BAB II DASAR TEORI. Gambar 2.1 sistem Blast Chiller [PT.Wardscatering, 2012] BAB II DASAR TEORI

dokumen-dokumen yang mirip
Laporan Tugas Akhir 2012 BAB II DASAR TEORI

BAB II DASAR TEORI. 2.1 Blood Bank Cabinet

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda

BAB II DASAR TEORI. 2.1 Cold Storage

BAB II DASAR TEORI. 2.1 Pengertian Sistem Heat pump

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut.

BAB II DASAR TEORI BAB II DASAR TEORI. 2.1 Tinjauan Pustaka

BAB III PERANCANGAN SISTEM

BAB II DASAR TEORI. 2.1 Cooling Tunnel

BAB II DASAR TEORI BAB II DASAR TEORI

BAB II DASAR TEORI. Laporan Tugas Akhir BAB II DASAR TEORI

BAB II DASAR TEORI. 2.1 Definisi Vaksin

BAB II DASAR TEORI 2012

BAB VI PENGOLAHAN DATA dan ANALISIS DATA

BAB II DASAR TEORI. Tugas Akhir Rancang Bangun Sistem Refrigerasi Kompresi Uap untuk Prototype AHU 4. Teknik Refrigerasi dan Tata Udara

BAB II DASAR TEORI BAB II DASAR TEORI

BAB II LANDASAN TEORI

BAB II DASAR TEORI 2.1 Cooling Tunnel

BAB II DASAR TEORI. Gambar 2.1 diagram blok siklus Sistem Refrigerasi Kompresi Uap

BAB II TINJAUAN PUSTAKA

BAB II LANDASAN TEORI. 2.1 Sistem Pendinginan Tidak Langsung (Indirect System)

BAB II DASAR TEORI. BAB II Dasar Teori

BAB V HASIL DAN ANALISIS

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

Momentum, Vol. 13, No. 2, Oktober 2017, Hal ISSN ANALISA PERFORMANSI REFRIGERATOR DOUBLE SYSTEM

TUGAS AKHIR PERANCANGAN MESIN PEMBUAT ES BALOK KAPASITAS 2 TON PERHARI UNTUK MENGAWETKAN IKAN NELAYAN DI PANTAI MEULABOH ACEH

BAB II DASAR TEORI. BAB II Dasar Teori. Gambar 2.1 Florist Cabinet (Sumber Gambar: Althouse, Modern Refrigeration and Air Conditioning Hal.

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air

COEFFICIENT OF PERFORMANCE (COP) MINI FREEZER DAGING AYAM KAPASITAS 4 KG

BAB II STUDI PUSTAKA

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

PENGARUH MEDIA PENDINGIN AIR PADA KONDENSOR TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN

BAB II TINJAUAN PUSTAKA

UNJUK KERJA MESIN PENDINGIN KOMPRESI UAP PADA BEBERAPA VARIASI SUPERHEATING DAN SUBCOOLING

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara

BAB IV HASIL DAN ANALISA

LAPORAN TUGAS AKHIR BAB II DASAR TEORI

Seminar Nasional Mesin dan Industri (SNMI4) 2008 ANALISIS PERBANDINGAN UNJUK KERJA REFRIGERATOR KAPASITAS 2 PK DENGAN REFRIGERAN R-12 DAN MC 12

BAB II LANDASAN TEORI

BAB II DASAR TEORI Prinsip Kerja Mesin Refrigerasi Kompresi Uap

BAB II LANDASAN TEORI

MULTIREFRIGERASI SISTEM. Oleh: Ega T. Berman, S.Pd., M,Eng

Bab IV Analisa dan Pembahasan

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR

Kaji Eksperimental Pemanfaatan Panas Kondenser pada Sistem Vacuum Drying untuk Produk Kentang

ANALISA PERBANDINGAN PERFORMANSI MESIN PENDINGIN KOMPRESI UAP MENGGUNAKAN R22 DAN R134a DENGAN KAPASITAS KOMPRESOR 1 PK

ANALISA KINERJA MESIN REFRIGERASI RUMAH TANGGA DENGAN VARIASI REFRIGERAN

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini

Pengaruh Penggunaan Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Efisiensi Mesin Pendingin Siklus Kompresi Uap

BAB II LANDASAN TEORI

Bab IV Analisa dan Pembahasan

BAB II DASAR TEORI LAPORAN TUGAS AKHIR. 2.1 Blast Chiller

PERBANDINGAN UNJUK KERJA FREON R-12 DAN R-134a TERHADAP VARIASI BEBAN PENDINGIN PADA SISTEM REFRIGERATOR 75 W

Pengaruh Pipa Kapiler yang Dililitkan pada Suction Line terhadap Kinerja Mesin Pendingin

Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin. Galuh Renggani Wilis, ST.,MT

BAB II. Prinsip Kerja Mesin Pendingin

Ahmad Farid* dan Moh. Edi.S. Iman Program Studi Teknik Mesin, Universitas Pancasakti Tegal Jl. Halmahera km 1, Tegal *

Peluang Pemanfaatan Sistem Refrigerasi Cascade Sebagai Air Conditioner

BAB II DASAR TEORI BAB II DASAR TEORI

[LAPORAN TUGAS AKHIR]

LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC NPM : NPM :

BAB II LANDASAN TEORI

BAB IV PEMBAHASAN. 4.1 Rangkaian Alat Uji Dan Cara Kerja Sistem Refrigerasi Tanpa CES (Full Sistem) Heri Kiswanto / Page 39

BAB II LANDASAN TEORI. Suatu mesin refrigerasi akan mempunyai tiga sistem terpisah, yaitu:

BAB III SISTEM REFRIGERASI DAN POMPA KALOR

Menghitung besarnya kerja nyata kompresor. Menghitung besarnya kerja isentropik kompresor. Menghitung efisiensi kompresi kompresor

ANALISA PERFORMANSI MESIN PENDINGIN KOMPRESI UAP VARIASI KECEPATAN PUTARAN FAN KONDENSOR DENGAN KAPASITAS KOMPRESOR 1 PK MENGGUNAKAN R22

Jurnal Pembuatan Dan Pengujian Alat Uji Prestasi Sistem Pengkondisian Udara (Air Conditioning)Jenis Split

Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika

Pemanfaatan Air Kondensat Untuk Meningkatkan Unjuk Kerja Dan Efisiensi AC Split

JURNAL TEKNIK ITS Vol. 4, No. 2, (2015) ISSN: ( Print) B-151

Pengaruh Debit Udara Kondenser terhadap Kinerja Mesin Tata Udara dengan Refrigeran R410a

PENGARUH KECEPATAN UDARA PENDINGIN KONDENSOR TERHADAP KOEFISIEN PRESTASI AIR CONDITIONING

Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik padasistem Water Chiller dengan Penerapan Metode Cooled Energy Storage

BAB 2. TINJAUAN PUSTAKA

BAB II DASAR TEORI 2.1 Sistem Pendinginan Tidak Langsung ( Indirect Cooling System 2.2 Secondary Refrigerant

BAB II DASAR TEORI. 2.1 Sistem Refrigerasi Kompresi Uap

BAB II DASAR TEORI. Pengujian sistem refrigerasi..., Dedeng Rahmat, FT UI, Universitas 2008 Indonesia

EFEK PERUBAHAN LAJU ALIRAN MASSA AIR PENDINGIN PADA KONDENSOR TERHADAP KINERJA MESIN REFRIGERASI FOCUS 808

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iii. DAFTAR GAMBAR... viii. DAFTAR TABEL... x. DAFTAR NOTASI... xi Rumusan Masalah...

V. HASIL DAN PEMBAHASAN. Perbaikan Dan Uji Kebocoran Mesin Pendingin Absorpsi

HANIF BADARUS SAMSI ( ) DOSEN PEMBIMBING ARY BACHTIAR K.P, ST, MT, PhD

LAJU PENDINGINAN AIR DENGAN ICE ON COIL PADA MESIN PENDINGIN TYPE CHILLER UNTUK COLD STORAGE

BAB II TINJAUAN PUSTAKA

TUGAS 2 REFRIGERASI DASAR (TEORI)

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk

SILABUS MATA KULIAH D4 REFRIGERASI DASAR KURIKULUM 2011 tahun ajaran 2010/2011. Materi Tujuan Ket.

BAB II LANDASAN TEORI

IV. METODE PENELITIAN

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI

BAB IV DATA DAN ANALISA

BAB II LANDASAN TEORI

Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik padasistem Water Chiller dengan Penerapan Metode Cooled Energy Storage

BAB II DASAR TEORI 2.1 Brine cooling

BAB II LANDASAN TEORI. tropis dengan kondisi temperatur udara yang relatif tinggi/panas.

Heroe Poernomo 1) Jurusan Teknik Permesinan Kapal, Politeknik Perkapalan Negeri Surabaya, Indonesia

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak. daur ini terjadi proses kompresi (1 ke 2), 4) dan penguapan (4 ke 1), seperti pada

V. HASIL DAN PEMBAHASAN

PENENTUAN EFISIENSI DAN KOEFISIEN PRESTASI MESIN PENDINGIN MERK PANASONIC CU-PC05NKJ ½ PK

Transkripsi:

BAB II DASAR TEORI 2.1 Blast Chiller Blast Chiller adalah salah satu sistem refrigerasi yang berfungsi untuk mendinginkan suatu produk dengan cepat. Waktu pendinginan yang diperlukan untuk sistem Blast Chiller ini adalah sekitar 5 menit untuk dapat mendinginkan produk yang ingin di dinginkan. Sistem ini hanya dirancang dengan temperatur produk diatas 0C. Sistem refrigerasi yang digunakan pada Sistem Blast Chiller ini, sama dengan aplikasi aplikasi sistem yang lainnya, yaitu menggunakan sistem refrigerasi kompresi uap sederhana yang memiliki 4 komponen utama, yaitu, Kompresor, kondensor, alat ekspansi, evaporator. Hanya saja pada sistem Blast Chiller peran dari Fan di dalam kabin sangat penting terhadap cepatnya pendinginan pada produk, karena cara pendinginan produk oleh sistem Blast Chiller ini dilakukan dengan cara menyemburkan langsung udara dingin pada produk dengan bantuan fan sehingga akan terjadi proses perpindahan kalor secara paksa. Aplikasi aplikasi pada Blast Chiller ini bisa digunakan untuk bermacam macam produk, diantaranya adalah minuman, vaksin, Cola, dan lain lain. Gambar 2.1 sistem Blast Chiller [PT.Wardscatering, 2012] Laporan Tugas Akhir Teknik Refrigerasi dan Tata Udara 5

2.2 Sistem Refrigerasi Kompresi Uap Sistem refrigerasi kompresi uap adalah sistem pendingin yang paling banyak digunakan untuk aplikasi aplikasi pada peralatan industri, transportasi, maupun alat alat rumah tangga, seperti misalnya pada AC, Kulkas, Freezer, dan lain lain. Pada sistem refrigerasi kompresi uap refrigran yang berada di dalam sistem akan mengalami beberapa proses, proses proses itu adalah sebagai berikut : 1) Kompresi 2) Kondensasi 3) Expansi 4) Evaporasi Kondensor Alat Ekspansi Kompresor \ Evaporator Gambar 2.2 Siklus sistem refrigerasi kompresi uap Laporan Tugas Akhir Teknik Refrigerasi dan Tata Udara 6

P 3 Kondensasi 2 Ekspansi Kompresi 4 Evaporasi 1 Gambar 2.3 Siklus Sistem Refrigerasi kompresi uap pada diagram p h h 2.2.1 Proses kompresi (1 2) Proses kompresi terjadi pada kompresor, dimana refrigran bertemperatur rendah dengan fasa uap jenuh memasuki kompresor dan pada kompresor refrigran berfasa uap jenuh bertemperatur rendah tersebut akan ditekan (dikompresi) sehingga mengakibatkan adanya kenaikan temperatur pada refrigran dan fasanya menjadi uap superheat pada saat refrigerant tersebut keluar dari kompresor. Pada proses kompresi ini refrigran mengalami kompresi secara isentropik. Pada kerja kompresi di kompresor (qw) ini dapat dinyatakan dengan: qw = h 2 h 1...(2.3) qw = Kerja kompresor (kj/kg) h 1 = Enthalpy refrigeran saat masuk kompresor (kj/kg) h 2 = Enthalpy refrigeran saat keluar kompresor (kj/kg) Laporan Tugas Akhir Teknik Refrigerasi dan Tata Udara 7

2.2.2 Proses Kondensasi (2-3) Proses kondensasi terjadi di kondensor, refrigran bertemperatur tinggi dengan tekanan tinggi dan berfasa uap yang menuju ke kondensor dari saluran discharge. Pada saat memasuki kondensor refrigran tersebut akan melepaskan kalor laten ke lingkungan sekitarnya yang temperaturnya lebih rendah, hal ini mengakibatkan yang sebelumnya refrigran berfasa uap bertekanan tinggi dan temperatur tinggi, akan berubah fasa menjadi cair takanannya menjadi konstan sedangkan temperatur masih tetap tinggi. Kalor yang dilepas di kondensor dapat diketahui dengan persamaan : Q c =. q c q c = h 2 - h 3 Q c =. (h 2 -h 3 )...(2.4) Qc = Kalor yang dilepas di kondensor (kw) ṁ = Laju aliran massa refrigran (kj/kg) h 2 = Enthalpy refrigeran keluar kompresor (kj/kg) h 3 = Enthalpy refrigeran keluar kondenser (kj/kg) 2.2.3 Proses Ekspansi (3-4) Proses ekspansi terjadi pada alat ekspansi, refrigran yang berada pada kondensor akan mengalir menuju alat ekspansi, refrigran berfasa cair bertekanan tinggi dan temperatur tinggi dari kondensor, pada saat memasuki alat ekspansi refrigran tersebut akan diekspansi sehingga temperatur pada refrigran tersebut akan Laporan Tugas Akhir Teknik Refrigerasi dan Tata Udara 8

turun dan diharapkan temperatur refrigran tersebut lebih rendah dari temperature lingkungan. Proses ekspansi ini dapat dinyatakan dengan persamaan : h 3 = h 4...(2.5) 2.2.4 Proses Evaporasi (4-1) Proses evaporasi terjadi pada Evaporator, refrigran cair dengan temperatur rendah dan tekanan rendah yang telah diekspansi oleh alat ekspansi akan mengalir menuju ke evaporator. Pada saat refrigran tersebut berada di evaporator, refrigran akan menyerap kalor produk atau kabin yang akan didinginkan, di sini refrigran bertemperatur rendah akan mengalami proses perpindahan kalor dengan temperatur lingkungan sehingga menyebabkan refrigran yang sebelumnya berfasa cair bertemperatur rendah berubah menjadi fasa uap dan temperaturnya mulai naik. Proses ini terjadi secara isothermal dan isobar. Besarnya kalor yang diserap dapat diketahui dengan persamaan : qe = h 1 h 4...(2.1) Total kalor yang diserap pada evaporator ( beban pendinginan) : Qe =. qe Qe =. ( h 1 h 4 )....(2.2) qe = Besranya kalor yang diserap di evaporator (kj/kg) = Laju aliran massa refrigeran (kg/s) Laporan Tugas Akhir Teknik Refrigerasi dan Tata Udara 9

h 1 = Enthalpy refrigeran saat keluar evaporator (kj/kg) h 2 = Enthalpy refrigeran saat masuk evaporator (kj/kg) 2.3 Diagram p h Diagram p-h adalah suatu media pembantu agar kita dapat dengan mudah menentukan besaran besaran yang dapat menunjukan performansi dari suatu sistem refrigerasi, diagram p h memiliki bermacam macam jenis, ini tergantung dari jenis refrigrannya. Maka karena itu sebelum akan menganalisis performansi suatu sistem refrigerasi pada diagram p h kita harus mengetahui refrigran apa yang digunakan pada sistem tersebut. Dengan adanya bantuan dari diagram p h, kita akan dapat mengetahui dengan mudah performansi dari suatu sistem refrigerasi yang akan dianalisis, data data yang didapatkan pada diagram p h antara lain : temperatur discharge, temperatur suction, temperatur keluaran kondensor, temperatur keluaran evaporator, tekanan kerja high pressure dan low pressure. Setelah mendapatkan data data tersebut, data tersebut dapat diplotkan pada diagram p h, sehingga dapat dihitung : Kapasitas refrigerasi Qe = ṁ. (h1-h4) Kerja kompresi Qw = ṁ. (h2-h2) Panas yang dibuang di kondensor Qc = ṁ. (h2-h3) Nilai COPcarnot,COPactual dan Efisiensi sistem 2.4 Coefficient Of Performance Untuk mengetahui efisiensi dari sistem refrigerasi, maka perhitungan koefisien presentasi sangatlah dibutuhkan untuk mempermudah mengetahui efisiensi dari sistem. Harga dari koefisien actual dan carnot dapat diketahui dengan persamaan : Laporan Tugas Akhir Teknik Refrigerasi dan Tata Udara 10

COPactual =...(2.6) refrigerasi. COPactual yaitu adalah COP yang sebenarnya dimiliki suatu sistem COPactual = prestasi aktual qe qw = Efek refrigerasi (kj/kg) = Kerja kompresi (kj/kg) Sementara itu pada COPcarnot dapat dituliskan dengan : COPcarnot =...(2.7) COPcarnot yaitu ialah COP paling maksimal yang dimiliki pada sistem. Dan untuk menentukan efisiensi dari sistem refrigerasi, dapat ditentukan dengan : ɳ= 2.5 Perhitungan beban Dalam rancang bangun sistem refrigerasi perlu dilakukan perhitungan beban pendinginan yang harus ditangani untuk menentukan kapasitas peralatan yang dibutuhkan. Pada sistem refrigerasi perhitungan beban pendinginan sangatlah dibutuhkan, karena dengan adanya perhitungan beban pendinginan maka akan dapat ditentukan peralatan yangdibutuhkan paada sistem sehingga sistem tersebut dapat Laporan Tugas Akhir Teknik Refrigerasi dan Tata Udara 11

mengatasi beban pendinginan dengan baik. Jika dikelompokan beban kalor dapat dibagi, yang antara lainnya adalah : 1. Beban kalor melalui dinding 2. Beban Produk 3. Beban perpindahan udara 4. Dan lain lain 2.5.1 Beban kalor melalui dinding Agar dapat diketahui seberapa besar beban kalor yang melewati dinding, maka dapat diketahui dengan persamaan : Qd = U x A x T Q = Kalor yang masuk pada ruangan atau kabin melalui dinding (Watt) U = Koefisien perpindahan panas menyeluruh (W/m 2 K) T = Beda temperatur yang melalui dinding (ºC) A = Luas penampang (m 2 ) Nilai U dapat dicari dengan persamaan : U = 1 1 U f i x k 1 2 3 n 1 1 x k 2 x k 3 x... k n f 0 Koefisien perpindahan kalor menyeluruh (W/m 2 K) K = Konduktivitas bahan (W/mK) fi = Koefisien konduktivitas dinding dalam (asumsi 9.37 W/m 2 K) fo = Koefisien konduktivitas dinding luar (asumsi 22.7 W/m 2 K) x = Tebal lapisan bahan (m) Laporan Tugas Akhir Teknik Refrigerasi dan Tata Udara 12

2.5.2 Beban pertukaran udara Pada beban pertukaran udara bisa didapatkan dengan persamaan : Qpu = I x h Qpu = Kalor pertukaran udara (kw) I = laju infiltrasi ( L/s) h = Perubahan entalpi faktor perubahan udara (kj/l) Nilai I dan h didapatkan pada table 10-7 dan 10-6 Roy J. Dossat. 2.5.3 Beban Produk Beban kalor pada produk yang harus di atasi oleh sistem refrigerasi dapat dicari dengan persamaan berikut : Q = m x cp x t Dan jika ingin mengetahui kalor persatuan waktu pada produk dapat dinyatakan pada persamaan : q = penurunan temperatur (kw) n = Chilling time Laporan Tugas Akhir Teknik Refrigerasi dan Tata Udara 13