MEMAKSIMALKAN DAYA PHOTOVOLTAIC SEBAGAI CHARGER CONTROLLER

dokumen-dokumen yang mirip
LAMPIRAN 1 CATU DAYA TRANSFORMATOR RANGKAIAN SENSOR ARUS SENSOR DAYA. Gambar 1. Realisasi alat

DAFTAR PUSTAKA. [1] Felix. Y dan Pratomo, H. L, 2009 Memaksimalkan Daya Photovoltaic

Kendali Sistem Pengisi Baterai Tenaga Surya Metode Incremental Conductance Berbasis Mikrokontrol

ANALISIS STEP-UP CHOPPER SEBAGAI TRANSFORMASI R SEBAGAI INTERFACE PHOTOVOLTAIC DAN BEBAN

Perancangan Battery Control Unit (BCU) Dengan Menggunakan Topologi Cuk Converter Pada Instalasi Tenaga Surya

Prof.Dr. Ir. Mochamad Ashari, M.Eng. Vita Lystianingrum B.P, ST., M.Sc.

DESAIN MAXIMUM POWER POINT TRACKER PADA PHOTOVOLTAIC

STUDI KOMPARASI MPPT ANTARA SOLAR CONTROLLER MPPT M10-20A DENGAN MPPT TIPE INCREMENTAL CONDUCTANCE SEBAGAI CHARGER CONTROLLER LAPORAN TUGAS AKHIR

DESAIN DAN ANALISIS PROPORSIONAL KONTROL BUCK-BOOST CONVERTER PADA SISTEM PHOTOVOLTAIK

BAB I PENDAHULUAN 1.1 Latar Belakang

PV-Grid Connected System Dengan Inverter Sebagai Sumber Arus. Pada Beban Resistif

Hari Agus Sujono a), Riny Sulistyowati a), Agus Budi Rianto a)

Auto Charger System Berbasis Solar Cell pada Robot Management Sampah

Simulasi Maximum Power Point Tracking pada Panel Surya Menggunakan Simulink MATLAB

DESAIN DAN IMPLEMENTASI MAKSIMUM POWER POINT TRACKER MELALUI DETEKSI DAYA DAN TEGANGAN

DESAIN DAN IMPLEMENTASI MAKSIMUM POWER POINT TRACKER MELALUI DETEKSI ARUS

Desain Sistem Photovoltaic (PV) Terhubung Dengan Grid Sebagai Filter Aktif

UNJUK KERJA PEMBANGKIT ENERGI LISTRIK TENAGA MATAHARI PADA JARINGAN LISTRIK MIKRO ARUS SEARAH Itmi Hidayat Kurniawan 1*, Latiful Hayat 2 1,2

DESAIN SISTEM HIBRID PHOTOVOLTAIC-BATERAI MENGGUNAKAN BI-DIRECTIONAL SWITCH UNTUK CATU DAYA KELISTRIKAN RUMAH TANGGA 900VA, 220 VOLT, 50 HZ

BAB III METODOLOGI PENELITIAN

KINERJA PHOTOVOLTAIC GRID CONNECTED SYSTEM

PEMODELAN DAN SIMULASI MAXIMUM POWER POINT TRACKER

Dwi Agustina Hery Indrawati

BAB I PENDAHULUAN. 1.1 Latar Belakang

RANCANG BANGUN CATU DAYA TENAGA SURYA UNTUK PERANGKAT AUDIO MOBIL

BAB I PENDAHULUAN. sumber energi tenaga angin, sumber energi tenaga air, hingga sumber energi tenaga

DESAIN DAN IMPLEMENTASI MAXIMUM POWER POINT TRACKER (MPPT) MIKROKONTROLLER AVR. Dosen Pembimbing

METODE PENGENDALIAN DAYA PADA PHOTOVOLTAIC MODULE DENGAN METODE KENDALI INTERNAL TUGAS AKHIR

BAB I PENDAHULUAN. Energi listrik adalah energi yang mudah dikonversikan ke dalam bentuk

MAXIMUM POWER POINT TRACKER PADA SOLAR CELL/PHOTOVOLTAIC MODULE DENGAN MENGGUNAKAN FUZZY LOGIC CONTROLLER

KENDALI BUCK-BOOST MPPT BERBASIS DIGITAL LAPORAN TUGAS AKHIR

PERANCANGAN STAND ALONE PV SYSTEM DENGAN MAXIMUM POWER POINT TRACKER (MPPT) MENGGUNAKAN METODE MODIFIED HILL CLIMBING

Sistem MPPT Untuk PV dan Inverter Tiga Fasa yang Terhubung Jala-Jala Menggunakan Voltage-Oriented Control

Pengendalian Kecepatan Motor DC Magnet Permanen Dengan Menggunakan Sensor Kecepatan Rotari

MEMAKSIMALKAN KONVERSI ENERGI PV MODULE BERDASARKAN KURVA KARAKTERISTIK PADA LERENG TEGANGAN

BAB I PENDAHULUAN. 1.1 Latar Belakang

IMPLEMENTASI MAXIMUM POWER POINT TRACKER (MPPT) UNTUK OPTIMASI DAYA PADA PANEL SURYA BERBASIS ALGORITMA INCREMENTAL CONDUCTANCE

Andriani Parastiwi. Kata-kata kunci : Buck converter, Boost converter, Photovoltaic, Fuzzy Logic

Desain Boosting MPPT Tiga Level untuk Distributed Generation Tiga Fasa Presented by: Hafizh Hardika Kurniawan

INVERTER 15V DC-220V AC BERBASIS TENAGA SURYA UNTUK APLIKASI SINGLE POINT SMART GRID

Desain. Oleh : Banar Arianto : NIM UNIVERS SEMARANG

Perbaikan Variabel Step Size MPPT pada Aplikasi Panel Surya untuk Perubahan Iradiasi Matahari yang Cepat

DESAIN DAN IMPLEMENTASI PENAIK TEGANGAN MENGGUNAKAN KOMBINASI KY CONVERTER DAN BUCK- BOOST CONVERTER

Oleh : Aries Pratama Kurniawan Dosen Pembimbing : Prof. Dr.Ir. Mochamad Ashari, M.Eng Vita Lystianingrum ST., M.Sc

RANCANG BANGUN BECAK LISTRIK TENAGA HYBRID DENGAN MENGGUNAKAN KONTROL PI-FUZZY (SUBJUDUL: HARDWARE) Abstrak

OPERASI CHOPPER SEBAGAI MAXIMUM POWER POINT TRACKER TUGAS AKHIR

DC-DC Step-Up Converter Rasio Tinggi Kombinasi Charge Pump dan Boost Converter untuk Catu Daya Motor Induksi pada Mobil Listrik

Perancangan Boost Converter Untuk Sistem Pembangkit Listrik Tenaga Surya

Perancangan Simulator Panel Surya Menggunakan LabView

Desain dan Implementasi Catu Daya Searah Berarus Besar Bertegangan Kecil

PERANCANGAN DAN IMPLEMENTASI SISTEM CATU DAYA OTOMATIS MENGGUNAKAN SOLAR CELL PADA ROBOT BERODA PENGIKUT GARIS

MAXIMUM POWER POINT TRACKER DENGAN METODE INCREMENTAL CONDUCTANCE TRANSCONDUCTANCE CONTROL BERBASIS. dspic30f4012

Desain dan Implementasi Catu Daya Searah Berarus Besar Bertegangan Kecil

BAB III DESKRIPSI DAN PERENCANAAN RANCANG BANGUN SOLAR TRACKER

DASAR TEORI. Kata kunci: grid connection, hybrid, sistem photovoltaic, gardu induk. I. PENDAHULUAN

ISSN : e-proceeding of Engineering : Vol.4, No.3 Desember 2017 Page 3122

Rancang Bangun Modul DC DC Converter Dengan Pengendali PI

Perancangan dan Realisasi Solar Charge Controller Maximum Power Point Tracker dengan Topologi Buck Converter untuk Charger Handphone

STUDI TERHADAP UNJUK KERJA PEMBANGKIT LISTRIK TENAGA SURYA 1,9 KW DI UNIVERSITAS UDAYANA BUKIT JIMBARAN

ISSN : e-proceeding of Engineering : Vol.3, No.2 Agustus 2016 Page 1375

RANCANG BANGUN KONVERTER PHOTOVOLTAIC DAN PENTAKSIRAN DAYA PHOTOVOLTAIC UNTUK DC POWER HOUSE

BAB III PERANCANGAN DAN PEMBUATAN ALAT Flow Chart Perancangan dan Pembuatan Alat. Mulai. Tinjauan pustaka

BAB III METODE PENELITIAN. Penelitian tugas akhir dilaksanakan pada bulan Februari 2014 hingga Januari

BAB I PENDAHULUAN. digunakan, dari mulai jam, perangkat portabel hingga mobil listrik yang mulai

BAB 4 ANALISIS DAN BAHASAN

Rancang Bangun Charger Baterai dengan Buckboost Konverter

DESAIN DAN IMPLEMENTASI SISTEM PENGISI BATERAI TENAGA SURYA MENGGUNAKAN METODE INCREMENTAL CONDUCTANCE KENDALI ARUS BERBASIS dspic30f4012

PEMANFAATAN ENERGI MATAHARI MENGGUNAKAN SOLAR CELL SEBAGAI ENERGI ALTERNATIF UNTUK MENGGERAKKAN KONVEYOR

DESAIN DAN IMPLEMENTASI SISTEM PENGISI BATERAI TENAGA SURYA MENGGUNAKAN METODE INCREMENTAL CONDUCTANCE-VOLTAGE CONTROL BERBASIS dspic30f4012

Desain dan Simulasi Single Stage Boost-Inverter Terhubung Jaringan Satu Fasa Menggunakan Sel Bahan Bakar

Sistem Catu Daya Sel Surya Otomatis untuk Komputer Bergerak Berbasis Switching Regulator

Latar Belakang dan Permasalahan!

Sistem Manual MPPT Inverter Sebagai Interface. Antara PV dan Beban

SISTEM POMPA AIR BERTENAGA SURYA TUGAS AKHIR

BAB IV PENGUJIAN DAN ANALISA

Raharjo et al., Perancangan System Hibrid... 1

Jurnal Teknik Energi, Vol 1, No 2, Oktober 2011 ISSN:

Rancang Bangun Catu Daya Tenaga Surya Untuk Perangkat Audio Mobil

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print)

OPTIMALISASI SEL SURYA MENGGUNAKAN MAXIMUM POWER POINT TRACKER (MPPT) SEBAGAI CATU DAYA BASE TRANSCEIVER STATION (BTS)

PERANCANGAN SISTEM MONITORING DAN OPTIMASI BERBASIS LABVIEW PADA PEMBANGKIT LISTRIK TENAGA SURYA DAN ANGIN. Irwan Fachrurrozi

BAB I Pendahuluan. 1.1 Latar Belakang

PENYEDIA DAYA DC BERBASIS MIKROKONTROLER MC68HC908QT2

PERENCANAAN DAN PEMBUATAN DC-DC KONVERTER UNTUK PANEL SURYA PADA DC HOUSE SKRIPSI

RANCANG BANGUN MAXIMUM POWER POINT TRACKER (MPPT) PADA PANEL SURYA DENGAN MENGGUNAKAN METODE FUZZY

Perbandingan Efisiensi Energi Pengontrol T2FSMC dan Pid pada Prototype Panel Surya

PERANCANGAN SINGLE ENDED PRIMARY INDUCTOR CONVERTER UNTUK PENYETABIL TEGANGAN PADA PEMBANGKIT LISTRIK TENAGA SURYA

Desain dan Analisis MPPT Berbasis DC- Switched Capacitor untuk Sistem Grid- Connected Photovoltaic

BAB I PENDAHULUAN. Kebutuhan akan sumber energi listrik terus meningkat seiring meningkatnya

Teknik Kendali Konverter DC-DC Topologi Baru Mode Boost

PENGEMBANGAN TEKNOLOGI TEPAT GUNA : STUDI PARAMETER TEKNOLOGI HYBRID KOLEKTOR SEL SURYA SEBAGAI TEKNOLOGI PENGERING HASIL PANEN ABSTRAK

Materi 3: ELEKTRONIKA DAYA (2 SKS / TEORI) SEMESTER 106 TA 2016/2017 PROGRAM STUDI PENDIDIKAN TEKNIK ELEKTRONIKA

SIMULASI MAXIMUM POWER POINT TRACKING (MPPT) PANEL SURYA MENGGUNAKAN PERTURB AND OBSERVE SEBAGAI KONTROL BUCK-BOOST CONVERTER Mochamad Firman Salam

ANALISIS KARAKTERISTIK ELECTRICAL MODUL PHOTOVOLTAIC UNTUK PEMBANGKIT LISTRIK TENAGA SURYA SKALA LABORATORIUM

Kata Kunci Sistem Hibrida PV-Genset, Sensor Arus, Otomatisasi Pensaklaran, SFC Genset, Zelio Logic Smart Relay.

Rancang Bangun Prototipe Emulator Sel Surya Menggunakan Buck Converter Berbasis Arduino

BAB I PENDAHULUAN. Teknologi konverter elektronika daya telah banyak digunakan pada. kehidupan sehari-hari. Salah satunya yaitu dc dc konverter.

PERBEDAAN EFISIENSI DAYA SEL SURYA ANTARA FILTER WARNA MERAH, KUNING DAN BIRU DENGAN TANPA FILTER

PERANCANGAN DAN IMPLEMENTASI TENAGA SURYA SEBAGAI CATU DAYA PADA SKUTER BERODA DUA SEIMBANG OTOMATIS UNIVERSITAS TELKOM

Rancang Bangun Interleaved Boost Converter Berbasis Arduino

Transkripsi:

MEMAKSIMAKAN DAYA PHOTOVOTAIC SEBAGAI CHARGER CONTROER Felix Yustian Setiono Program Studi Teknik Elektro, Fakultas Teknik Elektro dan Informasi Universitas Katolik Soegijapranata Semarang 50234, Indonesia E-mail : felix_yustian@yahoo.com eonardus Heru Pratomo Program Studi Teknik Elektro, Fakultas Teknik Elektro dan Informasi Universitas Katolik Soegijapranata Semarang 50234, Indonesia E-mail : leonardus@unika.ac.id Abstrak Sistem charger controller adalah penggabungan antara MPPT, dimana digunakan konsep kendali ripple correlation control (RCC) dengan battery charger, yang akan menghasilkan tegangan dc konstan teregulasi yang berfungsi untuk proses pengsisian baterai (battery charging). MPPT dikombinasikan dengan dc-dc converter tipe buck yang berfungsi sebagai pengisi baterai. DC-DC converter yang digunakan mempunyai sistem kendali proportional integrator (PI). Pengujian sistem hasil efektivitas dengan nilai rata-rata mencapai 91%. Kata kunci photovoltaic (PV), maximum power point tracker (MPPT), ripple correlation control (RCC), charger controller I. PENGANTAR Penggunaan photovoltaic atau solar cells dewasa ini semakin banyak digunakan, baik untuk bidang komersial maupun residensial. Untuk mendapatkan tingkat keluaran daya maksimal dari suatu photovoltaic maka diperlukan adanya suatu sistem yang berfungsi agar photovoltaic dapat mencapai titik kerja optimalnya, yang disebut maximum power point. Sistem ini dinamakan maximum power point tracker (MPPT). Saat ini terdapat beragam metode dalam pemanfaatan MPPT selama tiga dekade ini. Sedangkan dalam makalah ini akan dibahas mengenai penggunaan konsep ripple correlation control (RCC) dalam pemanfaatan MPPT. Konsep RCC pada awalnya digunakan sebagai sistem optimasi dinamis untuk pengendalian motor elektrik. Konsep ini menggunakan riak yang muncul dalam setiap penggunaan converter yang menggunakan pensaklaran untuk menghasilkan suatu informasi tentang titik operasi. Konvergensi kerja sangat cepat, meningkat dalam suatu satuan waktu dalam beberapa periode pensaklaran. Tingkat efektivitas dari konsep RCC ini mencapai 99% [Trisham, 1283]. MPPT yang digunakan dilengkapi dengan DC-DC converter yang digunakan sebagai penstabil tegangan. DC-DC converter yang digunakan mempunyai tipe buck atau step-down, dimana keluaran dari converter ini akan mempunyai nilai yang lebih rendah daripada masukannya Dalam penggunaan umum, MPPT biasanya digunakan sebagai pengatur pengisian untuk battery charger, dimana biasanya MPPT akan dikombinasikan dengan battery charger sebagai sistem charger controller. Keluaran dari penggabungan kedua sistem ini akan menghasilkan tegangan dc teregulasi yang digunakan untuk proses pengisian baterai.

Penggunaan battery charger yang digunakan menggunakan konsep dc-dc converter tipe buck, yang akan menghentikan aliran arus pengisian jika tegangan nominal baterai telah penuh. Sistem battery charger ini menggunakan konsep kendali proportional integrator (PI). II. TINJAUAN PUSTAKA Suatu photovoltaic (PV) bekerja dengan prinsip yaitu dengan mengubah sinar matahari menjadi suatu bentuk energi listrik dimana menggunakan prinsip semikonduktansi (pn junction). Jika kita menggunakan PV langsung kepada beban (load), maka tegangan PV akan langsung mengalami drop voltage, akan tetapi arus PV akan tetap bergantung pada intensitas cahaya matahari yang diterimanya, sehingga PV tidak akan pernah mencapai titik kerja maksimumnya. Penggunaan MPPT dimaksudkan agar PV dapat mencapai titik kerja maksimumnya, dengan kondisi pembebanan apapun. Gb. 1 Pemodelan sel surya secara rangkaian listrik Jika intensitas sinar matahari meningkat, maka nilai arus yang keluar akan semakin meningkat pula. Photovoltaic (PV) menggunakan suatu skema titik daya maksimum atau maximum power point sebagai titik operasi kerjanya. Titik optimum ini akan berubah bergantung pada intensitas cahaya matahari yang diterima oleh PV, kondisi cuaca dan iklim, dan pengaruh pembebanan [Pallab, 1711]. Gb. 2 Kurva maximum power point photovoltaic Gb. 3 Titik operasi pada kurva I-V untuk pembebanan sel PV secara langsung Sistem charger controller merupakan penggabungan kedua sistem yang terdiri dari MPPT dan battery charger. Sistem MPPT yang digunakan dalam makalah ini menggunakan kendali korelasi riak atau ripple correlation control (RCC), Sistem RCC ini menggunakan sistem dc-dc converter tipe boost, dimana dapat dijelaskan sebagai berikut. Dinyatakan arus induktor i dan daya photovoltaic P, dimana kondisi di atas i atau di bawah i *. Untuk kondisi ini, kita anggap i = i yang berarti bahwa C = 0. Saat i berada di bawah i *, riak arus muncul di sepanjang kurva yang mengarah pada riak daya dalam fasa; hal ini menyatakan produk dari derivatif waktu dari i (di /dt) dan derivatif waktu dari P (dp/dt) adalah positif. Saat i di bawah i *, riak arus dan riak daya berada di luar fasa, dan produk dari di /dt dan

dp/dt adalah negatif [Trisham, 1283]. Observasi ini dapat dinyatakan menjadi : di dp > 0 I dt dt di dp < 0 I dt dt < I > I Persamaan di atas merupakan salah satu bentuk dari hukum ripple correlation control (RCC). Gb. 4 Skema rangkaian daya dari photovoltaic dan DC-DC converter tipe boost Gb. 5 Skema kerja photovoltaic dimana daya rata-rata dengan arus induktor rata-rata Jika i meningkat saat persamaan (1) bernilai lebih dari nol, dan menurun, lalu i harus mendekati i *. Salah satu cara untuk melakukannya dengan melakukan integral dari persamaan (1), seperti : dp di d = k dt dt dt dimana d adalah duty cycle dari saklar daya S dan k bernilai konstan, bernilai positif. Arus induktor meningkat dan menurun mengikuti duty cycle d, sehingga d harus menyediakan pergerakan yang tepat dari i. Persamaan (2) menggunakan derivatif dari sinyal yang akan diukur secara langsung.. * * (1) (2) Titik pusat optimal muncul dimana dp/di = 0; sehingga hukum pengendalian menjadi : dp d = k dt di Kemungkinan persamaan untuk beroperasi sejak integrasi mencapai nol adalah saat i mencapai i *. Integrasi dari persamaan (3) bukan merupakan sinyal sebenarnya di rangkaian nyata. Hal ini sulit diwujudkan untuk mendapatkan rasio sinyal terhadap noise untuk persamaan (3) walaupun konvergensi yang timbul akan sangat lambat. Penskalaan integrasi dari persamaan (3) pada sisi positif akan mengubah kecepatan dan pemetaan pada konvergensi, akan tetapi persamaan (3) masih mampu mencapai konvergensi. Kita nyatakan hal ini sebagai hukum kontrol alternatif, dimana melalui proses penskalaan integrasi dari (di /dt) 2, dimana bernilai positif selama i berubah. dp di dp di d = k dt = k dt di dt dt dt 2 Persamaan (4) ini serupa dengan persamaan (2) tetapi dilihat dari sisi yang lain. Hukum integral dari persamaan (4) ini akan mengendalikan dp/di = 0. Persamaan (1) sampai (4) juga dapat dinyatakan jika parameter tegangan digantikan dengan arus; walaupun nilai negatif dari k juga masih digunakan, dimana arus dan tegangan akan saling berlawanan nilainya di dalam suatu operasi kerja photovoltaic. Kondisi di atas akan muncul jika sistem kendali konvergen asimtot dengan kondisi optimal jika P adalah unimodal dan derivatif arus bernilai hanya nol untuk satuan waktu terbatas. Kondisi ini akan (3) (4)

muncul dari PV dan akan berlanjut jika kondisi pensaklaran normal muncul dan converter dalam kondisi konduksi yang kontinu [Trisham, 1284]. Vpv Ipv C1 Differentiator Comparator Integrator C2 R1 R2 AD633 AD633 AD633 Gb. 6 Skema konsep RCC R3 C3 To Duty Ratio Command Sedangkan untuk kendali battery charger menggunakan kendali proportional integrator (PI), dimana kendali PI merupakan penggabungan antara kendali proportional (P) dan integrator (I) yang dirangkai secara paralel. Konsep kendali ini adalah menguatkan sinyal penggabungan antara sinyal referensi yang telah ditentukan dengan sinyal riil keluaran sistem, lalu sinyal ini akan mengalami penguatan (integrating) dan digabungkan dengan kendali proportional, sehingga memperoleh sinyal kendali yang dikuatkan. Sinyal ini digabung dengan sinyal segitiga yang telah ditentukan, sehingga memperoleh sinyal kendali untuk mengontrol saklar daya. Vout Vref Ci Vtriangle To Duty Ratio Command III. IMPEMENTASI Implementasi sistem charger controller yang digunakan merupakan penggabungan antara MPPT berbasis dc-dc converter tipe boost dan battery charger berbasis dc-dc converter tipe buck. MPPT yang digunakan mempunyai cara kerja sebagai berikut masukan arus dan tegangan dari PV dideteksi dengan menggunakan sensor, lalu hasil pendeteksian kedua sensor dikalikan dengan bantuan beberapa pengali atau multiplier. Keluaran dari multiplier ini dimasukkan dalam komponen integrator yang berfungsi sebagai penguat sinyal, lalu dimasukkan kembali menuju comparator yang berfungsi sebagai pembanding antara sinyal dari integrator dan sinyal segitiga yang telah diatur parameternya. Sinyal keluaran dari comparator ini dimasukkan menuju saklar daya. Sistem battery charger yang digunakan mempunyai cara kerja sebagai berikut. Intensitas tegangan pengisian baterai dikendalikan melalui sebuah controller yang berfungsi untuk menghentikan aliran arus pengisian jika baterai telah terisi penuh. Kontroler yang digunakan adalah controller PI dimana controller ini mendapat masukan berupa sinyal gabungan dari tegangan baterai dan tegangan referensi. Keluaran controller PI akan dibandingkan dengan suatu sinyal segitiga dalam comparator dan akan menghasilkan sinyal kendali untuk menghidupkan saklar daya. Gb. 7 Skema kendali proportional integrator (PI)

From MPPT S2 D2 3 - R PI + - Ref. sehingga menjadi daya keluaran sistem. Daya masukan dan daya keluaran akan dibandingkan untuk menjadi suatu tingkat efektivitas sistem yang bernilai dalam satuan persen. + Gb. 8 Diagram blok kendali battery charger Sehingga keseluruhan sistem menjadi sebagai berikut Adapun hasil pengukuran implementasi sistem ini dinyatakan dalam tabel di bawah ini. Tegangan dinyatakan dalam satuan volt, arus dalam ampere, dan daya dalam watt. Pengukuran pertama dilakukan pada kondisi cuaca berawan. S2 2 D1 3 Beban V pv I pv P pv V out I out P out % PV S1 C D2 R 15 Ω 31,7 2,6 81,8 7,6 9,8 74,5 91,1 20 Ω 31,7 2,6 81,8 7,4 9,7 71,8 87,8 1 Kontroler Kontroler + - Ref. 35 Ω 31,7 2,6 81,8 7,8 9,7 75,7 92,5 39 Ω 31,7 2,6 81,8 7,8 9,7 75,7 92,5 Gb. 9 Diagram blok sistem keseluruhan Hasil dari perancangan sistem secara keseluruhan ini adalah tegangan dc teregulasi yang digunakan dalam proses pengsisian baterai. MPPT yang digunakan akan memaksa sistem agar selalu berada pada posisi titik kerja maksimumnya, sedangkan battery charger akan menghasilkan tegangan dc konstan teregulasi secara terus-menerus. IV. PENGUJIAN DAN ANAISA Perancangan sistem menggunakan dua buah photovoltaic merek BP Solar dengan parameter masing-masing adalah daya maksimal (P max ) 55 watt, tegangan puncak (V mp ) 16,5 volt, arus puncak (I mp ) 3,33 ampere, tegangan open-circuit (V oc ) 20,6 volt, dan arus short-circuit (I sc ) 3,69 ampere. Parameter yang diukur berupa hubungan antara tegangan dan arus masukan dari photovoltaic (PV) yang dikalikan menjadi daya masukan PV, dan tegangan dan arus keluaran sistem (keluaran battery charger) yang dikalikan 60 Ω 31,7 2,6 81,8 7,9 9,7 76,6 93,7 Tbl. 1 Tingkat efektivitas sistem saat cuaca berawan Pengukuran kedua dilakukan pada kondisi cuaca panas terik. Beban V pv I pv P pv V out I out P out % 15 Ω 36 3 108 10 9,8 98 91 20 Ω 36 3 108 10 9,8 98 91 35 Ω 36 3 108 10 9,8 98 91 39 Ω 36 3 108 10 9,8 98 91 60 Ω 36 3 108 9,75 9,8 95,6 88,5 Tbl. 2 Tingkat efektivitas sistem saat cuaca panas terik Analisa yang dapat diambil dari tabel di atas adalah bahwa sistem akan berusaha agar mencapai titik maksimum dari photovoltaic yang digunakan dengan cara memaksa arus keluaran agar kondisi keluaran mendekati kondisi masukan sistem. Mengenai daya photovoltaic yang turun dikarenakan waktu pengukuran yang dilakukan pada sore hari, sehingga titik

maksimum photovoltaic berubah mengikuti intensitas sinar matahari. V. KESIMPUAN MPPT yang digunakan mempunyai efektivitas 91,01%, dengan penggabungan dimana MPPT ini akan dikombinasikan dengan sistem dc-dc converter yang digunakan sebagai pensuplai baterai. Tingkat efektivitas ini bergantung pada intensitas cahaya matahari yang diterima oleh photovoltaic, kondisi cuaca dan iklim, dan pengaruh pembebanan sistem. REFERENSI [1] Trishan Esram, Jonathan W. Kimball, Philip T. Krein, Patrick. Chapman, dan Pallab Midya, Dynamic Maximum Power Point Tracking of Photovoltaic Arrays Using pple Correlation Control, IEEE Trans. on Power Elec. Vol. 21 No. 5, Sept. 2006, hal.1282-1291. [2] Pallab Midya, Philip T. Krein, Robert J. Turnbull, Robert Keppa, dan Jonathan W. Kimball, Dynamic Maximum Power Point Tracker for Photovoltaic Applications, IEEE Power Elec. Conf., 1996, hal. 1710-1716. [3] Jonathan W. Kimball dan Philip T. Krein, Digital pple Correlation Control for Photovoltaic Applications, IEEE Power Elec. Conf., 2007, hal. 1690-1694. [4] Roger A. Messenger dan Jerry Ventre. Photovoltaic Systems Engineering : Second Edition. New York: CRC Press, 2004. [5] Muhammad H. Rashid. Power Electronics : Circuits, Devices, and Applications : 2nd Edition. New Jersey: Prentice Hall. 1993 [6] Slamet yadi. Koneksi Photovoltaic ke Sistem melalui VSI berbasis Kendali Arus untuk Pembagian Beban.. Proceedings of CITEE 2009. Yogyakarta : Teknik Elektro UGM, 2009.