Jurusan Teknik Elektro, Universitas Diponegoro Semarang Jl. Prof. Sudharto, SH, Kampus UNDIP Tembalang, Semarang 50275, Indonesia.

dokumen-dokumen yang mirip
Jurusan Teknik Elektro, Universitas Diponegoro Semarang Jl. Prof. Sudharto, SH, Kampus UNDIP Tembalang, Semarang 50275, Indonesia

OPTIMASI KAPASITAS DG PADA SISTEM DISTRIBUSI UNTUK MENGURANGI RUGI DAYA MENGGUNAKAN ANT COLONY OPTIMIZATION


STUDI ALIRAN DAYA PADA JARINGAN DISTRIBUSI 20 KV YANG TERINTERKONEKSI DENGAN DISTRIBUTED GENERATION (STUDI KASUS: PENYULANG PM.6 GI PEMATANG SIANTAR)

STUDI PENGATURAN TEGANGAN PADA JARINGAN DISTRIBUSI 20 KV YANG TERHUBUNG DENGAN DISTRIBUTED GENERATION (STUDI KASUS: PENYULANG TR 5 GI TARUTUNG)

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print)

ANALISIS HUBUNG SINGKAT 3 FASA PADA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS DENGAN ADANYA PEMASANGAN DISTRIBUTED GENERATION (DG)

Optimisasi Injeksi Daya Aktif dan Reaktif Dalam Penempatan Distributed Generator (DG) Menggunakan Fuzzy - Particle Swarm Optimization (FPSO)

ANALISIS PEHITUNGAN RUGI-RUGI DAYA PADA GARDU INDUK PLTU 2 SUMUT PANGKALAN SUSU DENGAN MENGGUNAKAN PROGRAM SIMULASI ELECTRICAL TRANSIENT ANALYZER

PENENTUAN TITIK INTERKONEKSI DISTRIBUTED GENERATION

Singgih Adhiyatma et al., Analisis Penambahan Distributed Generation (DG) Dengan Metode Backward Forward...

OPTIMASI PENEMPATAN DISTRIBUTED GENERATION PADA IEEE 30 BUS SYSTEM MENGGUNAKAN BEE COLONY ALGORITHM

SIMULASI OPTIMASI DAYA REAKTIF DAN TEGANGAN PADA SISTEM JAMALI 500 kv MENGGUNAKAN METODE PARTICLE SWARM OPTIMIZATION

OPTIMISASI PENEMPATAN RECLOSER UNTUK MEMINIMALISIR NILAI SAIFI DAN SAIDI PADA PENYULANG PDP 04 MENGGUNAKAN PARTICLE SWARM OPTIMIZATION (PSO)

OPTIMASI RATING SVC DAN TCSC UNTUK MENGURANGI RUGI-RUGI DAYA PADA SISTEM 500 kv JAMALI MENGGUNAKAN METODE PARTICLE SWARM OPTIMIZATION (PSO)

Studi Penempatan dan Kapasitas Pembangkit Tersebar terhadap Profil Tegangan dan Rugi Saluran pada Saluran Marapalam

ANALISIS DAMPAK PEMASANGAN DISTIBUTED GENERATION (DG) TERHADAP PROFIL TEGANGAN DAN RUGI-RUGI DAYA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS

Keyword : capacitor, particle swarm optimization, power losses, and voltage

Dynamic Optimal Power Flow dengan kurva biaya pembangkitan tidak mulus menggunakan Particle Swarm Optimization

Rekonfigurasi jaring distribusi untuk meningkatkan indeks keandalan dengan mengurangi rugi daya nyata pada sistem distribusi Surabaya.

EFFISIENSI PENGGUNAAN ENERGI LISTRIK PADA SISTEM INTERKONEKSI 150 kv NANGGROE ACEH DARUSSALAM MENGGUNAKAN DISTRIBUTED GENERATION (DG)

Penempatan Dan Penentuan Kapasitas Optimal Distributed Generator (DG) Menggunakan Artificial Bee Colony (ABC)

SIMULASI OPTIMASI PENEMPATAN KAPASITOR MENGGUNAKAN LOGIKA FUZZY DAN ALGORITMA GENETIKA PADA SISTEM TEGANGAN MENENGAH REGION JAWA BARAT

Penempatan Dan Penentuan Kapasitas Optimal Distributed Generator (DG) Menggunakan Artificial Bee Colony (ABC)

Analisis Aliran Daya Pada Sistem Distribusi Radial 20KV PT. PLN (Persero) Ranting Rasau Jaya

: Distributed Generation, Voltage Profile, Power Losses, Load Flow Analysis, EDSA 2000

Rekonfigurasi jaring distribusi untuk meningkatkan indeks keandalan dengan mengurangi rugi daya nyata pada sistem distribusi Surabaya.

STUDI ALIRAN DAYA PADA SISTEM KELISTRIKAN SUMATERA BAGIAN UTARA (SUMBAGUT) 150 kv DENGAN MENGGUNAKAN SOFTWARE POWERWORLD VERSI 17

SIMULASI OPTIMASI PENEMPATAN KAPASITOR MENGGUNAKAN METODA ALGORITMA KUANTUM PADA SISTEM TEGANGAN MENENGAH REGION JAWA BARAT

ANALISA PERBAIKAN SUSUT TEKNIS DAN SUSUT TEGANGAN PADA PENYULANG KLS 06 DI GI KALISARI DENGAN MENGGUNAKAN SOFTWARE ETAP 7.5.0

Tabarok et al., Optimasi Penempatan Distributed Generation (DG) dan Kapasitor... 35

PENENTUAN SLACK BUS PADA JARINGAN TENAGA LISTRIK SUMBAGUT 150 KV MENGGUNAKAN METODE ARTIFICIAL BEE COLONY

NASKAH PUBLIKASI ANALISIS HUBUNG SINGKAT TIGA PHASE

ANALISIS RUGI DAYA SISTEM DISTRIBUSI DENGAN PENINGKATAN INJEKSI JUMLAH PEMBANGKIT TERSEBAR. Publikasi Jurnal Skripsi

Departemen Teknik Elektro, Universitas Diponegoro Jl. Prof. Sudharto, SH, Kampus UNDIP Tembalang, Semarang 50275, Indonesia

OPTIMASI PENEMPATAN PEMBANGKIT TERDISTRIBUSI PADA IEEE 30 BUS SYSTEM MENGGUNAKAN ALGORITMA GENETIKA

Analisis Rugi Daya Pada Penyulang Bangli Dengan Beroperasinya PLTS Kayubihi

OPTIMASI PENEMPATAN DAN KAPASITAS SVC DENGAN METODE ARTIFICIAL BEE COLONY ALGORITHM

ANALISIS RUGI DAYA AKIBAT PENAMBAHAN PENYULANG BARU GI MASARAN

ANALISIS KOORDINASI RELE PENGAMAN FEEDER WBO04 SISTEM KELISTRIKAN PT. PLN (PERSERO) RAYON WONOSOBO

Analisis Penyambungan Distributed Generation Guna Meminimalkan Rugi-Rugi Daya Menggunakan Metode Particle Swarm Optimization (PSO)

ANALISA PENEMPATAN KAPASITOR BANK UNTUK PERHITUNGAN DROP VOLTAGE PADA FEEDER BATANG 02 TAHUN DENGAN SOFTWARE ETAP 7.0.0

REKONFIGURASI JARINGAN DISTRIBUSI TEGANGAN 20 KV PADA FEEDER PANDEAN LAMPER 5 RAYON SEMARANG TIMUR

BAB I PENDAHULUAN 1.1. Latar Belakang

SINGUDA ENSIKOM VOL. 7 NO. 2/Mei 2014

KARYA ILMIAH ANALISIS HUBUNG SINGKAT LINE TO GROUND

Jurusan Teknik Elektro, Universitas Diponegoro Semarang Jl. Prof. Sudharto, SH, Kampus UNDIP Tembalang, Semarang 50275, Indonesia.

REKONFIGURASI JARINGAN DISTRIBUSI MENGGUNAKAN BINARY PARTICLE SWARM OPTIMIZATION UNTUK MENAIKKAN NILAI INDEKS STABILITAS TEGANGAN

SIMULASI DAN ANALISIS ALIRAN DAYA PADA SISTEM TENAGA LISTRIK MENGGUNAKAN PERANGKAT LUNAK ELECTRICAL TRANSIENT ANALYSER PROGRAM (ETAP) VERSI 4.

1.2 Tujuan Memberikan solusi dalam optimalisasi penempatan dan rating SVC untuk memperbaiki profil tegangan pada Sistem Tenaga Listrik 500 kv Jamali.

BAB III METODOLOGI PENELITIAN

Abstrak. Kata kunci: kualitas daya, kapasitor bank, ETAP 1. Pendahuluan. 2. Kualitas Daya Listrik

PENEMPATAN SVC (STATIC VAR COMPENSATOR ) PADA JARINGAN DISTRIBUSI DENGAN ETAP 7.5.0

PENEMPATAN DG PADA JARINGAN SISTEM DISTRIBUSI UNTUK MENINGKATKAN STABILITAS TEGANGAN

PENGARUH PEMASANGAN DISTRIBUTED GENERATION (DG) TERHADAP RESPON GANGGUAN PADA SISTEM DISTRIBUSI

PUBLIKASI ILMIAH. Disusun sebagai salah satu syarat menyelesaikan Program Studi Strata I pada Jurusan Elektro Fakultas Teknik.

SIMULASI OPTIMASI DAYA REAKTIF DAN TEGANGAN PADA SISTEM JAMALI 500 kv MENGGUNAKAN METODE PARTICLE SWARM OPTIMIZATION

DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN PERNYATAAN PRAKATA DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN

Rekonfigurasi Jaring Distribusi untuk Meminimalkan Kerugian Daya menggunakan Particle Swarm Optimization

ANALISIS KONTINGENSI PADA SISTEM TENAGA LISTRIK DENGAN METODE ALIRAN DAYA

JURNAL TEKNIK ITS Vol. 5, No. 1, (2016) ISSN: ( Print)

BAB I PENDAHULUAN. betapa penting fungsi dan kegunaannya hingga saat ini. Listrik bahkan sudah

STUDI RUGI DAYA SISTEM KELISTRIKAN BALI AKIBAT PERUBAHAN KAPASITAS PEMBANGKITAN DI PESANGGARAN

BAB III METODOLOGI PENELITIAN

ANALISIS PENGARUH PEMASANGAN DISTRIBUTED GENERATION PADA JARINGAN DISTRIBUSI PUSDIKLAT MIGAS CEPU

Gunawan Hadi Prasetiyo, Optimasi Penempatan Recloser pada Penyulang Mayang Area Pelayanan dan Jaringan (APJ) Jember Menggunakan Simplex Method

STUDI PEMASANGAN KAPASITOR BANK UNTUK MEMPERBAIKI FAKTOR DAYA DALAM RANGKA MENEKAN BIAYA OPERASIONAL PADA JARINGAN DISTRIBUSI 20 KV

DESAIN KAPASITAS DISTRIBUTED GENERATION PADA SISTEM DISTRIBUSI RADIAL GUNA MENGURANGI RUGI DAYA DAN RUGI TEGANGAN

BAB I PENDAHULUAN. 1.1 Latar Belakang

1. BAB I PENDAHULUAN

Jurusan Teknik Elektro, Universitas Diponegoro Semarang Jl. Prof. Sudharto, SH, kampus UNDIP Tembalang, Semarang 50275, Indonesia.

PENENTUAN JALUR TERPENDEK PADA APLIKASI OJEK ONLINE GO-JEK DENGAN PROBABILISTIC NEURAL NETWORK (PNN) DAN PARTICLE SWARM OPTIMIZATION (PSO)

STUDI KESTABILAN SISTEM BERDASARKAN PREDIKSI VOLTAGE COLLAPSE PADA SISTEM STANDAR IEEE 14 BUS MENGGUNAKAN MODAL ANALYSIS

Analisis Kestabilan Sistem Daya pada Interkoneksi PT.Ajinomoto Indonesia dan PT.Ajinex Internasional Mojokerto Factory

Analisa Pengaruh Pemasangan Distributed Generation Terhadap Profil Tegangan Pada Penyulang Abang Karangasem

STUDI KOORDINASI FUSE

Yanuarta et al., Rekonfigurasi Jaringan... 6

BAB II DASAR TEORI. Universitas Sumatera Utara

Strategi Interkoneksi Suplai Daya 2 Pembangkit di PT Ajinomoto Indonesia, Mojokerto Factory

EVALUASI LOSSES DAYA PADA SISTEM TRANSMISI 150 KV SUMATERA BARAT

PENENTUAN TARGET INDEKS KEANDALAN, DROP TEGANGAN, DAN RUGI DAYA PADA FEEDER SRL07 GI SRONDOL MENGGUNAKAN ETAP 7.5.0

Penempatan Dan Penentuan Kapasitas Optimal Distributed Generator (DG) Menggunakan Artificial Bee Colony (ABC)

PENEMPATAN FILTER PASIF PARALEL UNTUK MEREDUKSI HARMONISA TEGANGAN PADA JARINGAN DISTRIBUSI MENGGUNAKAN METODE ALGORITMA GENETIKA

ANALISA PENGARUH PENAMBAHAN JARINGAN BARU DARI GARDU INDUK MASARAN KE PT. SINAR AGUNG SELALU SUKSES TERHADAP SUSUT DAYA

BAB I PENDAHULUAN. 1.1 Latar Belakang

Jurnal Media Elektro Vol. V No. 2 ISSN: ANALISIS RUGI-RUGI DAYA JARINGAN DISTRIBUSI 20 kv PADA SISTEM PLN KOTA KUPANG

BAB IV ANALISA DAN PEMBAHASAN

Analisis Dan Pemodalan Static Var Compensator (SVC) Untuk Menaikan Profil Tegangan Pada Outgoing Gardu Induk Probolinggo

Perancangan Filter Harmonisa Pasif untuk Sistem Distribusi Radial Tidak Seimbang

Analisis Rugi Daya Pada Jaringan Distribusi Penyulang Barata Jaya Area Surabaya Selatan Menggunakan Software Etap 12.6

Prosiding SENTIA 2016 Politeknik Negeri Malang Volume 8 ISSN:

Algoritma Aliran Daya untuk Sistem Distribusi Radial dengan Beban Sensitif Tegangan

STUDI PENGARUH PENAMBAHAN KAPASITOR SHUNT PADA SISTEM KELISTRIKAN 150 KV LAMPUNG UTARA 1)

Analisis Kestabilan Sistem Daya pada Interkoneksi PT.Ajinomoto Indonesia dan PT.Ajinex Internasional Mojokerto Factory

OPTIMASI PENEMPATAN KAPASITOR PADA SALURAN DISTRIBUSI 20 kv DENGAN MENGGUNAKAN METODE KOMBINASI FUZZY DAN ALGORITMA GENETIKA

STUDI PENGARUH PEMASANGAN STATIC VAR COMPENSATOR TERHADAP PROFIL TEGANGAN PADA PENYULANG NEUHEN

ANALISIS KETIDAKSEIMBANGAN BEBAN TRAFO 1 GI SRONDOL TERHADAP RUGI-RUGI AKIBAT ARUS NETRAL DAN SUHU TRAFO MENGGUNAKAN ETAP

OPTIMISASI PENEMPATAN RECLOSER PADA SISTEM DISTRIBUSI JARINGAN RADIAL PENYULANG SRL-06 MENGGUNAKAN SIMULATED ANNEALING METHOD

PENGARUH DISTRIBUTED GENERATION (DG) TERHADAP IDENTIFIKASI LOKASI GANGGUAN ANTAR FASA PADA JARINGAN TEGANGAN MENENGAH (JTM)

Kata Kunci : Pembangkit Tersebar, Rugi Daya, Profil Tegangan, Faktor Sensitivitas Rugi-Rugi, Artificial Bee Colony. ABSTRACT

Transkripsi:

OPTIMASI KAPASITAS PEMBANGKIT TERSEBAR UNTUK MENGURANGI RUGI DAYA AKTIF MENGGUNAKAN PARTICLE SWARM OPTIMIZATION DAN PENGARUHNYA TERHADAP INDEKS KESTABILAN TEGANGAN Febriansyah *), Hermawan, and Susatyo Handoko Jurusan Teknik Elektro, Universitas Diponegoro Semarang Jl. Prof. Sudharto, SH, Kampus UNDIP Tembalang, Semarang 50275, Indonesia *) E-mail: febriansyahst@yahoo.com Abstrak Pembangkit tersebar yang terhubung di jaringan distribusi sedang dikembangkan untuk memenuhi kebutuhan energi listrik. Pemasangan pembangkit tersebut pada sistem eksisting memiliki efek terhadap kestabilan sistem, keandalan sistem, kualitas daya, dan sistem proteksi. Pada tugas akhir ini, optimasi kapasitas pembangkit tersebar dilakukan dengan menggunakan metode particle swarm optimization pada lokasi yang sudah ditentukan. Optimasi tersebut dilakukan untuk meminimalisir rugi daya aktif dan pengaruhnya terhadap indeks kestabilan tegangan. Data yang digunakan adalah data jaringan distribusi 69 bus dan jaringan distribusi Mrica05 Banjarnegara. Hasil simulasi menunjukan bahwa optimasi kapasitas pembangkit tersebar pada jaringan distribusi 69 bus dapat mengurangi rugi daya aktif sebesar 215,19 kw dengan kapasitas optimum masing-masing ialah sebesar 548,08 kw, 584,75 kw dan 1200 kw. Pada, rugi daya aktif dapat dikurangi sebesar 28,97 kw dengan kapasitas optimum pada kapasitas maksimal dari rating pembangkit tersebar yaitu, 500 kw, 250 kw, 320 kw, dan 500 kw. Berdasarkan hasil simulasi, selain dapat mengurangi rugi daya aktif, pembangkit tersebar dapat memperbaiki indeks kestabilan tegangan sistem. Kata kunci : Pembangkit tersebar, particle swarm optimization, rugi daya aktif, indeks kestabilan tegangan Abstract Distributed generation that connected to distribution network is being developed to fulfill the need of electrical energy. The installation of the distributed generation on the existing system has effects to the stability, reliability, power quality, and system protection. In this final assigment, optimization of distributed generation capacity is done by using particle swarm optimization methods on the specified locations. Optimization is caried out to minimize active power loss and the effect on voltage stability index.this simulation uses 69 bus and Mrica05 Banjarnegara distribution network data. The result shows that the optimum of distributed generation in 69 bus distribution network can reduce active power loss by 215,19 kw with the optimum capacity of each DG 548.08 kw, 584.75 kw, and 1200 kw. On a Mrica05 distribution network, active power loss can reduced by 28,97 kw with optimum capacity on the maximum capacity from distributed generation rates are 500 kw, 250 kw, 320 kw, and 500 kw. Based on simulation result, in addition to reduce active power loss, distributed generation can improve the voltage stability index system. Keyword: Particle swarm optimization, distributed generation, active power loss, voltage stability index 1. Pendahuluan Permintaan kebutuhan tenaga listrik semakin meningkat pesat seiring meningkatnya pertumbuhan ekonomi. Ekonomi yang tumbuh mendorong percepatan industrialisasi dan meningkatkan kebutuhan penduduk untuk menggunakan peralatan yang membutuhkan lebih banyak energi listrik. Oleh karena itu, penyediaan dan kualitas energi listrik perlu ditingkatkan. Berdasarkan dengan RUPTL (Rencana Usaha Penyediaaan Tenaga Listrik) 2011-2020, pengembangan kapasitas pembangkit tenaga listrik diarahkan untuk memenuhi pertumbuhan beban juga untuk meningkatkan keandalan pasokan yang diinginkan dengan mengutamakan pemanfaatan sumber energi setempat, terutama energi terbarukan seperti Pembangkit Listrik Tenaga Mikro Hidro.

TRANSIENT, VOL.2, NO. 3, SEPTEMBER 2013, ISSN: 2302-9927, 811 Pembangkit skala kecil yang digunakan untuk menyuplai daya ke sistem distribusi sedang dikembangkan sesuai dengan perkembangan jaringan listrik existing PLN. Pembangkit tersebut dikenal dengan istilah Distributed Generation (DG)/Pembangkit Tersebar. Penambahan kapasitas pemasangan pembangkit tersebar pada sistem distribusi exsisting PLN 20 kv memiliki efek terhadap kestabilan sistem, keandalan sistem, kualitas daya, dan sistem proteksi. normal maupun saat terjadinya gangguan [6]. Pada sistem distribusi radial, Chakravorty dan Das [3] memperkenalkan indeks kestabilan tegangan (voltage stability index) pada semua titik dari sistem. Persamaan untuk menentukan nilai indeks kestabilan tegangan didasarkan oleh solusi aliran daya pada sistem distribusi berdasarkan Gambar berikut: Pada penelitian sebelumnya yang telah dilakukan ialah membahas tentang pengaruh pembangkit tersebar terhadap indeks kestabilan tegangan pada sistem jaringan listrik eksisting 20 kv, studi kasus wilayah Banjarnegara [8] dan penelitian tentang optimasi kapasitas dan penempatan pembangkit tersebar untuk mengurangi rugi daya dan kestabilan tegangan dengan metode PSO [13]. Pada Tugas Akhir ini, optimasi kapasitas pembangkit tersebar dilakukan dengan menggunakan metode Particle Swarm Optimization untuk mengurangi rugi daya aktif dan menjaga kestabilan tegangan. Parameter- parameter yang digunakan untuk fungsi objektif pada PSO adalah rugi-rugi daya aktif dan kestabilan tegangan tiap bus pada sistem distribusi. Studi kasus yang digunakan adalah sistem distribusi PT.PLN, Gardu Induk Mrica, Penyulang Mrica 05 dengan pengujian IEEE 69 bus test system [3,13]. 2 Metode 2.1 Metode Aliran Daya Newton Raphson Algoritma perhitungan aliran daya dengan metode newton-raphson adalah sebagai berikut: 1. Membuat matriks admitansi bus Y bus dari data saluran yang ada. k 2. Memulai iterasi k = 0 dengan menentukan nilai P i dan Q k i pada bus beban, dan P k i pada bus kontrol kemudian mengasumsikan nilai V k i dan δ k i pada semua bus beban dan bus kontrol. k k 3. Menghitung nilai P i dan Q i pada bus beban dan P i k pada bus control. k k 4. Menentukan apakah nilai P i ε dan Q i ε terpenuhi. Jika terpenuhi, maka perhitungan dilanjutkan dengan mencari nilai P k i dan Q k i pada bus ayun serta Q k i pada bus kontrol. Jika tidak terpenuhi, hitung elemen matriks Jacobian agar didapatkan nilai δ k dan V k. k+1 k+1 k+1 5. Menghitung nilai δ i, V i, P i, dan k+1 Q i untuk memulai iterasi k + 1 hingga nilai k k P i ε dan Q i ε terpenuhi. 2.2 Indeks Kestabilan Tegangan Kestabilan tegangan adalah kemampuan sistem untuk menjaga nilai tegangan pada semua bus saat kondisi tidak Gambar 1. Sistem dua bus sederhana [3] Dari Gambar, didapatkan; SI m2 = V m1 4 4.0 P m2 x jj Q m2 r jj 2 4.0 P m2 r jj + Q m2 x(jj) V m1 2 (1) Dengan SI(m2) adalah Indeks Kestabilan Tegangan (VSI) pada titik m2 = 2, 3,, NB jj = nomor saluran, m1 = ujung sisi kirim, m2 = ujung sisi terima, r jj = resistansi pada saluran jj, x jj = reaktansi pada saluran jj, V m1 = tegangan pada titik m1, P m2 = total daya aktif beban pada titik m2 dan setelahnya, Q m2 = total daya reaktif beban pada titik m2 dan setelahnya, Operasi dikatakan stabil dari sistem distribusi radial jika kondisi SI(m2) 0, untuk m2 = 2, 3,, NB harus terpenuhi. Indeks kestabilan tegangan digunakan untuk mengukur level kestabilan dari sistem distribusi radial. Titik yang memiliki nilai indeks kestabilan tegangan terendah, maka lebih sensitif terhadap jatuh tegangan. Dengan demikian, langkah yang sesuai dapat diambil jika dari indeks menunjukkan level stabilitas yang rendah [3]. 2.3 Prinsip Dasar PSO Algoritma Particle Swarm Optimization (PSO) diperkenalkan oleh Kennedy dan Eberhart pada tahun

TRANSIENT, VOL.2, NO. 3, SEPTEMBER 2013, ISSN: 2302-9927, 812 1995, Algoritma ini dibangun berdasarkan prilaku sosial sekumpulan (swarm) burung. Prilaku sosial terdiri dari tindakan individu dan pengaruh dari individu-individu lain dalam suatu kelompok. Setiap individu atau partikel berprilaku dengan cara menggunakan kecerdasannya (intelligence) sendiri dan juga dipengaruhi oleh prilaku kelompok kolektifnya. Dengan demikian, jika satu partikel atau seekor burung menemukan jalan yang tepat atau pendek menuju ke sumber makanan, sisa kelompok yang lain juga akan dapat segera mengikuti jalan tersebut meskipun lokasi mereka jauh di kelompok tersebut. Berikut ini adalah langkah-langkah dari proses PSO : Mulai Inisialisasi kecepatan dan posisi partikel Inisialisasi fungsi tujuan, Pbest & Gbest Update kecepatan partikel sebesar 12,66 kv dan 0,01 MVA [13]. Bentuk jaringan distribusi radial 69 bus dapat dilihat pada Gambar 3. Gambar 3. Jaringan sistem distribusi radial 69 bus [3] Data kedua menggunakan sistem jaringan distribusi tegangan menengah 20 kv,, PT PLN Rayon Banjarnegara dengan jumlah empat PLTMH yaitu Sigebang, Kincang, Adipasir, dan Rakit dengan kapasitas masing-masing sebesar 500 kw, 250 kw, 320 kw dan 500 kw. Bentuk jaringan distribusi dapat dilihat pada Gambar 4. Update posisi partikel Evaluasi Fungsi Tujuan, Pbest & Gbest baru Iter=iter+1 Stopping Criteria? tidak ya Selesai Gambar 2. Algoritma PSO Untuk menghitung kecepatan pada iterasi berikutnya menggunakan Persamaan (2), Vj(i) = θvj(i - 1)+c1r1[Pbest,j - Xj(i-1)] +c2r2 [Gbest - Xj(i-1)] (2) Gambar 4 Jaringan distribusi Diagram alir perancangan dan pembuatan program Analisis Pengaruh Penempatan Distributed generation terhadap Kestabilan Tegangan pada Sistem Distribusi ditunjukkan pada Gambar 5: i = iterasi ; j = 1,2,3,...,N ; r1 dan r2 adalah bilangan random. Sedangkan untuk menentukan posisi partikel pada iterasi berikutnya menggunakan Persamaan (3), Xj(i) = Xj(i 1) + Vj(i) (3) 2.4 Perancangan Simulasi Sistem Dalam perancangan simulasi sistem menggunakan dua data jaringan distribusi. Data pertama menggunakan data jaringan distribusi 69 bus dengan nilai kv base dan MVA base

TRANSIENT, VOL.2, NO. 3, SEPTEMBER 2013, ISSN: 2302-9927, 813 Mulai Input data bus dan saluran Proses aliran daya Input parameter algoritma PSO, Persyaratan, fungsi tujuan Inisialisasi kecepatan dan posisi partikel Inisialisasi fungsi tujuan, Pbest & Gbest Proses aliran daya Menentukan nilai fungsi tujuan, Pbest & Gbest Update kecepatan partikel Update posisi partikel Proses aliran daya Evaluasi nilai fungsi tujuan, Pbest & Gbest baru stopping criteria? Hitung VSI & Tampilkan Hasil Selesai ya tidak Iter=iter+1 Gambar 5. Algoritma pembuatan program simulasi Fungsi tujuan pada proses optimasi merupakan penjumlahan rugi daya aktif pada keseluruhan sistem jaringan distribusi dengan persamaan: n n P 2 2 j + Q j P loss = i j (4) i=1 j =1 R ij V j 2 Dengan batasan kapasitas pembangkit tersebar, P gi min P gi P gi max (5) 3. Hasil dan Analisa 3.1 Optimasi Kapasitas Pembangkit Tersebar Jaringan Sistem Distribusi 69 Bus Simulasi pada sistem ini terdapat 3 pembangkit tersebar yang telah terpasang dibus 18, 58, dan 61 dengan besar kapasitas 1,2 MW dan ditampilkan pada Gambar 6. Gambar 6. Simulasi optimasi kapasitas pembangkit tersebar pada data jaringan 69 bus Berdasarkan Gambar 6, dapat diketahui nilai rugi daya aktif pada kondisi awal sebesar 227,8437 kw, setelah ditambah PT dapat mengurangi rugi daya aktif menjadi sebesar 42,482 kw, dan setelah dioptimasi rugi daya aktif menjadi sebesar 14,6267 kw dengan masing-masing kapasitas pembangkit tersebar pada bus 18, 58, dan 61 yaitu, 577,637 kw, 748,581 kw, dan 1200 kw. Tabel 1 berikut adalah tabel hasil optimasi kapasitas pembangkit tersebar 69 bus. Tabel 1. Hasil optimasi kapasitas pembangkit tersebar 69 bus Optimasi Dengan PSO Maxit = 50; N = 30; C1,2 = 2; θmin,max = 0.4, 0.9 Vm (p.u) P Q (kvar) 18 577,637 1,0000 58 748,581 1,0005 14,6267 11,0738 61 1200 0,9960 Validasi Aliran Daya dengan ETAP 7.0 Vm (p.u) 18 577,637 0,9995 58 748,581 1,0006 61 1200 0,9960 P Q (kvar) 14,3948 11,0259 Grafik profil tegangan menunjukan adanya beberapa bus yang memiliki nilai dibawah standar yaitu kurang dari 0,95 p.u. dari tegangan nominal. Tabel 2 adalah data bus yang memiliki nilai nominal dibawah SPLN 72;1987. Tabel 2. Bus tegangan kurang dari nilai nominal Bus Kondisi Awal Penambahan PT Vm (p.u) VSI Vm (p.u) VSI 57 0,9398 0,7771 1,0154 1,0628 58 0,9288 0,7433 1,0189 1,0777 59 0,9245 0,7303 1,0177 1,0726 60 0,9194 0,7145 1,0164 1,0673 61 0,912 0,6916 1,0144 1,0590 62 0,9117 0,691 1,0142 1,0579 63 0,9114 0,6899 1,0138 1,0565 64 0,9095 0,6841 1,0121 1,0494 65 0,9089 0,6824 1,0116 1,0472

TRANSIENT, VOL.2, NO. 3, SEPTEMBER 2013, ISSN: 2302-9927, 814 Nilai indeks kestabilan tegangan berdasarkan grafik pada Gambar 6 dan data hasil pada Tabel 2 memiliki nilai yang kecil sehingga pada sistem tersebut dapat dengan mudah terjadinya voltage collaps terutama pada bus kritis yaitu bus 65. Gambar 7 menunjukan grafik hubungan iterasi dengan fungsi tujuan yang berupa rugi daya aktif. 3.2 Optimasi Jaringan Sistem Distribusi Simulasi ini dilakukan dengan 2 pembangkit tersebar yang telah terpasang di bus 2 dan bus 49 dengan kapasitas maksimal masing-masing 500 kw, dapat dilihat pada Gambar 9. Gambar 7 Grafik hubungan iterasi dengan fungsi tujuan Berdasarkan hasil optimasi yang dilakukan pada data jaringan distribusi 69 bus, maka dapat diketahui perbandingan nilai sesudah dan sebelum optimasi pada indeks kestabilan tegangan pada bus pembangkit tersebar pada Tabel 3. Tabel 3 Perbandingan indeks kestabilan tegangan Bus Indeks Kestabilan Tegangan Kondisi Awal Penambahan Optimasi 18 0,8375 1,1311 1,0001 58 0,7433 1,0777 1,0022 61 0,6916 1,0590 0,9840 69 0,8753 1,0388 0,9782 Gambar 9. Hasil optimasi 2 pembangkit tersebar pada Berdasarkan Gambar 9, dapat diketahui nilai rugi daya aktif pada kondisi awal sebesar 51,619 kw, setelah ditambah PT dengan kapasitas setengahnya menjadi sebesar 42,6983 kw, dan setelah dioptimasi dapat mengurangi rugi daya aktif menjadi sebesar 35,04059 kw dengan masing-masing kapasitas pembangkit tersebar pada bus 2 dan 49 yaitu kapasitas maksimal dari kemampuan pembangkit tersebar sebesar 500 kw. Gambar 10 menunjukan hubungan iterasi dan fungsi tujuan. Penambahan pembangkit tersebar dapat memperbaiki nilai rata-rata indeks kestabilan tegangan dari 0,8986 menjadi 1,0390 dan setelah dioptimasi menjadi 0,9919. Pembangkit tersebar dapat memperbaiki kestabilan tegangan dan memperkecil kemungkinan terjadinya voltage collaps. Nilai perbandingan indeks kestabilan tegangan dapat dilihat pada Gambar 8. Gambar 10. Grafik hubungan iterasi dengan fungsi tujuan Berdasarkan Gambar 10, nilai fungsi objektif berada pada nilai 35,0405 kw dengan iterasi kurang dari 5. Tabel 4. Hasil optimasi 2 kapasitas pembangkit tersebar Gambar 8. Grafik perbandingan nilai indeks kestabilan Pada jaringan distribusi 69 bus Optimasi Dengan PSO Maxit = 50; N = 30; C1,2 = 2; θmin,max = 0.4, 0.9 Vm (p.u) P Q (kvar) 2 500 0,9912 35,04059 74,21262

TRANSIENT, VOL.2, NO. 3, SEPTEMBER 2013, ISSN: 2302-9927, 815 49 500 0,9759 Validasi Aliran Daya dengan ETAP 7.0 Vm (p.u) P Q (kvar) 2 500 0,9978 35,10235 74,30724 49 500 0,9759 Simulasi selanjutnya dengan menggunakan 3 pembangkit tersebar yang telah terpasang di bus 2, 43, dan 49 dengan kapasitas maksimal masing-masing 500 kw, 250 kw,dan 500 kw. Hasil simulasi dapat dilihat pada Gambar 11. 2 500 0,9980 43 250 0,9790 29,05023 60,17096 49 500 0,9787 Validasi Aliran Daya dengan ETAP 7.0 Vm (p.u) P Q (kvar) 2 500 0,9980 43 250 0,9790 29,10324 60,24508 49 500 0,9787 Simulasi selanjutnya dengan menggunakan 4 pembangkit tersebar yang telah terpasang di bus 2, 43, 46, dan 49 dengan kapasitas maksimal masing-masing 500 kw, 250 kw, 320 kw, dan 500 kw. Hasil simulasi dapat dilihat pada Gambar 13. Gambar 11 Hasil optimasi 3 pembangkit tersebar pada Berdasarkan Gambar 11, dapat diketahui nilai rugi daya aktif pada kondisi awal, penambahan, dan optimasi sebesar 51,619 kw, 39,1461 kw dan 29,05023 kw. dengan masing-masing kapasitas pembangkit tersebar pada bus 2, 43, dan 49 yaitu kapasitas maksimal dari kemampuan pembangkit tersebar sebesar 500 kw, 250 kw,dan 500 kw. Gambar 13. Hasil optimasi 4 pembangkit tersebar pada Berdasarkan Gambar 13, dapat diketahui nilai rugi daya aktif pada kondisi awal, penambahan dan optimasi sebesar 51,619 kw, 34,819 kw dan 22,64347 kw dengan masing-masing kapasitas pembangkit tersebar pada bus 2, 43, 46, dan 49 yaitu kapasitas maksimal dari kemampuan pembangkit tersebar sebesar 500 kw, 250 kw, 320 kw, dan 500 kw. Gambar 12 Grafik hubungan iterasi dengan fungsi tujuan Berdasarkan Gambar 12, nillai fungsi objektif berada pada nilai 29,0502 kw pada iterasi kurang dari 5. Tabel 5. Hasil optimasi 3 kapasitas pembangkit tersebar Optimasi Dengan PSO Maxit = 50; N = 30; C1,2 = 2; θmin,max = 0.4, 0.9 Vm (p.u) P Q (kvar) Gambar 14. Grafik hubungan iterasi dengan fungsi tujuan Berdasarkan grafik pada Gambar 13 dan data hasil pada Tabel 6, selain dapat mengurangi rugi daya aktif, pembangkit tersebar juga dapat mengurangi rugi daya reaktif dan meningkatkan nilai profil tegangan serta indeks kestabilan tegangan.

Rugi Daya Aktif TRANSIENT, VOL.2, NO. 3, SEPTEMBER 2013, ISSN: 2302-9927, 816 Tabel 6 Hasil optimasi 4 kapasitas pembangkit tersebar Optimasi Dengan PSO Maxit = 50; N = 30; C1,2 = 2; θmin,max = 0.4, 0.9 Vm (p.u) 2 500 0,9983 43 250 0,9825 46 320 0,9828 49 500 0,9827 P Validasi Aliran Daya dengan ETAP 7.0 Vm (p.u) 2 500 0,9983 43 250 0,9824 46 320 0,9827 49 500 0,9826 Q (kvar) 22,64347 45,24289 P Q (kvar) 22,67347 45,18054 Hasil simulasi menunjukan, selain dapat meminimalisir rugi daya aktif, pembangkit tersebar juga dapat memperbaiki indeks kestabilan tegangan di setiap bus. Tabel 7 berikut menampilkan hasil nilai indeks kestabilan tegangan dari kondisi awal hingga optimasi 4 kapasitas pembangkit tersebar. Berdasarkan tabel 7, tiap penambahan pembangkit tersebar dengan kapasitas tertentu akan mengubah nilai indeks kestabilan tegangan pada sistem, dimana terjadi kenaikan nilai dari tiap bus. Namun nilai indeks kestabilan tegangan terkecil pada bus 77, sehingga bus 77 dapat dikatakan bus kritis untuk terjadinya voltage collapse. Pada hasil tersebut, selain dapat mengurangi rugi daya aktif, pembangkit tersebar juga dapat memperbaiki nilai profil tegangan dan indeks kestabilan tegangan. Hasil perbandingan indeks kestabilan tegangan ditunjukan pada Gambar 16. Perbandingan nilai rugi daya aktif pada kondisi awal hingga optimasi 4 Pembangkit tersebar dilihat pada Gambar 15. 60 50 40 30 20 Rugi Daya Aktif pada 51.6190 42.6983 39.1461 35.0406 34.8190 29.0502 22.6435 10 0 Kondisi Awal 2 PT (Sebelum) 2 PT (Optimasi) 3 PT (Sebelum) 3 PT (Optimasi) 4 PT (Sebelum) 4 PT (Optimasi) Gambar 15. Diagram batang hasil rugi daya aktif jaringan Gambar 15 adalah perbandingan hasil rugi daya aktif pada saat kondisi awal hingga terdapat 4 pembangkit tersebar pada sistem jaringan distribusi. Penambahan pembangkit tersebar pada jaringan sistem distribusi dapat meminimalisir rugi daya aktif pada setiap saluran sehingga total daya yang diminimalisir dengan adanya 2 pembangkit tersebar sebesar 16,57841 kw, 3 pembangkit tersebar sebesar 22,56877 kw, dan 4 pembangkit tersebar sebesar 28,97553 kw. Gambar 16. Grafik perbandingan indeks kestabilan tegangan pada Peyulang Mrica05 Berdasarkan Gambar 16, dimana pada optimasi 2 pembangkit tersebar (garis merah) memiliki nilai tegangan profil dan indeks kestabilan lebih besar dari kondisi awal (garis biru), optimasi 3 pembangkit tersebar (garis kuning) memiliki nilai tegangan dan indeks kestabilan tegangan lebih baik dari 2 pembangkit tersebar, dan optimasi 4 kapasitas pembangkit tersebar memiliki nilai tegangan dan indeks kestabilan tegangan lebih baik dari 3 pembangkit tersebar. Sehingga pada optimasi dengan 4 kapasitas pembangkit tersebar, tegangan sistem akan baik dan mendekati nilai satu, serta sulit akan terjadiya voltage collaps.

TRANSIENT, VOL.2, NO. 3, SEPTEMBER 2013, ISSN: 2302-9927, 817 Tabel 7. Hasil perbandingan indeks kestabilan tegangan pada jaringan distribusi. Indeks Kestabilan Tegangan Bus 2 Pembangkit 3 Pembangkit 4 Pembangkit Awal Tambah Optimasi Tambah Optimasi Tambah Optimasi 2 0,9877 0,9895 0,9912 0,9899 0,9921 0,9905 0,9932 43 0,8862 0,8973 0,9083 0,9024 0,9186 0,9089 0,9318 46 0,8822 0,8948 0,9074 0,8999 0,9177 0,9074 0,9328 49 0,8804 0,8938 0,9072 0,8989 0,9175 0,9064 0,9326 77 0,8595 0,8700 0,8806 0,8749 0,8903 0,8811 0,9028 4. Kesimpulan Berdasarkan hasil analisa dan pembahasan, maka dapat disimpulkan beberapa hal sebagai berikut : 1. Berdasarkan simulasi pada jaringan distribusi 69 bus, 3 pembangkit tersebar dapat mengurangi rugi daya aktif secara optimal dengan nilai kapasitas masingmasing sebesar 577,64 kw ; 748,58 kw; 1200 kw, sehingga nilai rugi daya aktif sebesar 14,6267 kw dan 11,0738 kvar. 2. Berdasarkan simulasi pada, 2 pembangkit tersebar dapat mengurangi rugi daya aktif secara optimal dengan nilai kapasitas maksimal dari masing-masing kemampuan pembangkit tersebar sebesar 500 kw dengan rugi daya sebesar 35,04 kw dan 74,21 kvar. 3. Berdasarkan simulasi pada, 3 pembangkit tersebar dapat mengurangi rugi daya aktif secara optimal dengan nilai kapasitas maksimal dari masing-masing kemampuan pembangkit tersebar sebesar 500 kw ; 250 kw; dan 500 kw dengan rugi daya sebesar sebesar 29,05 kw dan 60,17 kvar. 4. Berdasarkan simulasi pada, 4 pembangkit tersebar dapat mengurangi rugi daya aktif secara optimal dengan nilai kapasitas maksimal dari masing-masing kemampuan pembangkit tersebar sebesar 500 kw ; 250 kw; 320kW; dan 500 kw dengan rugi daya sebesar 22,64 kw dan 45,24 kvar. 5. Pada jaringan 69 bus, besarnya nilai indeks kestabilan tegangan terendah di bus 65 pada kondisi awal, sebelum, dan sesudah optimasi kapasitas pembangkit tersebar sebesar 0,6824; 1,0472; dan 0,9727. 6. Pada jaringan Mrica05, besarnya nilai indeks kestabilan terendah pada ujung jaringan yaitu bus 77 dengan nilai indeks kestabilan saat kondisi awal sebesar 0,8595 hingga hasil optimasi 4 kapasitas pembangkit tersebar sebesar 0,9028. 7. Besarnya kapasitas pembangkit tersebar dapat mempengaruhi nilai indeks kestabilan tegangan, semakin besar kapasitas pembangkit tersebar maka nilai indeks kestabilan tegangan akan semakin besar. Referensi [1]. Ackermann, T., G. Andersson, dan L. Söder, Distributed Generation: a Definition, Electric Power System Research, 57, 195 204, 2000. [2]. Barker, P. P. dan R.W. de Mello, Determining the Impact of Distributed Generation on Power Systems: Part 1 - Radial Distribution Systems, IEEE PES Summer Meeting, 3, 1645-1656, 2000. [3]. Chakravorty, M. dan D. Das, Voltage Stability Analysis of Radial Distribution Networks, Electric Power & Energy Systems, 23, 129-135, 2001. [4]. Deshpande,M.V, Electrical Power System Design, McGraw-Hill, New Delhi,1984. [5]. Federal Energy Technology Center, Distributed Generation Morgantown.VW.US, Oktober 1999. [6]. Grigsby, Leonard L., Power System Stability and Control, CRC Press, Florida, 2007. [7]. PT PLN (Persero), Rencana Usaha Penyediaan Tenaga Listrik 2011-2020. [8]. Putra, Pradana, Analisis Pengaruh Penempatan Distributed Generation Terhadap Kestabilan Tegangan Pada Sistem Distribusi Tugas Akhir, UNDIP Semarang, 2012. [9]. Reza, Muhamad, Stability Analysis of Transmission Systems with High Penetration of Distributed Generation, Disertasi-S3, Technische Universiteit Delft, Delft, Belanda, 2006. [10]. Saadat, Hadi, Power System Analysis, WCB/McGraw- Hill, Singapore, 1999. [11]. Santosa B., Willy, P., Metode Metaheuristik: Konsep dan Implementasi, Cetakan pertama, Penerbit Guna Widya, 2011. [12]. Waseem, Irfan, Impacts of Distributed Generation on the Residential Distribution Network Operation, Thesis-S2, Virginia Polytecnic Institute and State University, Falls Church, Virginia, December 2008. [13]. Zareiegovar, G., Fesaghandis, R.R., dan Azad, M.Z., Optimal DG Location and Sizing in Distribution System to Minimize Losses, Improve Voltage Stability, and Voltage Profile.