VARIASI UKURAN PASIR CETAK TERHADAP KEKERASAN DAN KEKUATAN TARIK CORAN SCRAP PISTON SEPEDA MOTOR. Sigit Gunawan 1, Sigit Budi Hartono 2 2.

dokumen-dokumen yang mirip
EFEK PERLAKUAN PANAS AGING TERHADAP KEKERASAN DAN KETANGGUHAN IMPAK PADUAN ALUMINIUM AA ABSTRAK

EFEK PERLAKUAN PANAS AGING TERHADAP KEKERASAN DAN KETANGGUHAN IMPAK PADUAN ALUMINIUM AA Sigit Gunawan 1 ABSTRAK

ANALISIS PENGARUH MEDIA PACK CARBURIZING TERHADAP KEAUSAN DAN KEKERASAN SPROKET SEPEDA MOTOR. Sigit Gunawan 1 dan Sigit Budi Harton 2

BAB IV HASIL DAN PEMBAHASAN

ANALISIS STRUKTUR MIKRO CORAN PENGENCANG MEMBRAN PADA ALAT MUSIK DRUM PADUAN ALUMINIUM DENGAN CETAKAN LOGAM

BAB IV ANALISA DAN PEMBAHASAN. Pembuatan spesimen dilakukan dengan proses pengecoran metode die

KARAKTERISTIK PENGECORAN LOST FOAM PADA BESI COR KELABU DENGAN VARIASI KETEBALAN BENDA

BAB III METODOLOGI PENELITIAN

PENGARUH TEMPERATUR TUANG DAN KETEBALAN BENDA TERHADAP KEKERASAN BESI COR KELABU DENGAN PENGECORAN LOST FOAM

ANALISA PENGARUH AGING 400 ºC PADA ALUMINIUM PADUAN DENGAN WAKTU TAHAN 30 DAN 90 MENIT TERHADAP SIFAT FISIS DAN MEKANIS

PENGARUH TEMPERATUR TUANG DAN KETEBALAN BENDA TERHADAP KEKERASAN BESI COR KELABU DENGAN PENGECORAN LOST FOAM

Pengaruh Temperatur Bahan Terhadap Struktur Mikro

STUDI PEMBUATAN BESI COR MAMPU TEMPA UNTUK PRODUK SAMBUNGAN PIPA

ANALISIS SIFAT FISIS DAN MEKANIS ALUMINIUM (Al) PADUAN DAUR ULANG DENGAN MENGGUNAKAN CETAKAN LOGAM DAN CETAKAN PASIR

BAB III METODOLOGI PENELITIAN

BAB I PENDAHULUAN. Aluminium (Al) adalah salah satu logam non ferro yang memiliki. ketahanan terhadap korosi, dan mampu bentuk yang baik.

Momentum, Vol. 10, No. 2, Oktober 2014, Hal ISSN

PENGARUH PENAMBAHAN Mg TERHADAP SIFAT KEKERASAN DAN KEKUATAN IMPAK SERTA STRUKTUR MIKRO PADA PADUAN Al-Si BERBASIS MATERIAL PISTON BEKAS

L.H. Ashar, H. Purwanto, S.M.B. Respati. produk puli pada pengecoran evoporatif (lost foam casting) dengan berbagai sistem saluran.

ANALISIS HASIL PENGECORAN ALUMINIUM DENGAN VARIASI MEDIA PENDINGINAN

ANALISA STRUKTUR MIKRO DAN SIFAT MEKANIK PADUAN ALUMINIUM HASIL PENGECORAN CETAKAN PASIR

BAB III METODELOGI PENELITIAN Alur Penelitian Secara garis besar metode penelitian dapat digambarkan pada diagram alir dibawah ini : Mulai

PENGARUH JARAK DARI TEPI CETAKAN TERHADAP KEKUATAN TARIK DAN KEKERASAN PADA CORAN ALUMINIUM

K. Roziqin H. Purwanto I. Syafa at. Kata kunci: Pengecoran Cetakan Pasir, Aluminium Daur Ulang, Struktur Mikro, Kekerasan.

Momentum, Vol. 10, No. 2, Oktober 2014, Hal ISSN

III. METODE PENELITIAN. Penelitian ini dilakukan di beberapa tempat sebagai berikut:

KEKERASAN DAN STRUKTUR MIKRO BESI COR KELABU PADA PENGECORAN EVAPORATIVE DENGAN VARIASI UKURAN PASIR CETAK

BAB III METODOLOGI PENELITIAN. Mulai. Studi Literatur. Persiapan Alat dan Bahan. Proses Pengecoran. Hasil Coran. Analisis. Pembahasan Hasil Pengujian

SEMINAR NASIONAL ke-8 Tahun 2013 : Rekayasa Teknologi Industri dan Informasi

PENGARUH TEKANAN INJEKSI PADA PENGECORAN CETAK TEKANAN TINGGI TERHADAP KEKERASAN MATERIAL ADC 12

BAB III METODOLOGI PENELITIAN. Studi Literatur. Persiapan Alat dan Bahan bahan dasar piston bekas. Proses pengecoran dengan penambahan Ti-B 0,05%

ANALISA PERBEDAAN SIFAT MEKANIK DAN STRUKTUR MIKRO PADA PISTON HASIL PROSES PENGECORAN DAN TEMPA

BAB I PENDAHULUAN 1.1 Latar Belakang

ISSN hal

ANALISA SIFAT MEKANIK PROPELLER KAPAL BERBAHAN DASAR ALUMINIUM DENGAN PENAMBAHAN UNSUR Cu. Abstrak

BAB III METODE PENELITIAN

Analisa Pengaruh Aging 450 ºC pada Al Paduan dengan Waktu Tahan 30 dan 90 Menit Terhadap Sifat Fisis dan Mekanis

STUDI UKURAN GRAFIT BESI COR KELABU TERHADAP LAJU KEAUSAN PADA PRODUK BLOK REM METALIK KERETA API

VARIASI PENAMBAHAN FLUK UNTUK MENGURANGI CACAT LUBANG JARUM DAN PENINGKATAN KEKUATAN MEKANIK

BAB III METODE PENELITIAN. 3.1 Diagram Alir Penelitian Pada penelitian ini langkah-langkah pengujian mengacu pada diagram alir pada Gambar 3.1.

SATUAN ACARA PERKULIAHAN MATA KULIAH TEKNIK PENGECORAN KODE / SKS : KK / 2 SKS. Sub Pokok Bahasan dan Sasaran Belajar

PENGARUH PENAMBAHAN 12%Mg HASIL REMELTING ALUMINIUM VELG BEKAS TERHADAP FLUIDITY DAN KEKERASAN DENGAN VARIASI TEMPERATUR TUANG

ANALISIS PERBANDINGAN MODEL CACAT CORAN PADA BAHAN BESI COR DAN ALUMINIUM DENGAN VARIASI TEMPERATUR TUANG SISTEM CETAKAN PASIR

STUDI KEKUATAN IMPAK PADA PENGECORAN PADUAL Al-Si (PISTON BEKAS) DENGAN PENAMBAHAN UNSUR Mg

Perbandingan Kekerasan dan Kekuatan Tekan Paduan Cu Sn 6% Hasil Proses Metalurgi Serbuk dan Sand Casting

ANALISIS SIFAT FISIS DAN MEKANIS ALUMUNIUM PADUAN Al, Si, Cu DENGAN CETAKAN PASIR

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. masing-masing benda uji, pada pengelasan las listrik dengan variasi arus 80, 90,

PENGEMBANGAN MEKANISME DAN KUALITAS PRODUKSI SEPATU KAMPAS REM BERBAHAN ALUMUNIUM DAUR ULANG DENGAN METODE PENGECORAN SQUEEZE

BAB I PENDAHULUAN. Aluminium merupakan logam ringan yang mempunyai sifat ketahanan

Pengaruh Kuat Medan Magnet Terhadap Shrinkage dalam Pengecoran Besi Cor Kelabu (Gray Cast Iron)

BAB I PENDAHULUAN. berkembangnya ilmu pengetahuan dan teknologi yang selalu. sehingga tercipta alat-alat canggih dan efisien sebagai alat bantu dalam

ANALISA PENGARUH PENGECORAN ULANG TERHADAP SIFAT MEKANIK PADUAN ALUMUNIUM ADC 12

BAB IV HASIL DAN ANALISA. Gajah Mada, penulis mendapatkan hasil-hasil terukur dan terbaca dari penelitian

BAB I PENDAHULUAN. Penemuan logam memberikan manfaat yang sangat besar bagi. kehidupan manusia. Dengan ditemukannya logam, manusia dapat

Momentum, Vol. 12, No. 1, April 2016, Hal ISSN , e-issn

Analisa Pengaruh Variasi Temperatur Tuang Pada Pengecoran...

PENGARUH TEMPERATUR PENUANGAN TERHADAP POROSITAS PADA CETAKAN LOGAM DENGAN BAHAN ALUMINIUM BEKAS

BAB I PENDAHULUAN. industri terus berkembang dan di era modernisasi yang terjadi saat. ini, menuntut manusia untuk melaksanakan rekayasa guna

STUDI KEKUATAN IMPAK DAN STRUKTUR MIKRO BALL MILL DENGAN PERLAKUAN PANAS QUENCHING

JURNAL TEKNIK ITS Vol. 4, No. 1, (2015) ISSN: ( Print) B-80

BAB I PENDAHULUAN. dimana logam dicairkan dalam tungku peleburan kemudian. dituangkan kedalam rongga cetakan yang serupa dengan bentuk asli

III. METODE PENELITIAN. Penelitian ini dilakukan di beberapa tempat sebagai berikut:

STUDI BAHAN ALUMUNIUM VELG MERK SPRINT DENGAN METODE TERHADAP SIFAT FISIS DAN MEKANIS

TUGAS PENGETAHUAN BAHAN TEKNIK II CETAKAN PERMANEN

BAB 1 PENDAHULUAN. Silinder liner adalah komponen mesin yang dipasang pada blok silinder yang

PENGUJIAN SIFAT FISIS DAN MEKANIS BESI COR KELABU PADA BLOK REM KERETA API

NASKAH PUBLIKASI ILMIAH ANALISA PENGARUH SOLUTION TREATMENT PADA MATERIAL ALUMUNIUM TERHADAP SIFAT FISIS DAN MEKANIS

PENGARUH PUTARAN TERHADAP LAJU KEAUSAN Al-Si ALLOY MENGGUNAKAN METODE PIN ON DISK TEST

PENGARUH PENAMBAHAN UNSUR SILIKON (Si) PADA ALUMINIUM PADUAN HASIL REMELTING VELG SEPEDA MOTOR TERHADAP SIFAT FISIS DAN MEKANIS SKRIPSI

BAB I PENDAHULUAN 1.1. Latar Belakang

PENGARUH PENAMBAHAN TEMBAGA (Cu) TERHADAP SIFAT MEKANIK DAN STRUKTUR MIKRO PADA PADUAN ALUMINIUM-SILIKON (Al-Si) MELALUI PROSES PENGECORAN

PENGARUH UNSUR ALUMINIUM DALAM KUNINGAN TERHADAP KEKERASAN, KEKUATAN TARIK, DAN STRUKTUR MIKRO

Metal Casting Processes. Teknik Pembentukan Material

PENGUJIAN KEKUATAN TARIK PRODUK COR PROPELER ALUMUNIUM. Hera Setiawan 1* Gondangmanis, PO Box 53, Bae, Kudus 59352

BAB I PENDAHULUAN 1.1 Latar Belakang

PENGARUH Cu PADA PADUAN Al-Si-Cu TERHADAP PEMBENTUKAN STRUKTUR KOLUMNAR PADA PEMBEKUAN SEARAH

BAB III PENGUMPULAN DAN PENGOLAHAN DATA PENELITIAN

BAB III METODOLOGI PENELITIAN

NASKAH PUBLIKASI ILMIAH

11 BAB II LANDASAN TEORI

TUGAS AKHIR STUDI TENTANG PENAMBAHAN UNSUR PADA ALUMINIUM PADUAN PISTON SEPEDA MOTOR TERHADAP SIFAT FISIS DAN MEKANIS

BAB III PROSES PENGECORAN LOGAM

BAB I PENDAHULUAN. penting dalam menunjang industri di Indonesia. Pada hakekatnya. pembangunan di bidang industri ini adalah untuk mengurangi

PENGARUH VARIASI ARUS TERHADAP STRUKTUR MIKRO, KEKERASAN DAN KEKUATAN SAMBUNGAN PADA PROSES PENGELASAN ALUMINIUM DENGAN METODE MIG

TUGAS AKHIR PENELITIAN SIFAT FISIS DAN MEKANIS BESI COR KELABU DENGAN PENGGUNAAN BAHAN BAKAR DARI KOKAS LOKAL DENGAN PEREKAT TETES TEBU DAN ASPAL

Jl. Prof. Sudharto, SH., Tembalang-Semarang 50275, Telp * Abstrak. Abstract

BAB III TINJAUAN PUSTAKA

Analisis Sifat Fisis dan Mekanis Pada Paduan Aluminium Silikon (Al-Si) dan Tembaga (Cu) Dengan Perbandingan Velg Sprint

BAB I PENDAHULUAN. cairan logam tersebut dicorkan ke dalam rongga cetakan dan didinginkan

PENGARUH DEOKSIDASI ALUMINIUM TERHADAP SIFAT MEKANIK PADA MATERIAL SCH 22 Yusup zaelani (1) (1) Mahasiswa Teknik Pengecoran Logam

ANALISA PENGARUH PENAMBAHAN ABU SERBUK KAYU TERHADAP KARAKTERISTIK PASIR CETAK DAN CACAT POROSITAS HASIL PENGECORAN ALUMINIUM 6061 SIDANG TUGAS AKHIR

CYBER-TECHN. VOL 11 NO 02 (2017) ISSN

PEMBUATAN POLA dan CETAKAN HOLDER MESIN UJI IMPAK CHARPY TYPE Hung Ta 8041A MENGGUNAKAN METODE SAND CASTING

PENGECORAN SUDU TURBIN AIR AKSIAL KAPASITAS DAYA 102 kw DENGAN BAHAN PADUAN TEMBAGA ALLOY 8A

TUGAS AKHIR POLA DAN PENGECORAN BODY RUBBER ROLL UNTUK SELEP PADI

ANALISIS PEMBUATAN HANDLE REM SEPEDA MOTOR DARI BAHAN PISTON BEKAS. Abstrak

ANALISIS HASIL PENGECORAN SENTRIFUGAL DENGAN MENGGUNAKAN MATERIAL ALUMINIUM

BAB I PENDAHULUAN. yaitu logam besi (ferro) dan logam bukan besi (non ferro). Logam ferro yaitu

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) F-266

Redesain Dapur Krusibel Dan Penggunaannya Untuk Mengetahui Pengaruh Pemakaian Pasir Resin Pada Cetakan Centrifugal Casting

Transkripsi:

VARIASI UKURAN PASIR CETAK TERHADAP KEKERASAN DAN KEKUATAN TARIK CORAN SCRAP PISTON SEPEDA MOTOR Sigit Gunawan 1, Sigit Budi Hartono 2 2 Abstrak Penelitian ini bertujuan untuk mengetahui variasi ukuran besar butir pasir cetak terhadap kekerasan dan kekuatan tarik coran scrap aluminium piston sepeda motor. Aluminium merupakan logam yang ringan (berat jenis 2.56 kg/m 3 atau 1/3 berat jenis tembaga) kekuatan tarik maksimum dalam keadaan dingin 17 20 kg/cm 2, dan titik cairnya 660ºC, sedangkan titik didihnya 1800 C. Variabel penelitian adalah besar butir pasir silika. Variasi besar butir pasir silika 140 mesh, 130 mesh, 120 mesh, 110 mesh, dan 100 mesh. Proses pengecoran dilakukan dengan cara mencairkan scrap aluminium piston sepeda motor, dilanjutkan dengan penuangan logam cair dalam cetakan pasir silika dengan tingkat kehalusan pasir 140 mesh, 130 mesh, 120 mesh, 110 mesh, dan 100 mesh. Hasil penelitian menunjukkan bahwa kenaikan kekasaran pasir silika menyebabkan kekerasan meningkat tetapi kekuatan tarik cenderung menurun. Kekerasan rata-rata tertinggi 84,90 HB pada 120 mesh, dan kekuatan tarik ratarata tertinggi 14,92 kg/mm 2 pada 130 mesh. Kata Kunci: Pasir Silika, Scrap Aluminium, Pengecoran, Kekerasan PENDAHULUAN Aluminium merupakan logam yang ringan yang dapat digunakan dalam bidang yang sangat luas, mulai dari peralatan rumah tangga sampai dipakai untuk keperluan material pesawat terbang, kapal laut, mobil maupun konstruksi. Ketersediaan aluminium di bumi sangatlah terbatas, dan merupakan sumber daya alam yang tidak dapat diperbaharui, oleh karena itu untuk memenuhi kebutuhan aluminium yang selalu meningkat di berbagai bidang khususnya bidang teknik, maka perlu dilakukan penghematan dalam penggunaannya. Salah satu cara yang bisa dilakukan yaitu dengan melakukan daur ulang scrap aluminium. Pasir cetak memiliki peran penting dalam pengecoran logam. Pemilihan jenis pasir untuk cetakan melibatkan beberapa faktor penting seperti bentuk dan ukuran pasir. Komposisi, jenis dan perbedaan ukuran pasir cetak masing-masing memberikan pengaruh terhadap karakteristik atau kualitas hasil benda cor. Kebanyakan pasir yang digunakan dalam pengecoran adalah 1 Jurusan Teknik Mesin STTNas Yogyakarta 2 Jurusan Teknik Mesin STTNas Yogyakarta 10

pasir silika (Si0 2 ). Alasan pemakaian pasir sebagai bahan cetakan adalah karena harganya murah dan ketahanannya terhadap temperatur tinggi. Ada dua jenis pasir yang umum digunakan yaitu naturally bonded (banks sands) dan synthetic (lake sands). Pasir sinetik lebih disukai oleh banyak industri pengecoran, karena komposisinya mudah diatur. Penelitian ini mencoba untuk mengungkapkan variasi ukuran besar butir pasir cetak terhadap kekerasan dan kekuatan tarik coran scrap aluminium piston sepeda motor. Dengan demikian hasil penelitian ini diharapkan dapat memberi konstribusi pada industri dalam penentuan ukuran besar butir pasir silika dalam cetakan pada proses pengecoran, sehingga dapat direncanakan desain konstruksi yang lebih baik. TINJAUAN PUSTAKA Pada pengecoran Al-7%Si, ukuran pasir cetak memiliki faktor dominan dalam menentukan nilai tegangan tarik dan elongasi benda cor (Kumar dkk, 2008). Pasir cetak yang memiliki ukuran lebih kecil akan menyebabkan waktu pengisian logam cair ke dalam cetakan akan lebih lama. Kecepatan penuangan semakin besar dengan bertambahnya ukuran pasir cetak (Sands dan Shivkumar, 2003). Hal ini karena rongga-rongga antar pasir akan semakin kecil dengan mengecilnya ukuran pasir sehingga gas hasil degradasi lebih sulit keluar melalui pasir. Ukuran butir pasir cetak yang dipilih tergantung pada kualitas dan ketebalan lapisan coating. Hartanto, A (2006) meneliti mengenai sifat fisis dan mekanis komposit pasir besi 90, 100, 150 Mesh dengan fraksi volume epoksi 40%, 50%, 60%. Hasil penelitian menginformasikan bahwa kekerasan tertinggi diperoleh pada spesimen 100 mesh, yaitu 22,7 VHN dan kekutan tarik tertinggi diperoleh pada spesimen 150 mesh, yaitu 37,31 MPa. Sutiyoko dan Lutiyatmi (2013) melakukan penelitian tentang kekerasan dan struktur mikro besi cor kelabu pada pengecoran evaporative dengan variasi ukuran pasir cetak. Hasil penelitian menunjukkan bahwa kekerasan benda cor cenderung semakin berkurang dengan meningkatnya ukuran mesh pasir atau ukuran pasir semakin kecil, dan grafit yang terbentuk juga semakin banyak. 11

METODE PENELITIAN a) Bahan Penelitian Bahan penelitian yang digunakan adalah hasil pengecoran scrap aluminium piston sepeda motor berbentuk silinder dengan ukuran pasir cetak berbeda. Ukuran pasir cetak yang digunakan adalah 140 mesh, 130 mesh, 120 mesh, 110 mesh, dan 100 mesh. Bahan ini kemudian dibuat spesimen untuk uji kekerasan, uji tarik, dan uji struktur mikro. Spesimen uji kekerasan dan struktur mikro dibuat dengan memotong aluminium yang berdiameter 20 mm dengan tinggi 10 mm. Spesimen uji tarik dibuat berdasarkan standard JIS Z 2201-No. 4. b) Alat yang digunakan 1. Mesin uji kekerasan Brinell merk Schmierplan/Lubrication plan. 2. Mesin uji tarik model DI-923 FLdL merk Controlab France. 3. Mikroskop optik model PME3-313UN, merk Olympus dengan kemampuan perbesaran 100, 200, 500, dan 1000 kali. 4. Dapur cor Kupola kapasitas 100 kg. 5. Alat pemotong logam. 6. Ayakan pasir. 7. Kertas amplas, autosol, dan larutan etsa. c) Pelaksanaan Penelitian Pengujian kekerasan dilakukan dengan metode Brinell dengan beban indentasi 62,5 kg. Penetrator bola baja dengan diameter 2,5 mm. Uji kekerasan ini berupa pembentukan bekas penekanan pada permukaan benda uji memakai bola baja yang dikeraskan yang ditekan dengan beban tertentu dalam hal ini 62,5 kg. Diameter bekas penekanan diukur dengan mikroskop, setelah beban tersebut dihilangkan. Nilai kekerasan Brinell dinyatakan sebagai beban dibagi dengan luas permukaan bekas penekanan. Sebelumnya permukaan spesimen dihaluskan dengan kertas amplas no. 320, 400, 800, dan 1000. Selanjutnya dilakukan lagi penghalusan menggunakan autosol sampai bekas goresan-goresan hilang. Pengujian tarik menggunakan Universal Testing Machine. Kekuatan tarik spesimen dapat diketahui dengan memberikan beban tarik pada spesimen dengan beban berangsur naik 12

dari nol sampai beban maksimum (Fmax). ( Bila penampang awal spesimen imen adalah Ao, maka kekuatan tarik σt = (Fmax)/Ao. Struktur mikro o diamati dengan miskroskop optik perbesaran erbesaran 2200 kali. Sebelumnya permukaan an spesimen dihaluskan dengan amplas no.. 320, 400, 800, dan 1000. Setelah permukaan kaan halus, halus dilakukan lagi penghalusan menggunaka menggunakan autosol sampai permukaan menjadi enjadi mengkilat, men kemudian dietsa dengan larutan etsa ets (HNO 3 + Etanol). HASIL DAN PEMBAHASAN Hubungan antara besar bu butir pasir dan kekerasan diperlihatkan tkan pada G Gambar 1. Nilai kekerasan (HB) Kekerasan tertinggi dihasilkan asilkan oleh spesimen 120 mesh. 90 80 70 60 50 40 30 20 10 0 84.9 77.40 73.23 72.23 140 130 75.7 75.77 120 110 100 Besar Butir Pasir (mesh) Gambar 1. Grafik Hubungan Hubu Antara Besar Butir Pasir Dan Kekerasan Kekerasan. TRAKSI TRA Vol. 15 No. 1 Juni 2015 13

Sedangkan Trendline hubungan antara besar butir pasir dan kekerasan ditunjukkan pada Gambar 2. 90 80 Kekerasan (kg/mm 2 ) 70 60 50 40 30 20 10 0 140 130 120 110 100 Besar Butir Pasir (mesh) Gambar 2. Grafik Trendline Hubungan antara Besar Butir Pasir dan Kekerasan Gambar 2 menunjukkan bahwa nilai kekerasan semakin meningkat seiring dengan meningkatnya kekasaran butir pasir. Pada spesimen 140 mesh ke spesimen 130 mesh terjadi penurunan kekerasan ini dipengaruhi oleh unsur Si pada struktur mikro yang semakin berkurang. Kekerasan rata-rata tertinggi diperoleh pada spesimen 120 mesh yaitu 84,9 HB terlihat pada struktur mikro banyak terdapat unsur Si yang hampir menyeluruh terdapat pada permukaan sehingga spesimen menjadi lebih keras. Pada spesimen 120 mesh ke spesimen 110 mesh terjadi penurunan kekerasan, hal ini disebabkan paduan Si berkurang membentuk butiran-butiran kecil. Pada kekasaran pasir lebih tinggi menyebabkan kekerasan turun karena struktur butiran paduannya mulai memisah tidak merata dengan membentuk kelompok- Gambar 3. kelompok yang besar. Hubungan antara besar butir pasir dan kekuatan tarik diperlihatkan pada Kekuatan tarik tertinggi dihasilkan oleh spesimen 130 mesh. 14

16 Kekuatan Tarik (kg/mm2) 14 14.92 13.72 12.01 12 11.17 10.94 10 8 6 4 2 0 140 130 120 110 100 Besar Butir Pasir (mesh) Gambar 3. Grafik Hubungan Hubung antara Besar Butir Pasir dan Kekuatan kuatan Tarik Trendline hubungan antara besar butir pasir dan kekuatan tarik diperliha perlihatkan pada Gambar 4. Kekuatan Tarik (kg/mm2) 16 14 12 10 8 6 4 2 0 140 130 120 110 100 Besar Butir Pasir (mesh) Gambar 4. Grafik Trendline ndline Hubungan antara Besar Butir Pasir dan Kekuatan uatan Tarik Hasil uji tarik menunjukkan menunjukka bahwa nilai kekuatan tarik semakin akin menurun menur seiring dengan meningkatnya kekasaran butir bu pasir. Kekuatan tarik rata-rata tertinggi ertinggi dipe diperoleh pada spesimen 130 mesh yaitu itu 14,92 kg/mm kg/m 2. Pada spesimen 140 mesh ke spesimen 130 mesh dan pada spesimen 120 mesh ke spesimen spesim 110 mesh terjadi kenaikan kekuatan uatan tarik, sedangkan TRAKSI TRA Vol. 15 No. 1 Juni 2015 15

pada spesimen 100 mesh terjadi penurunan kekuatan tarik. Kecenderungan kenaikan dan penurunan kekuatan tarik tersebut dipengaruhi oleh kekerasan bahan uji. Gambar 5 memperlihatkan hasil pengujian struktur mikro. Hasil pengujian struktur mikro memperlihatkan adanya kandungan unsur Al, unsur Si, senyawa Mg 2 Si dan senyawa CuAl 2. Ternyata dari fasanya paduan Al mempunyai daerah yang luas dari pembekuan, resiko besar pada kegetasan panas dan mudah terjadi retakan pada coran. Adanya Si sangat berguna untuk mengurangi keadaan tersebut. Struktur mikro spesimen 140 mesh menginformasikan adanya kandungan Al berbentuk garis-garis tak beraturan berwarna terang dan terlihat kandungan Al cukup mendominasi, sehingga kandungan Si yang muncul lebih sedikit. Al CuAl 2 Mg 2 Si Si 50µm 5.a). Struktur mikro spesimen 140 mesh. 16

Mg 2 Si Al Si CuAl 2 50µm 5.b). Struktur mikro spesimen 130 mesh. Mg 2 Si Al Si CuAl 2 50µm 5.c). Struktur mikro spesimen 120 mesh. 17

Al Si CuAl 2 Mg 2 Si 50µm 5.d). Struktur mikro spesimen 110 mesh. CuAl 2 Al Si Mg 2 Si 50µm 6.e). Struktur mikro spesimen 100 mesh. Gambar 5. Hasil pengujian struktur mikro Struktur mikro spesimen 130 mesh memperlihatkan bahwa senyawa CuAl 2 yang terbentuk menjadi semakin banyak, sehingga memperbaiki sifat mekanis pada bahan, akan tetapi mampu cornya menurun. Struktur mikro spesimen 120 mesh memperlihatkan bahwa unsur Si butirannya hampir terdapat pada seluruh permukaan, senyawa Mg 2 Si dan senyawa 18

CuAl 2 butiran paduannya terlihat mengelompok. Struktur paduannya ini menyebabkan kekerasannya semakin meningkat. Struktur mikro Spesimen 110 mesh menunjukkan bahwa paduan Si membentuk butiran kecil-kecil dan paduan CuAl 2 semakin sedikit, paduan Mg 2 Si membuat satu pengelompokan butiran yang sangat kecil, sehingga kekerasan cenderung menurun. Struktur mikro spesimen 100 mesh memperlihatkan bahwa struktur butiran paduannya mulai memisah tidak merata dengan membentuk kelompok-kelompok yang besar, paduan CuAl 2 dan Mg 2 Si semakin mengecil hampir tidak tampak karena kandungan Al cukup mendominasi. Hal ini menyebabkan kekerasannya semakin menurun. KESIMPULAN Kekerasan secara umum cenderung meningkat dan sebaliknya kekuatan tarik menurun bila kekasaran butir pasir cetak naik. Kekerasan rata-rata tertinggi dihasilkan pada 120 mesh yaitu 84,90 HB. Kekuatan tarik rata-rata tertinggi 14,92 kg/mm 2 dicapai pada 130 mesh. DAFTAR PUSTAKA Budinski, K.G., 1996, Engineering material, Properties and Selection, 5 th edition, Prentice Hall Inc., New Jersey. Hartanto A, 2006, Mengenai Sifat Fisis Dan Mekanis Komposit Pasir Besi 90,100, 150 Mesh Dengan Fraksi Volume Epoksi 40%, 50%, 60%, Universitas Muhammadiyah Surakarta. JIS HandBook Of Standards, 1981, Z 2201- NO 4 Kumar, P. and Shan, H.S., 2008, Optimation of Tensile Properties of Evapurative Casting Process Through Taguchi s Method, Journal of Materials Processing Technology, Vol. 204, pp.59-69. Sutiyoko dan Lutiyatmi, 2013, Kekerasan dan Struktur Mikro Besi Cor Kelabu Pada Pengecoran Evaporative Dengan Variasi Ukuran Pasir Cetak, Jurnal Foundry, Vol. 3, pp. 13-17. 19

Sand, S., Shivkumar, S., 2003, Influence of Coating Thickness and Sand Fineness on Mold Iling in The Lost Foam Casting Process, Journal of Material Science, Vol. 38, pp. 667-673. Surdia, T., Kenji, C., 2000, Teknik Pengecoran logam, Cetakan Kedelapan, Pradya Paramita, Jakarta. PENULIS 1. SIGIT GUNAWAN Jurusan Teknik Mesin STTNas Yogyakarta Jl. Babarsari Caturtunggal Depok Sleman Yogyakarta 55281 E-mail: gunruscit@gmail.com E-mail: s1g1t.budi@yahoo.co.id 2. SIGIT BUDI HARTONO Jurusan Teknik Mesin STTNas Yogyakarta Jl. Babarsari Caturtunggal Depok Sleman Yogyakarta 55281 E-mail: s1g1t.budi@yahoo.co.id 20