kalor ( W / m. C) A = Luas Penampang yang terletak pada aliran panas (m 2 ) dt/dx = Gradien temperatur dalam arah aliran panas ( C/m ) 2.2.3 Konveksi Pengaruh konduksi secara menyeluruh pada fluida disebut dengan perpindahan kalor secara konveksi. Rumus empiris perpindahan kalor konveksi digunakan hukum Newton tentang pendinginan: dimana: q konveksi = h A (Tw - T ) (2.4) h = Koefisien perpindahan kalor konveksi ( W / m C) A = Luas permukaan (m 2 ) Tw = Temperatur dinding ( C ) T = Temperatur fluida ( C) q = Laju perpindahan panas konveksi ( Watt ) 2.3 Penyimpan Panas Minyak Goreng Minyak goreng adalah minyak yang berasal dari lemak tumbuhan atau hewan yang dimurnikan dan berbentuk cair dalam suhu kamar. Biasanya digunakan untuk menggoreng makanan. Minyak goreng dari tanaman seperti kelapa, biji-bijian, kacang-kacangan, jagung, kedelai dan kanola. Adapun spesifikasi dari minyak goreng adalah seperti pada Tabel 2.1 Tabel 2.1 Spesifikasi Minyak Goreng NO SIFAT MINYAK GORENG SATUAN 1 Flash point 2 Densitas 3 Viskositas 4 Titik didih Sumber : (www.che.itb.ac.id) 315-371 C,91,925 g/cm 3 3 31,6 mm 2 /s 175-2 C 2.4 Perpindahan Panas yang Terjadi pada Kolektor Surya Terkonsentrasi dengan Receiver Berbentuk Silinder Perpindahan panas yang terjadi pada kolektor surya terkonsentrasi dengan receiver berbentuk silinder adalah perpindahan panas dari sinar matahari yang menimpa konsentrator terjadi secara radiasi dan konveksi. Perpindahan panas yang terjadi pada konsentrator bagian atas menuju bagian bawah terjadi secara konduksi, sedangkan dari konsentrator bagian bawah menuju udara lingkungan terjadi secara konveksi dan radiasi. Pada receiver bagian luar menuju bagian dalam terjadi perpindahan panas secara konduksi, sedangkan dari receiver bagian dalam menuju minyak goreng terjadi secara konveksi. Pada minyak goreng terjadi perpindahan panas konduksi dan dari minyak goreng menuju pipa absorber bagian luar terjadi perpindahan panas secara konveksi. Dari pipa absorber bagian luar menuju bagian dalam terjadi perpindahan panas secara konduksi. Kemudian panas dari pipa absorber bagian dalam tersebut akan diteruskan ke air yang mengalir di dalam pipa absorber. Proses perpindahan panas tersebut dapat dilihat pada Gambar 3.1 dibawah. 2.5 Efesiensi Kolektor Efesiensi kolektor merupakan perbandingan panas yang diserap oleh fluida dan intensitas matahari yang mengenai kolektor. Performansi dari kolektor dapat dinyatakan dengan efesiensinya. Ada dua cara atau prosedur yang dipakai untuk mengidentifikasi efesiensi kolektor yaitu : 1. Instantaneous procedure : pengukuran laju aliran massa, perbedaan temperatur fluida masuk dan keluar. Efesiensi sesaatnya dapat dihitung dengan menggunakan rumus (Duffie, 198) sebagai berikut : Prosiding Konferensi Nasional Engineering Hotel IV, Universitas Udayana, Bali, 27-28 Juni 213 139

Qu I. A m. c ( T p out in (2.5) I. A T T c T c dimana : η = efesiensi kolektor Qu = panas berguna (W) A = luas permukaan kolektor (m 2 ) = π Do L L = panjang kolektor palung (m) I = radiasi surya yang jatuh pada bidang kolektor (W/m ) m = laju aliran massa (kg/s) c p = kapasitas panas jenis fluida (J/kg. ) Tout = temperatur fluida yang meninggalkan kolektor ( C ) Tin = temperatur fluida yang masuk kolektor ( C ) ) 2. Calorimetric procedure : pengukuran efesiensi pada sistem tertutup dimana perubahan temperatur merupakan fungsi waktu dan berhubungan dengan sudut datang sinar matahari. Perhitungan efesiensinya adalah dengan rumus (Duffie, 198) sebagai berikut : ' QU m. cpdt / dt (2.6) I. A I. A T c T c dimana : m = massa media di dalam kalorimeter per satuan luas permukaan kolektor (kg/m 2 ) c p = panas spesifik media di dalam kalorimeter (J/kg. ) T = temperatur rata-rata media di dalam kalorimeter ( C ) t = waktu (s) Gambar 3.1 Perpindahan panas pada kolektor surya terkonsentrasi dengan receiver berbentuk silinder. 3. Metode Penelitian 3.1 Bahan-bahan dan Alat Pengukuran 3.1.1 Bahan-bahan a. Kaki penyangga alat : - Pipa kotak digunakan sebagai kerangka kaki penyangga alat. b. Konsentrator : - Besi beton dengan diameter 1 mm sebagai rangka konsentrator. - Jaring kawat alumunium digunakan sebagai tempat menempel cermin pada rangka konsentrator. - Cermin dengan tebal 5 mm berfungsi sebagai media untuk memantulkan sinar matahari ke receiver. c. Receiver : - Pelat baja tebal,6 mm digunakan sebagai receiver yang bertujuan untuk menyerap panas dari sinar matahari langsung maupun panas pantulan sinar matahari dari konsentrator. Receiver yang dipakai adalah berbentuk silinder dengan diameter 11,6 mm dan panjang 1 mm. - Pipa tembaga dengan diameter 9 mm dan tebal,5 mm digunakan sebagai absorber yang berfungsi sebagai tempat mengalirnya air yang akan dipanaskan. - Minyak goreng digunakan sebagai media penyimpan panas yang akan memanaskan air yang mengalir didalam absorber dengan volume minyak goreng 8 liter. Prosiding KNEP IV 213 ISSN 2338-414X 14

3.1.2 Alat Pengukuran a. Solar Power meter : untuk mengukur intensitas total radiasi matahari yang mencapai permukaan bumi. b. Termokopel : untuk mengukur temperatur pelat penyerap, temperatur fluida yang keluar masuk kolektor, dan temperatur absorber. c. Multimeter : untuk membaca besarnya temperatur yang ditunjukkan termokopel. d. Anemometer : untuk mengukur kecepatan angin yang melalui kolektor. e. Stopwatch dan jam : untuk alat pencatat waktu selama pengujian. f. Heater : berfungsi memanaskan air yang akan masuk ke kolektor. g. Termostat : untuk mengatur temperatur air masuk ke kolektor surya. 3.2 Titik Pengukuran Berikut titik pengukuran dan penempatan alat-alat ukur diperlihatkan pada Gambar 3.2 Keterangan : Tin = temperatur air masuk TRb = temperatur receiver bagian bawa Tout = temperatur air keluar Tra = temperatur receiver bagian atas TK = temperatur konsentrator TMg1 = temperatur minyak goreng titik 1 TMg2 = temperatur minyak goreng titik 2 4. Hasil Dan Pembahasan 4.1 Data dan Pengolahan Hasil Pengujian Gambar 3.2 Titik-titik pengukuran dan penempatan alat-alat ukur. Tabel 4.1 Hasil Pengujian Dengan Variasi Temperatur Air Masuk. v =,21 (l/s) T i = 35 C V = 2,42 (m/s) No Waktu Tout Ta T.Rec Ats T.Rec Bwh T.Mnyk 1 T.Mnyk 2 T.Reflk Tin IT Cuaca (wita) ( C) ( C) ( C) ( C) ( C) ( C) ( C) ( C) (mv) 1 1. 39 3 53 78 53 49 4 35 1.1 cerah 2 1.1 39 29 47 45 47 5 37 35 3.4 berawan 3 1.2 39 3 47 96 54 5 44 36 11.7 cerah 4 1.3 4 29 53 76 51 51 42 36 12.5 Cerah 5 1.4 41 3 6 95 57 54 44 35 12.4 Cerah 6 1.5 42 3 6 87 58 56 43 36 13.4 Cerah 7 11. 42 3 64 97 6 59 48 36 11.9 Cerah Prosiding Konferensi Nasional Engineering Hotel IV, Universitas Udayana, Bali, 27-28 Juni 213 141

8 11.1 43 29 6 67 61 51 44 36 4.4 Berawan 9 11.2 43 3 64 93 62 58 46 36 13.7 Cerah 1 11.3 43 29 62 89 6 58 46 35 11.9 Cerah 11 11.4 43 32 62 8 6 6 43 35 13.2 Cerah 12 11.5 43 31 63 9 6 6 45 35 13.1 Cerah 13 12. 45 3 63 92 61 62 47 35 13. Cerah 14 12.1 45 3 62 89 61 61 42 35 13.1 Cerah 15 12.2 46 3 64 89 63 63 46 36 11.8 Cerah 16 12.3 47 32 61 78 63 64 43 36 11.9 Cerah 17 12.4 46 3 62 78 61 62 43 35 11.8 Cerah 18 12.5 46 31 64 91 62 62 43 35 11.8 Cerah 19 13. 45 3 58 77 6 61 41 35 11.8 Cerah 2 13.1 45 3 59 77 59 61 43 35 11.7 Cerah 21 13.2 46 3 59 8 58 6 41 35 12.5 Cerah 22 13.3 45 3 59 79 58 59 44 35 12.3 Cerah 23 13.4 45 31 59 78 58 6 44 35 12.1 Cerah 24 13.5 44 29 57 82 58 59 43 35 11.9 Cerah 25 14. 44 3 56 82 57 58 45 35 11.7 Cerah 26 14.1 44 3 55 74 54 56 41 35 11.5 Cerah 27 14.2 43 3 53 72 55 55 39 35 11.1 Cerah 28 14.3 42 31 51 67 53 53 39 35 1.9 Cerah 29 14.4 42 31 52 66 52 53 4 35 1.4 Cerah 3 14.5 41 29 52 64 5 51 41 34 1. Cerah 31 15. 4 3 5 58 48 49 34 34 9.8 Cerah 32 15.1 4 31 47 52 47 49 34 34 9.2 Cerah 33 15.2 4 3 49 54 49 5 4 36 8.5 Cerah 34 15.3 4 3 48 49 47 48 38 36 8. Cerah 35 15.4 4 3 48 48 47 47 36 36 7.7 Cerah 36 15.5 39 3 46 43 47 48 38 35 7. Cerah 37 16. 4 29 47 41 47 47 43 35 6.7 Cerah 38 16.1 4 29 47 43 47 47 4 35 5.9 Cerah 39 16.2 39 3 47 41 46 47 41 35 5.3 Cerah 4 16.3 39 31 46 38 46 46 4 35 5. Cerah 41 16.4 38 31 44 38 43 45 41 35 4.5 Cerah 42 16.5 38 3 42 36 43 43 39 36 4.2 Cerah 43 17. 38 31 39 34 41 41 36 36 3.6 Cerah 44 17.1 37 3 38 35 39 39 37 35 2.9 Cerah 45 17.2 36 3 37 34 39 39 37 35 2.4 Cerah 46 17.3 36 31 37 34 38 38 33 35 1.8 Cerah 47 17.4 34 29 34 32 36 36 32 34 1.2 Cerah 48 17.5 35 3 32 31 35 35 28 34.8 Cerah 49 18. 36 3 31 31 34 34 28 36.5 Cerah Prosiding KNEP IV 213 ISSN 2338-414X 142

Efisiensi (%) 1. 1.2 1.4 11. 11.2 11.4 12. 12.2 12.4 13. 13.2 13.4 14. 14.2 14.4 15. 15.2 15.4 16. 16.2 16.4 17. 17.2 17.4 18. Intensitas (W/m²) 1. 1.2 1.4 11. 11.2 11.4 12. 12.2 12.4 13. 13.2 13.4 14. 14.2 14.4 15. 15.2 15.4 16. 16.2 16.4 17. 17.2 17.4 18. Efisiensi (%) Intensitas (W/m²) 1. 1.2 1.4 11. 11.2 11.4 12. 12.2 12.4 13. 13.2 13.4 14. 14.2 14.4 15. 15.2 15.4 16. 16.2 16.4 17. 17.2 17.4 18. Efisiensi (%) Intensitas (W/m2) Dari data-data yang ada di Tabel 4.1 dan setelah dilakukan perhitungan dengan menggunakan persamaanpersamaan yang ada di landasan teori maka dibuat grafik untuk masing-masing variasi temperatur fluida masuk dan selanjutnya dilakukan analisa dari grafik yang diperoleh. 1 9 8 7 6 5 4 3 2 1 Temperatur air masuk 35 C 12 1 8 6 4 2 Waktu (WITA) efisiensi intensitas Gambar 4.1 Grafik efisiensi sesaat dan intensitas dengan temperatur air masuk 35 C. 1 9 8 Temperatur air masuk 4 C 12 1 7 6 8 5 6 4 3 4 2 1 2 Waktu (WITA) efisiensi intensitas Gambar 4.2 Grafik efisiensi sesaat dan intensitas dengan temperatur air masuk 4 C. 1 Temperatur air masuk 45 C 12 5 1-5 -1-15 8 6 4-2 -25 2 Waktu (WITA) efisiensi intensitas Gambar 4.3 Grafik efisiensi sesaat dan intensitas dengan temperatur air masuk 45 C. Prosiding Konferensi Nasional Engineering Hotel IV, Universitas Udayana, Bali, 27-28 Juni 213 143

4.2 Pembahasan Dari ketiga grafik diatas dapat lihat bahwa secara umum efisiensi sesaat yang tertinggi didapat dengan temperatur air masuk 45 C pada pukul 13.3 WITA. Kenaikan efisiensi sesaat ini dipengaruhi meningkatnya temperatur air keluar dari kolektor surya dan penurunan intensitas radiasi matahari yang diterima kolektor surya. Ini dikarenakan panas dari minyak goreng diserap oleh air masuk yang mengalir didalam absorber. Sedangkan efisiensi sesaat yang terendah didapatkan pada temperatur air masuk 45 C pada pukul 18. WITA. Penurunan efisiensi sesaat ini dipengaruhi karena temperatur air masuk ke kolektor surya lebih besar dari pada temperatur air keluar dari kolektor surya dan intensitas radiasi matahari. Ini dikarenakan oleh temperatur air masuk kolektor lebih besar dari pada temperatur minyak goreng, sehingga panas dari air masuk kolektor diserap oleh minyak goreng. 5. Kesimpulan Dari hasil pengujian, perhitungan dan analisis data yang telah dilakukan, maka dapat disimpulkan bahwa Efisiensi sesaat yang tertinggi didapat 8,54 % pada temperatur air masuk 45 C, sedangkan efisiensi yang terendah didapatkan -187,93 % pada temperatur air masuk 45 C. Efisiensi sesaat dipengaruhi oleh temperatur air masuk, temperatur air keluar serta intensitas radiasi matahari. Pada intensitas radiasi matahari menurun efisiensi sesaat tidak menurun, ini disebabkan masih adanya perpindahan panas yang terjadi dari minyak goreng ke air masuk kolektor 6. Daftar Pustaka [1] Duffie and all, Solar Engineering of Thermal Processes, John Wiley & Sons, Inc, United State of America, 198,. [2] Green, M. A. Solar Cells. Operating Principles, Technology, and System Applications, Prentice-Hall, Englewood Cliffs,1982. [3] Holman, J. P. alih bahasa oleh Ir. E. Jasjfi M. Sc, Perpindahan Kalor, Erlangga, Jakarta,1997. [4] Jansen, T. J. alih bahasa oleh Prof. Wiranto Arismunandar, Teknologi Rekayasa Surya, PT. Pradnya Paramita, Jakarta 1995. [5] Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia. http://www.che.itb.ac.id Prosiding KNEP IV 213 ISSN 2338-414X 144