STUDI PRAKIRAAN POTENSI PEMBANGKIT LISTRIK PANAS BUMI DI PUSUK BUHIT KELURAHAN SIOGUNG- OGUNG KABUPATEN SAMOSIR

dokumen-dokumen yang mirip
penerangan dan juga proses produksi yang melibatkan barang-barang elektronik dan alatalat/mesin

STUDI PERENCANAAN PLTP 2X2,5 MW UNTUK KETENAGALISTRIKAN DI LEMBATA NUSA TENGGARA TIMUR

Fira Nafiri ( )

STUDI PENGEMBANGAN PEMBANGKIT LISTRIK PANAS BUMI (PLTP) DI JAILOLO UNTUK MEMENUHI KEBUTUHAN LISTRIK DI MALUKU UTARA

STUDI POTENSI ENERGI BARU TERBARUKAN UNTUK MENGATASI DEFISIT PASOKAN TENAGA LISTRIK DI DAERAH SUMATERA UTARA

STUDI PEMBANGUNAN PLTP GUCI 1 X55MW JAWA TENGAH BERDASARKAN ASPEK TEKNIS, EKONOMI, DAN LINGKUNGAN

BIAYA MODAL/ CAPITAL COST BIAYA TETAP (O & M)

STUDI KELAYAKAN EKONOMIS PLTU BERBAHAN BAKAR FIBER DAN CANGKANG KELAPA SAWIT SEBAGAI DOMESTIC POWER

ARTIKEL TUGAS INDUSTRI KIMIA ENERGI TERBARUKAN. Disusun Oleh: GRACE ELIZABETH ID 02

Permasalahan. - Kapasitas terpasang 7,10 MW - Daya mampu 4,92 MW - Beban puncak 31,75 MW - Defisit daya listrik 26,83 MW - BPP sebesar Rp. 1.

STUDI PERENCANAAN PLTP 2X2,5MW UNTUK KETENAGALISTRIKAN DI LEMBATA, NUSA TENGGARA TIMUR. Cherian Adi Purnanta

I. PENDAHULUAN. menghasilkan energi listrik. Beberapa pembangkit listrik bertenaga panas

KONVERSI ENERGI PANAS BUMI HASBULLAH, MT

STUDI PRAKIRAAN POTENSI PLTA PUMPED STORAGE DANAU SIDIHONI KABUPATEN SAMOSIR

STUDI PEMBANGUNAN PLTU KAMBANG 2x100 MW DAN PENGARUHNYA TERHADAP TARIF LISTRIK REGIONAL DI SUMATERA BARAT

Tenaga Uap (PLTU). Salah satu jenis pembangkit PLTU yang menjadi. pemerintah untuk mengatasi defisit energi listrik khususnya di Sumatera Utara.

listrik di beberapa lokasi/wilayah.

: PT P T PL P N N (P

Studi Pembangunan PLTGU Senoro (2 x 120 MW) Dan Pengaruhnya Terhadap Tarif Listrik Regional di Sulawesi Tengah

BAB I PENDAHULUAN 1.1 Latar Belakang

OLEH :: INDRA PERMATA KUSUMA

BAB I PENDAHULUAN. Pada akhir Desember 2011, total kapasitas terpasang pembangkit listrik di

Oleh: Bayu Permana Indra

STUDI PEMBANGUNAN PLTU TANAH GROGOT 2X7 MW DI KABUPATEN PASER KALIMANTAN TIMUR DAN PENGARUH TERHADAP TARIF LISTRIK REGIONAL KALIMANTAN TIMUR

Studi Pembangunan PLTU 2x60 MW di Kabupaten Pulang Pisau berkaitan dengan Krisis Energi di Kalimantan Tengah

STUDI PEMBANGUNAN PLTP GUCI 1 X 55 MW JAWA TENGAH BERDASARKAN ASPEK TEKNIS, EKONOMI, DAN LINGKUNGAN.

Tabel 3.1 Jumlah Pelanggan, dan Listrik Terjual di Propinsi Jawa Tengah Tahun

Nur Rosyalinda Hidayati ( ) Ir. Syariffudin Mahmudsyah, M. Eng Ir. Teguh Yuwono

BAB I PENDAHULUAN 1.1. Latar Belakang

STRUKTUR HARGA PLTMH. Gery Baldi, Hasan Maksum, Charles Lambok, Hari Soekarno

KOMPONEN PENENTU HARGA JUAL TENAGA LISTRIK DARI PEMBANGKIT LISTRIK TENAGA UAP BATUBARA SKALA KECIL (PLTU B-SK) Hasan Maksum dan Abdul Rivai

BAB IV METODOLOGI PENELITIAN. Dari studi kasus penelitian manajemen terintegrasi, sumber energi di

STUDI PENGARUH PEMBANGUNAN PLTP RAWA DANO 110 MW TERHADAP TARIF LISTRIK REGIONAL BANTEN

SUMBER DAYA PANAS BUMI: ENERGI ANDALAN YANG MASIH TERTINGGALKAN

Oleh : Pressa Perdana S.S Dosen Pembimbing Ir. Syarifuddin Mahmudsyah, M.Eng - Ir. Teguh Yuwonoi -

BAB II LANDASAN TEORI

1. PENDAHULUAN PROSPEK PEMBANGKIT LISTRIK DAUR KOMBINASI GAS UNTUK MENDUKUNG DIVERSIFIKASI ENERGI

STUDI PEMANFAATAN KOTORAN SAPI UNTUK GENSET LISTRIK BIOGAS, PENERANGAN DAN MEMASAK MENUJU DESA NONGKOJAJAR (KECAMATAN TUTUR) MANDIRI ENERGI.

Energi Geothermal Digalakkan Kesejahteraan Masyarakat Terealisasikan Karya Ini Disusun untuk Mengikuti Lomba Esai

Tahap II Proyeksi Peningkatan Rasio Elektrifikasi 80%

BAB I PENDAHULUAN. Latar Belakang

Studi Pembangunan PLTU Sumbawa Barat 2x7 MW Untuk Memenuhi Kebutuhan Energi Listrik Di Pulau Sumbawa Nusa Tenggara Barat

Special Submission: PENGHEMATAN ENERGI MELALUI PEMANFAATAN GAS BUANG DENGAN TEKNOLOGI WASTE HEAT RECOVERY POWER GENERATION (WHRPG)

Keekonomian Pengembangan PLTP Skala Kecil

STUDI PENGARUH PEMBANGUNAN PLTP PATUHA 3X60 MW KEC.RANCABALI KAB

STUDI PENGARUH PEMBANGUNAN PEMBANGKIT LISTRIK TENAGA PANAS BUMI (PLTP) 50 MW DI CISOLOK KABUPATEN SUKABUMI TERHADAP TARIF LISTRIK REGIONAL JAWA BARAT

ANALISIS PEMBANGUNAN PLTU MADURA KAPASITAS 2 X 200 MW SEBAGAI PROGRAM MW PT. PLN BAGI PEMENUHAN KEBUTUHAN LISTRIK DI PULAU MADURA

PEMILIHAN ALTERNATIF POTENSI SUMBER DAYA AIR DI WILAYAH DAS BRANTAS UNTUK DIKEMBANGKAN MENJADI PEMBANGKIT LISTRIK TENAGA AIR (PLTA)

GEOTHERMAL SEBAGAI ENERGI ALTERNATIF

PEMBANGUNAN PLTU SKALA KECIL TERSEBAR 14 MW PROGRAM PT.PLN UNTUK MENGATASI KRISIS

SEMINAR ELEKTRIFIKASI MASA DEPAN DI INDONESIA. Dr. Setiyono Depok, 26 Januari 2015

STUDI PEMBANGUNAN PLTA KOLAKA 2 X 1000 KW UNTUK MEMENUHI KEBUTUHAN LISTRIK DI KABUPATEN KOLAKA SULAWESI TENGGARA

BAB I PENDAHULUAN 1.1. Latar Belakang

Studi Perencanaan Pembangunan PLTU Batubara Asam Asam650 MW 10 Unit DalamRangkaInterkoneksi Kalimantan - Jawa. OLEH : Gilang Velano

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang

PENGARUH TEMPERATUR LINGKUNGAN TERHADAP EFISIENSI TURBIN PEMBANGKIT LISTRIK TENAGA PANAS BUMI (PLTP)

STUDI KELAYAKAN PEMBANGUNAN PEMBANGKIT LISTRIK TENAGA PANAS BUMI (PLTPB) DI BENGKULU TUGAS AKHIR. Disusun Oleh : YUSUF SHOLEHUDDIN NIM :

BAB 1 PENDAHULUAN. Indonesia pun kena dampaknya. Cadangan bahan tambang yang ada di Indonesia

PRINSIP KONSERVASI ENERGI PADA TEKNOLOGI KONVERSI ENERGI. Ir. Parlindungan Marpaung HIMPUNAN AHLI KONSERVASI ENERGI

Firdauz Riyanda Jurusan Teknik Elektro-FTI, Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih-Sukolilo, Surabaya-60111

BAB I PENDAHULUAN I.1

BAB I PENDAHULUAN Latar Belakang Masalah. Di era yang serba modern seperti saat ini, energi merupakan salah satu hal penting

BAB I PENDAHULUAN 1.1. Latar Belakang Energi merupakan kebutuhan mutlak yang diperlukan dalam kehidupan manusia, serta ketersediaannya memberikan

BAB I PENDAHULUAN. Demikian juga halnya dengan PT. Semen Padang. PT. Semen Padang memerlukan

STUDI PERENCANAAN PEMBANGUNAN PLTP IJEN BAERKAITAN DENGAN TARIF LISTRIK REGIONAL JAWA TIMUR

PERBANDINGAN METODE GABUNGAN DAN METODE KECENDERUNGAN (REGRESI LINIER) UNTUK PRAKIRAAN KEBUTUHAN ENERGI LISTRIK WILAYAH SUMATERA UTARA

STUDI PENGARUH PEMBANGUNAN PEMBANGKIT LISTRIK TENAGA PANAS BUMI (PLTP) 50 MW DI CISOLOK KABUPATEN SUKABUMI TERHADAP TARIF LISTRIK REGIONAL JAWA BARAT

BAB IV HASIL ANALISA DAN PEMBAHASAN. 4.1 Pembangkit Listrik Tenaga Panas Bumi Single Flash System

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang. Air merupakan sumber kehidupan bagi manusia. Kita tidak dapat dipisahkan dari

BAB III APLIKASI TERMODINAMIKA PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI

OPTIMALISASI PEMBANGKIT LISTRIK SIKLUS BINER DENGAN MEMPERHATIKAN FLUIDA KERJA YANG DIGUNAKAN

Oleh : Tinton Harjono. Dosen Pembimbing Ir. Syariffuddin Mahmudsyah, M. Eng Ir. Teguh Yuwono

BAB I PENDAHULUAN I.1

INOVASI PEMANFAATAN BRINE UNTUK PENGERINGAN HASIL PERTANIAN. PT Pertamina Geothermal Energi Area Lahendong

PENGARUH REKUPERATOR TERHADAP PERFORMA DARI PEMBANGKIT LISTRIK SIKLUS BINER

BAB I PENDAHULUAN. 1.1 Latar Belakang. Indonesia merupakan Negara yang memiliki sumber panas bumi yang sangat

STUDI PEMBANGUNAN PLTU TAKALAR 300 MW DI SULAWESI SELATAN DITINJAU DARI ASPEK TEKNIS, EKONOMI DAN LINGKUNGAN.

BAB I PENDAHULUAN. BAB I Pendahuluan

BAB I PENDAHULUAN. mendirikan beberapa pembangkit listrik, terutama pembangkit listrik dengan

BAB 1 PENDAHULUAN. Energi listrik merupakan salah satu faktor yang sangat penting dalam

BAB I PENDAHULUAN 1.1. Latar Belakang

Efisiensi PLTU batubara

STUDI PRAKIRAAN KEBUTUHAN ENERGI LISTRIK TAHUN WILAYAH KOTA PADANG SIDIMPUAN DENGAN METODE GABUNGAN

2017, No BAB I KETENTUAN UMUM Pasal 1 Dalam Peraturan Pemerintah ini yang dimaksud dengan: 1. Panas Bumi adalah sumber energi panas yang terkand

PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 7 TAHUN 2017 TENTANG PANAS BUMI UNTUK PEMANFAATAN TIDAK LANGSUNG DENGAN RAHMAT TUHAN YANG MAHA ESA

BAB I PENDAHULUAN Latar Belakang

Studi Potensi Pemanfaatan Biogas Sebagai Pembangkit Energi Listrik di Dusun Kaliurang Timur, Kelurahan Hargobinangun, Pakem, Sleman, Yogyakarta

PEMBANGKIT LISTRIK TENAGA PANAS LAUT BAB I PENDAHULUAN

BAB I PENDAHULUAN. Universitas Sumatera Utara

ANALISIS DAMPAK KENAIKAN HARGA MINYAK MENTAH DAN BATUBARA TERHADAP SISTEM PEMBANGKIT DI INDONESIA

Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure

BAB I PENDAHULUAN 1.1 Latar Belakang

STUDI PEMBANGUNAN PLTP RANTAU DADAP 2X110 MW, SUMATERA SELATAN DAN PENGARUHNYA TERHADAP TARIF LISTRIK REGIONAL SUMATERA SELATAN

BAB IV HASIL DAN ANALISIS

STUDI PADA PENGARUH FWH7 TERHADAP EFISIENSI DAN BIAYA KONSUMSI BAHAN BAKAR PLTU DENGAN PEMODELAN GATECYCLE

STUDI KOORDINASI FUSE

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU)

BAB III KERANGKA BERPIKIR, KONSEP DAN HIPOTESIS. energi (PLTBm) dengan pengolahan proses pemisahan. Selanjutnya subsistem

Transkripsi:

STUDI PRAKIRAAN POTENSI PEMBANGKIT LISTRIK PANAS BUMI DI PUSUK BUHIT KELURAHAN SIOGUNG- OGUNG KABUPATEN SAMOSIR Handika Roberto Nainggolan [1], Eddy Warman [2] Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro Fakultas Teknik Universitas Sumatera Utara Jl. Almamater, Kampus USU Medan 20155 INDONESIA email: handikarobertonainggolan@gmail.com Abstrak Sumber energi Geothermal atau panas bumi adalah salah satu kekayaan sumber daya mineral yang belum banyak dimanfaatkan. Pembangkit Listrik Panas Bumi (PLTP) merupakan solusi kebutuhan Energi Baru Terbarukan (EBT) untuk mengatasi kebutuhan energi dan ketergantungan terhadap energi tak terbaharukan.t ulisan ini membahas tentang prakiraan potensi panas bumi sebagai bahan bakar PLTP pada daerah Pusuk Buhit Kabupaten Samosir. Dengan parameter yang akan dianalisa antara lain adalah aspek teknis, aspek ekonomis dan aspek lingkungan. Hal ini dikarenakan di bumi Indonesia terkandung potensi energi panas bumi yang sangat besar.salah satu sumber panas bumi yang berpotensi besar tetapi belum dieksploitasi adalah yang ada di Pusuk Buhit Kabupaten Samosir Sumatera Utara. Daerah ini memiliki prakiraan potensi yang terduga dengan daya sebesar 54,6 MWe dan jumlah pembangkitan energi listrik sebesar 210.240.000 kwh per tahun.sehingga diharapkan dapat mengatasi krisis energi listrik yang terjadi saat ini di Sumatera Utara. Kata Kunci : PLTP, EBT, Daya 1. Pendahuluan Energi panas bumi (Geothermal) merupakan sumber energi terbarukan berupa energi thermal (panas) yang dihasilkan dan disimpan di dalam int i bumi. Saat ini energi panas bumi mulai menjadi perhatian dunia..dengan sejumlah penduduk dan sejumlah aktivitas yang dilakukan di Sumatera Utara khususnya Kabupaten Samosir maka tentunya membutuhkan suatu penyediaan energi listrik yang berkualitas dan kont inu karena menyangkut pelayanan dan aktivitas industri, sekolah, perkantoran dan masyarakat.namun kit a ketahui kondisi kelistrikan di Sumatera Utara saat ini mengalami defisit energi listrik.banyak unit - unit pembangkit yang sudah tua dan tidak mampu beroperasi dengan maksimal selain itu pembangunan pembangkit baru yang sulit perizinannya dan perkembangan beban yang begitu pesat.dengan adanya kondisi tersebut diatas maka ditunt ut suatu sistem kelistrikan yang mempunyai keandalan dan kont inuitas yang tinggi dalam penyediaan dan penyaluran daya listrik. Untuk menjaga keandalan dan kont inuitas kelistrikan yang baik, maka dengan perencanaan Pembangkit Listrik Tenaga Panas Bumi di Pusuk Buhit Kabupaten Samosir diharapkan dapat memenuhi kebutuhan energi listrik di Provinsi Sumatera Utara mengingat Kebijaksanaan pemerintah dalam diversifikasi dan konservasi energi, menjadi suatu alasan unt uk melakukan studi Ketenagalistrikan tentang prakiraan potensi di Pusuk Buhit Kabupaten Samosir, Provinsi Sumatera Utara. 2. Studi Pustaka Panas bumi didefenisikan sebagai panas yang berasal dari dalam bumi.sedangkan energi panas bumi adalah energi panas yang tersimpan dalam batuan di bawah permukaan bumi dan fluida yang terkandung didalamnya.panas bumi menghasilkan energi yang bersih dan berkesinambungan atau dapat diperbarui. Adanya sumber daya panas bumi pada suatu daerah dapat diketahui dari gejala /aktifitas yang dapat ditemukan pada permukaan bumi. Sepert i adanya semburan uap panas dan mata air panas yang dapat terjadi apabila terdapat komponen penyusun panas bumi sebagai berikut [1]: 1. Adanya sumber magma 2. Adanya sumber air yang cukup, yang berada dakat sumber magma 3. Terdapat batuan berpori yang menyimpan sumber uap dan air panas 4. Terjadi gejala tektonik yang membentuk rekahan batuan di perut bumi yang merupakan jalan bagi uap panas bergerak menuju permukaan bumi 5. tercapainya suhu > 2000º C pada reservoir panas bumi. 13 copyright@ DTE FT USU

2.1.Pembangkit Listrik Tenaga Panas Bumi (PLTP) Pembangkit Listrik Panas Bumi (PLT P) pada prinsipnya sama seperti Pembangkit Listrik Tenaga Uap (PLT U), hanya pada PLT U, uap dibuat di permukaan menggunakan boiler, sedangkan pada PLT P, uap berasal langsung dari perut bumi [2]. Uap panas bumi didapatkan dari suatu kant ong uap di perut bumi.tepatnya diatas lapisan batuan yang keras diatas magma dan mendapatkkan air dari lapisan humus dibawah hutan penahan air hujan. Pengeboran dilakukan diatas permukaan bumi kantong uap tersebut, hingga uap dalam akan menyembur keluar. Semburan uap dialirkan ke turbin penggerak generator, disini listrik akan terbangkit kan. Setelah menggerakkan turbin, uap akan diembunkan dalam kondensor menjadi air dan disunt ikkan kembali kedalam perut bumi menuju kantong uap dapat dilihat pada Gambar 1[3]. Gambar 1.Skema PLTU dan PLTP 2.2. Sistem Kerja PLT P Masalah yang paling pent ing dan sangat mendasar dalam merencanakan pembangkit listrik tenaga panas bumi adalah bagaimana mengubah secara efisien energi panas bumi dengan kandungan kalor yang rendah menjadi energi listrik. Ada tiga macam teknologi pembangkit listrik panas bumi yaitu dry steam, flash steam, dan binary cycle. 2.2.1.Dry Steam Power Plants Pembangkit sistem dry steam mengambil sumber uap panas dari bawah permukaan [3].Pembangkit jenis ini memanfaatkan reservoir panas bumi berupa uap dengan suhu lebih besar dari 370 ºC.Sistem ini dipakai jika fluida yang dikeluarkan melalui sumur produksi berupa dominasi uap. Uap tersebut yang langsung dimanfaatkan unt uk memutar turbin dan kemudian turbin akan mengubah energi panas bumi menjadi energi gerak yang akan memutar generator untuk menghasilkan energi listrik. 2.2.2.Flash Steam Power Plants Pembangkit jeni ini merupakan jenis yang paling umum digunakan.pembangkit jenis ini memanfaatkan reservoir panas bumi yang berisi air dengan temperat ur antara 170 370 º C [3]. Air yang sangat panas ini dialirkan ke atas melalui pipa sumur produksi dengan tekanannya sendiri. Karena mengalir keatas, tekanannya menurun dan beberapa bagian dari air menjadi uap. Uap ini kemudian dipisahkan dari air dan dialirkan unt uk memutar turbin unt uk mengaktifkan generator yang kemudian menghasilkan energi listrik. 2.2.3. Binary Cycle Power Plants Pada sistem Binary Cycle Power Plants air panas yang berasal dari sumur produksi tidak pernah menyentuh turbin.pembangkit jenis ini memanfaatkan reservoir panas bumi yang berisi air dengan temperat ur antara 150 205 º C [3]. Air panas bumi digunakan unt uk memanaskan apa yang disebut fluida kerja yang biasanya senyawa organik (isobutana ) pada heat exchanger. Fluida kerja kemudian menjadi panas dan menghasilkan uap.uap yang dihasilkan di heat exchanger tadi lalu dialirkan unt uk memutar turbin dan selanjutnya menggerakkan generator untuk menghasilkan sumber daya listrik. 3. Metode Penelitian Penelitian ini dilakukan dengan cara mengumpulkan data pot ensi panas bumi milik PT Optima Nusantara Energi. Melalui data potensi energi panas bumi dapat dihitung potensi cadangan panas dan potensi listrik yang dapat dibangkit kan unt uk Pembangkit Listrik Panas Bumi (PLT P). Metode perhitungan yang digunakan adalah metode perhitungan biaya pembangkit an tahunan, terdiri dari tiga komponen biaya, yaitu : biaya investasi modal (capital cost), biaya bahan bakar (fuel cost), serta biaya operasi dan perawatan (O & M cost) dapat dihitung dengan Persamaan 1 [1]. TC= CC + FC + O&M (1) TC =Biaya tot al CC = Biaya modal FC = Biaya bahan bakar OM = Biaya operasional dan perawatan 14 copyright@ DTE FT USU

3.1.Biaya Modal Biaya investasi pembangkit listrik yang dipengaruhi oleh tingkat suku bunga dan umur ekonomis pembangkit listrik itu sendiri disebut biaya modal (capital cost) [1]. Besar biaya modal dapat dihitung melalui Persamaan 2. CC = (2) Capital Recovery Factor (CRF) dapat dihitung melalui Persamaan 3. CRF = ( ) ( ) CC = Capital Cost CRF = Capital Recovery Factor (desimal) I = Suku bunga (%) N = Umur pembangkit (tahun) (3) 3.2. Biaya Operasi dan Perawatan Biaya operasional dan perawatan adalah semua biaya yang digunakan selama pembangkit beroperasi. Biaya operasional dan perawatan meliputi biaya tetap (fixed cost) yaitu biaya yang tidak berhubungan terhadap besar tenaga listrik yang dihasilkan oleh pembangkit tenaga. Biaya tidak tetap (variable cost) adalah biaya yang berkaitan dengan pengeluaran untuk alat-alat dan perawatan yang dipakai dalam periode pendek dan tergantung pada besar tenaga listrik yang dihasilkan [1]. 3.3. Biaya Bahan Bakar Biaya bahan bakar ini merupakan biaya yang hanya dikeluarkan apabila pusat pembangkit dioperasikan unt uk membangkitkan tenaga listrik. Biaya bahan bakar ini merupakan biaya pembelian Uap Panas Bumi sebagai bahan bakar utama Pembangkit Listrik T enaga Panas Bumi Besar biaya bahan bakar dapat dihitung melalui Persamaan 4: = (4) Fc = Biaya bahan bakar C = Konsumsi bahan bakar P = Harga bahan bakar 3.4. Biaya Operasi dan Pemeliharaan Biaya operasional adalah semua biaya yang digunakan selama pembangkit beroperasi. Biaya operasional dan perawatan meliputi biaya tetap yaitu biaya yang tidak berhubungan terhadap besar tenaga listrik yang dihasilkan oleh suatu pembangkit tenaga listrik.biaya tidak tetap adalah biaya yang berkaitan dengan pengeluaran unt uk alat alat dan perawatan yang dipakai dalam periode pendek dan tergantung pada besar tenaga listrik yang dihasilkan [1]. Besar biaya operasi dan perawatan dapat dihitung melalui Persamaan 5: = & OM = Operasi dan Perawatan CF = Faktor kapasitas T = Waktu (Jam/tahun) C = Kapasitas Pembangkit an (5) 3.5. Analisa Investasi Pembangkit Analisis Payback Period (PBP) pada dasarnya bertujuan mengetahui seberapa lama waktu yang dibutuhkan untuk mengembalikan biaya investasi / modal. Lamanya periode pengembalian (k) saat kondisi pulang pokok/modal. Payback Period dapat dihitung melalui Persamaan 6 [4]. ( ) = (6) Jika : a. PBP umur investasi, maka investasi layak b. PBP umur investasi, maka investasi tidak layak. 4. Hasil dan Pembahasan 4.1. Analisa Teknik Adapun potensi energi panas bumi di Pusuk Buhit dapat dilihat pada Tabel 1[5]. Tabel 1. Potensi Panas Bumi Pusuk Buhit Simbol Keterangan Banyaknya A Area (km²) 10,4 T Suhu Bawah P ermukaan 240 ( ºC) Suhut Cut Off dalam (ºC) 180 H Kedalaman (m) 750 Pr Kepadatan batuan (kg/m³) 2500 Cpr Kapasitas batuan panas 1000 (J.kg.m³) Sifat Menyerap 0,1 Faktor Kapasitas 0,8 Recovery Factor 0,30 Conversion Factor 0,16 Masa operasi (tahun) 30 15 copyright@ DTE FT USU

Perhitungan potensi energi panas bumi berdasarkan perhitungan Stored Heat Calculation Method sebagai berikut [5]: Pote nsi Cadangan Pan as (J) = 10 ( ) ( ) ( ) = 10 750 2500 1000 240 10,4 = 4,68 10 Pote nsi Listri k (MWe) = 10 10 ( ) Pr ( ) ( ) ( ) ( ( )) 10 ( ) = 10 10 ( ) 2,5 10 ( ) 10 ( ) ( ) ( ( )) 10 0,035 10 = 10 10 2500 10 10,4 (240 180) 10 0,035 10 = 2,5 0,035 10,4 60 = 54,6 Dari data tersebut, PLT P pusuk Buhit direncanakan akan menggunakan 2 unit jenis Generator yang berkapasitas 15 MW, sehingga tot al pembangkit annya 2 x 15 = 30 MW. Sumber panas bumi di Pusuk Buhit adalah sumber uap panas. Sehingga dari data data pada tabel 4.1 dan suhu reservoir sebesar 240 º C [5], maka cocok apabila menggunakan jenis teknologi Flushed Steam System sebagai pembangkit an energi listrik dapat dilihat pada Gambar 2. Tabel 2. Biaya Pembangkitan PLTP Pusuk Buhit Perhitungan Suku Bunga 6% 9% Biaya Pembangunan (US$/kW) 3800 3800 Umur operasi (tahun) 30 30 Kapasitas (MW) 30 30 Biaya bahan bakar (US$) 0.0225 0.0225 Biaya O&M (US$ / kw) 0.00342 0.00342 Biaya Modal (US$/kWh) 0.0390 0.0525 Biaya pembangkitan (US$/kW) 0.0649 0.0784 Investasi (juta US$) 114 114 4.2.2. Pendapatan Pert ahun Jumlah pendapatan pertahun dapat dihitung dari kwh output dan selisih harga pembelian (HP) oleh PLN dan biaya pembangkit an (BP) atau dengan kata lain Pendapatan Produksi (PP) [6]. a. Untuk suku bunga 6%: Pendapatan Produksi (PP) = 0,0531/kW Cash in Flow (CIF) = US$ 11,16 x 10 6 b. Untuk suku bunga 9%: Pendapatan Pert ahun (PP) = 0,0396/kW Cash in Flow (CIF) = US$ 8,32 x 10 6 4.3. Analisa PaybackPeriod PaybackPeriod adalah lama waktu yang dibutuhkan agar nilai investasi yang diinvestasikan dapat kembali dengan utuh. a. Untuk suku bunga 6% : 114 10 = 11,16 10 1 = 10,21 b. Untuk suku bunga 9% : 114 10 = 1 = 13,70 8,32 10 Gambar 2. Sketsa PLTP Flushed Steam System 4.2. Analisa Ekonomi 4.2.1. Analisa Ekonomi Pembangkit an Adapun tot al biaya pembangkit an energi listrik dari PLT P Pusuk Buhit 2 x 15 MW, dapat dilihat pada Tabel 2. Dari hasil perhitungan Payback Period maka dapat dianalisa bahwa dengan suku bunga 6% maupun 9% proyek layak unt uk dilaksanakan. 4.4. Analisa Dampak Lingkungan Prakiraan dampak pent ing dalam perencanaan Pembangkit Listrik Panas Bumi (PLT P) Pusuk Buhit ini ialah upaya pemant auan lingkungan unt uk kegiatan perencanaan pembangkit. Prakiraan dampak yang akan terjadi akan ditinjau dalam 4 (empat) tahapan: 1. Tahap Persiapan 2. Tahap Kont ruksi 3. Tahap Operasional 4. Tahap Pasca Operasi 16 copyright@ DTE FT USU

Pengelompokan yang baik dan benar dengan memperhatikan perubahan lingkungan dan sumber dampak yang terjadi, akan dapat meredam dan menekan dampak negative yang mungkin terjadi bahkan mungkin dapat merubah berbalik menjadi positif. Secara umum, upaya pengelolaan lingkungan ini adalah pengelolaan rencana kegiatan yang akan membuat pengaruh (dampak) terhadap lingkungan, mulai dari tahap kegiatan persiapan, konstruksi dan pasca konstruksi sehingga dampak yang terjadi dapat ditekan seminimal mungkin. 4.4.1. Dampak Positif Dampak positif dari perencanaan PLT P ini adalah: 1. Membantu mengatasi krisis energi listrik yang ada di Sumatera Utara 2. Membuka peluang kerja, pembangunan proyek ini akan banyak membutuhkan pekerja baik pada saat tahap konstruksi maupun pada tahap operasi. 3. Meningkatkan pendapatan pemerintah, dengan dibangunnya PLT P ini maka akan banyak memberi masukan terutama dari sektor pajak. 4. Belerang yang diolah dapat dimanfaatkan juga dapat dijual. 4.4.2. Dampak Negatif Selain dampak positif di atas terdapat dampak negatif yang dapat ditimbulkan dari perencanaan proyek ini antara lain: 1. Belerang yang telah dipisahkan akan menjadi masalah jika dibuang sembarangan misalnya jika dibuang ke Danau Toba maka akan terjadi pencemaran air dimana air Danau Toba merupakan sumber kehidupan oleh masyarakat sekitar sehingga limbah ini harus diolah dan dimanfaatkan. 2. Uap panas bumi yang keluar dari sumur terdiri atas uap air, uap air panas. Penanggulangan dampak ini antara lain: pada alat pemisah dan pembersih, pengot oran pengot oran (belerang) dipisahkan. 3. Meningkatnya kebisingan dan getaran, hal ini dapat diatasi dengan menaruh turbin dalam ruangan tert utup. 4.5. Kendala Operasi pada PLT P 4.5.1. Kendala Operasi Teknis Kendala operasi teknis yang timbul akibat pembangunan proyek ini antara lain: 1. Karena perubahan beban akan menyangkut perubahan peyediaan uap dari perut bumi maka PLT P hanya dapat mengambil beban dasar dalam sistem, dalam art i harus berbeban konstan. 2. Sumber daya mempunyai kandungan panas atau cadangan yang besar sehingga mampu memproduksikan uap unt uk jangka waktu yang lama, yaitu sekitar 25-30 tahun. 3. Masalah pengoperasian, yang harus beroperasi selama 24 jam sepanjang tahun. 4. Gangguan dan kerusakan 5. Perkembangan teknologi pembangkit an 4.5.2. Kendala Operasi Non T eknis Selain kendala teknis diatas terdapat kendala operasi non teknis yang dapat ditimbulkan dari pengoperasian PLT P ini antara lain: 1. Penyediaan suku cadang karena sebagian besar peralatan harus diimpor. 2. Masalah sosial, misal : keengganan dan prot es dari masyarakat 3. Rawan terjadi kecelakaan kerja, hal ini dapat ditanggulangi dengan menerapkan standar K3 yang ketat seperti pembatasan ruang akses bagi yang tidak berwenang. 5. Kesimpulan Kesimpulan dari hasil penelitian ini adalah: 1. Pot ensi energi listrik yang dapat dibangkit kan adalah sebesar 54,6 MWe. 2. Sistem Pembangkit Listrik Panas Bumi yang cocok digunakan berdasarkan temperat urnya yaitu Flushed Steam System. 3. Biaya Pokok Pembangkit an PLT P Pusuk Buhit 2 x 15MW unt uk suku bunga 9% adalah 0,0784 US$/kWh 4. Dari analisis perhitungan kelayakan investasi PLT P 2 x 15 MW, tampak bahwa kombinasi suku bunga, 6% dan 9%, dengan lama pengembalian modal 10,21 dan 13,70 tahun. Maka nilai Payback Periodenya lebih kecil dari umur investasi pembangkit, hal ini berarti investasi unt uk PLTP ini layak. 17 copyright@ DTE FT USU

5. Pembangunan pembangkit panas bumi mendapat prioritas pertama dalam segi biaya operasi dan penggunaan energi yang efisien sehingga PLT P Pusuk Buhit 2 x 15 MW layak unt uk dibangun. 6. Daftar Pustaka [1] Yusufa, Berdik An, Studi pembangunan PLT P Sorik Merapi 55 MW unt uk memenuhi kebutuhan energy listrik di propinsi Sumatera Utara, Skripsi, IT S, 2008. [2] Mulianti, Studi Pengembangan Pembangkit Listrik Tenaga Panas Bumi (PLT P) Atadei 40 MW di Lembata Nusa Tenggara Timur dan Pengaruhnya Terhadap Tarif Listrik Regional, Skripsi IT S, 2010. [3] Saptadji, Nenny, Sekilas tentang panas bumi, Institut Teknologi Bandung, 2013. [4] Giatman, M., Ekonomi Teknik, PT Raja Grafindo Persada, Jakarta, 2006. [5] Laporan Evaluasi Terpadu, Survei Pendahuluan Panas Bumi Daerah Simbolon-Samosir, Provinsi Sumatera Utara oleh PT. Optima Nusantara Energi. Jakarta. [6] Ifandry, Ariono, Analisa Skema Bisnis Pengembangan dan Penentuan Harga Listrik Panas Bumi di Indonesia, Tesis Universitas Indonesia, 2012. 18 copyright@ DTE FT USU