Studi Sifat Mekanik Komposit Isotropik Al/SiO 2 Hasil Fabrikasi dengan Metalurgi Serbuk

dokumen-dokumen yang mirip
PENGARUH VARIABEL KOMPAKSI TERHADAP MODULUS ELASTISITAS KOMPOSIT Al/SiC p DENGAN PERMUKAAN PARTIKEL SiC TERLAPISI ZnO

PASI NA R SI NO L SI IK LI A KA

Variasi tekanan dalam proses metalurgi serbuk dan pengaruhnya pada modulus elastisitas bahan komposit Al-SiC

PENGARUH PELAPISAN OKSIDA SiO 2 PADA PERMUKAAN PARTIKEL SiC TERHADAP KUALITAS IKATAN ANTARMUKA KOMPOSIT Al-SiC

SINTESIS DAN KARAKTERISASI SIFAT MEKANIK BAHAN NANOKOMPOSIT EPOXY-TITANIUM DIOKSIDA

PENGARUH VARIASI SUHU SINTERING PADA KOMPOSIT Al-Mg-Si TERHADAP KEKUATAN DENGAN TEKNIK METALURGI SERBUK

Gambar Modulus elastisitas berdasarkan porositas terukur pada material komposit Al/SiC p tanpa terlapisi dan terlapisi ZnO

ANALISA PENGARUH PENAMBAHAN CU PADA MATRIKS KOMPOSIT ALUMINIUM REMELTING

METALURGI SERBUK. By : Nurun Nayiroh

Pengaruh Variasi Fraksi Volume, Temperatur, Waktu Curing dan Post-Curing Terhadap Karakteristik Tekan Komposit Polyester - Hollow Glass Microspheres

Laporan Praktikum Laboratorium Teknik Material 1 Modul A Uji Tarik

ANALISA PENGARUH PENAMBAHAN MG PADA KOMPOSIT MATRIK ALUMINIUM REMELTING

LOGO. STUDI EKSPANSI TERMAL KERAMIK PADAT Al 2(1-x) Mg x Ti 1+x O 5 PRESENTASI TESIS. Djunaidi Dwi Pudji Abdullah NRP

Bab IV Hasil dan Pembahasan

BAB IV HASIL DAN PEMBAHASAN

PENENTUAN FRAKSI FILLER SERBUK ALUMINIUM DALAM PEMBUATAN KOMPOSIT EPOKSI SEBAGAI BAHAN ALTERNATIF BALING-BALING KINCIR ANGIN TUGAS AKHIR.

SINTESIS DAN KARAKTERISASI SIFAT MEKANIK SERTA STRUKTUR MIKRO KOMPOSIT RESIN YANG DIPERKUAT SERAT DAUN PANDAN ALAS (Pandanus dubius)

BAB III PROSEDUR PENELITIAN

PEMBUATAN KERAMIK BETA ALUMINA (Na 2 O - Al 2 O 3 ) DENGAN ADITIF MgO DAN KARAKTERISASI SIFAT FISIS SERTA STRUKTUR KRISTALNYA.

DYAN YOGI PRASETYO I

VARIASI TEKANAN KOMPAKSI TEHADAP DENSITAS DAN KEKERASAN PADA KOMPOSIT

SINTESIS KERAMIK Al 2 TiO 5 DENSITAS TINGGI DENGAN ADITIF MgO

PENGARUH KADAR CLAY PADA KOMPOSIT SERBUK AL-SI/CLAY

BAB IV ANALISIS & HASIL PERCOBAAN

PEMANFAATAN PARTIKEL TEMPURUNG KEMIRI SEBAGAI BAHAN PENGUAT PADA KOMPOSIT RESIN POLIESTER

ANALISIS PENGARUH VARIASI FRAKSI VOLUME TERHADAP KEKUATAN TARIK BAHAN KOMPOSIT POLIESTER DENGAN FILLER ALAMI SERABUT KELAPA MERAH

PENGARUH PERLAKUAN PANAS PADA ANODA KORBAN ALUMINIUM GALVALUM III TERHADAP LAJU KOROSI PELAT BAJA KARBON ASTM A380 GRADE C

PEMBUATAN ALUMINIUM BUSA MELALUI PROSES SINTER DAN PELARUTAN SKRIPSI

PENGARUH PENAMBAHAN Mg DAN PERLAKUAN PANAS TERHADAP SIFAT FISIK MEKANIK KOMPOSIT MATRIKS ALUMINIUM REMELTING PISTON BERPENGUAT SiO 2

bermanfaat. sifat. berubah juga pembebanan siklis,

: PEMBUATAN KERAMlK BERPORI CORDIERITE (2MgO. 2Ah03' 5SiOz) SEBAGAI BAHAN FILTER GAS. Menyetujui Komisi Pembimbing :

Studi Experimental Pengaruh Fraksi Massa dan Orientasi Serat Terhadap Kekuatan Tarik Komposit Berbahan Serat Nanas

PENGARUH VARIASI FRAKSI VOLUME, TEMPERATUR CURING DAN POST-CURING TERHADAP KARAKTERISTIK TEKAN KOMPOSIT EPOXY - HOLLOW GLASS MICROSPHERES IM30K

BAB IV DATA HASIL PENELITIAN

Asyer Paulus Mahasiswa Jurusan Teknik Material dan Metalurgi Fakultas Teknologi Industri ITS

Pengaruh Kecepatan Milling Terhadap Perubahan Struktur Mikro Komposit Mg/Al 3 Ti

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

Mengenal Uji Tarik dan Sifat-sifat Mekanik Logam

Jl. Prof. Sudharto, SH., Tembalang-Semarang 50275, Telp * Abstrak. Abstract

Metode Uniaxial Pressing Proses Sintering...

ANALISA PENGARUH PENAMBAHAN MG PADA KOMPOSIT MATRIKS ALUMINIUM REMELTING

BAB III METODOLOGI PENELITIAN

BAB II TEORI DASAR. Gage length

SINTESIS (Ca, Mg) CO3-Al KERAMIK MATRIKS KOMPOSIT DENGAN TEKNIK INFILTRASI REAKTIF TANPA TEKANAN DAN KARAKTERISASINYA

Perbandingan Kekerasan dan Kekuatan Tekan Paduan Cu Sn 6% Hasil Proses Metalurgi Serbuk dan Sand Casting

Sidang Tugas Akhir. Sintesis MMCs Cu/Al 2 O 3 Melalui Proses Metalurgi Serbuk dengan Variasi Fraksi Volum Al 2 O 3 dan Temperatur Sintering

PENGARUH KOMPOSISI KAOLIN TERHADAP DENSITAS DAN KEKUATAN BENDING PADA KOMPOSIT FLY ASH- KAOLIN

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di Laboratorium Material Teknik Jurusan Teknik Mesin,

BAB IV HASIL DAN PEMBAHASAN Hasil Pengujian Densitas Abu Vulkanik Milling 2 jam. Sampel Milling 2 Jam. Suhu C

Studi Pengaruh Orientasi Serat Fiber Glass Searah dan Dua Arah Single Layer terhadap Kekuatan Tarik Bahan Komposit Polypropylene

PENGARUH PARAMETER STIR CASTING TERHADAP SIFAT MEKANIK ALUMUNIUM MATRIX COMPOSITE (AMC)

BAB I PENDAHULUAN 1.1. LATAR BELAKANG

SIFAT FISIK DAN KEKUATAN BENDINGPADA KOMPOSIT FELDSPAR-KAOLINE CLAY

PENGARUH SiC TERHADAP SIFAT FISIS DAN MEKANIS KOMPOSIT MATRIK ALUMINIUM YANG DIPERKUAT SERBUK SiC

SIFAT MEKANIK DAN STRUKTUR MIKRO SAMBUNGAN LAS ALUMINIUM 6061 HASIL FRICTION WELDING ABSTRACT

PENGARUH PERSENTASE BERAT SERBUK SiC TERHADAP KEKERASAN DAN KEKUATAN BENDING KOMPOSIT DENGAN MATRIK AlSiTiB YANG DIPERKUAT SERBUK SiC

ek SIPIL MESIN ARSITEKTUR ELEKTRO

KEKUATAN BENDING KOMPOSIT CLAY DIPERKUAT DENGAN ALUMINA UNTUK APLIKASI FIRE BRICK

Sintesis Aluminium Matrix Composites (AMC) Berpenguat Sinter Silika dengan Metode Powder Metallurgy

Kevin Yoga Pradana Dosen Pembimbing: Prof. Dr. Ir. Wajan Berata, DEA

PENGARUH WAKTU PENGELASAN GMAW TERHADAP SIFAT FISIK MEKANIK SAMBUNGAN LAS LOGAM TAK SEJENIS ANTARA ALUMINIUM DAN BAJA KARBON RENDAH

BAB I PENDAHULUAN. 1.1 Latar Belakang

HASIL DAN PEMBAHASAN. dengan menggunakan kamera yang dihubungkan dengan komputer.

SIFAT BALISTIK METAL MATRIX COMPOSITE DENGAN WOVEN METODE SATIN TWILLED WEAVE

SINTESIS DAN KARAKTERISASI KALSIUM FERIT MENGGUKAN PASIR BESI DAN BATU KAPUR

EFEK KOMPOSISI DAN PERLAKUAN SINTERING PADA KOMPOSIT Al/(SiCw+Al 2 O 3 ) TERHADAP SIFAT FISIK DAN KEAUSAN

KUAT TARIK BAJA 2/4/2015. Assalamualaikum Wr. Wb.

BAB III METODE PENELITIAN

Uji Densitas dan Porositas pada Batuan dengan Menggunakan Neraca O Houss dan Neraca Pegas

BAB V PEMBAHASAN. Laporan Tugas Akhir

PENYELIDIKAN KEKUATAN TEKAN DAN LAJU KEAUSAN KOMPOSIT DENGAN FILLER PALM SLAG SEBAGAI BAHAN PENYUSUN KANVAS REM SEPEDA MOTOR

BAB IV HASIL DAN PEMBAHASAN

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik komposit CSZ-Ni dengan

PENGARUH WAKTU DAN TEMPERATUR SINTER TERHADAP DENSITAS DAN POROSITAS KOMPOSIT ALUMINIUM YANG DIPERKUAT LIMBAH GEOTHERMAL

PENGARUH PENAMBAHAN 10%wt Mg DAN KECEPATAN MILLING TERHADAP PERUBAHAN STRUKTUR MIKRO DAN SIFAT MEKANIK PADUAN Al-Mg

SINTESIS SERBUK MgTiO 3 DENGAN METODE PENCAMPURAN DAN PENGGILINGAN SERBUK. Abstrak

KARAKTERISASI BLOK REM KERETA API BERBAHAN BESI COR DAN Al-SiC BERDASARKAN KEKUATAN UJI TARIK DAN HARGA IMPAK. Senen *), AP.

BAB IV HASIL DAN PEMBAHASAN. 4.1 Pengaruh Suhu Sinter Terhadap Struktur Kristal

PENGARUH KOMPOSISI SERAT KELAPA TERHADAP KEKERASAN, KEAUSAN DAN KOEFISIEN GESEK BAHAN KOPLING CLUTCH KENDARAAN PADA KONDISI KERING DAN PEMBASAHAN OLI

Studi Eksperimen Pembuatan Komposit Metal Matrik Aluminium Penguat SiC Wisker dan Al 2 O 3 Partikel sebagai Material Alaternatif

BAB III TINJAUAN PUSTAKA

JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN:

ANALISA PENGARUH FRAKSI MASSA PENGUAT SiO 2 TERHADAP KEKUATAN IMPAK DAN STRUKTUR MIKRO PADA KOMPOSIT MATRIK ALUMINIUM MENGGUNAKAN METODE STIR CASTING

KEKUATAN MATERIAL. Hal kedua Penyebab Kegagalan Elemen Mesin adalah KEKUATAN MATERIAL

Pramuko Ilmu Purboputro Jurusan Teknik Mesin Universitas Muhammadiyah Surakarta

BAB IV SIFAT MEKANIK LOGAM

SIFAT MEKANIK KOMPOSIT SERAT BAMBU AKIBAT PENGARUH MUSIM HUJAN DENGAN/TANPA PELAPISAN Buyung Hirmawan 1, Lizda J M, ST.MT. 2, Dr-Ing Doty D R, ST.

Fajar Nugroho Sekolah Tinggi Teknologi Adisutjipto, Yogyakarta. Jl. Janti Blok R Lanud Adisutjipto

( Kajian Teori & Aplikasi )

Pengaruh Waktu Penahanan Artificial Aging Terhadap Sifat Mekanis dan Struktur Mikro Coran Paduan Al-7%Si

Sintesis Nanopartikel ZnO dengan Metode Kopresipitasi

BAB III METODOLOGI PENELITIAN

BAB I PENDAHULUAN 1.1.Latar Belakang

BAB I PENDAHULUAN. praktek kedokteran giginya adalah keterampilan. Keterampilan menghasilkan

Karakterisasi Bentuk Partikel SiC yang Dilapisi dengan MgAl 2 O 4 Berdasarkan Variabel Konsentrasi Ion Logam

Gambar 2.1 Pembagian Komposit Berdasarkan Jenis Penguat [2]

Preparasi Sampel. Dari rumus, didapat Massa(gram) Fraksi Volum komposit Cu-Al 2 O 3

POLYPROPYLENE DENGAN LIMBAH DAUN MANGGA SEBAGAI FILLER

KARAKTERISTIK MORTAR PADA LIMBAH ABU KELAPA SAWIT. Fakultas Matematika dan Ilmu Pengetahuan Alam Kampus Binawidya Km 12,5 Pekanbaru, 28293, Indonesia

Transkripsi:

JURNAL FISIKA DAN APLIKASINYA VOLUME 12, NOMOR 2 JUNI 2016 Studi Sifat Mekanik Komposit Isotropik Al/SiO 2 Hasil Fabrikasi dengan Metalurgi Serbuk Hanafi, 1 Munasir, 2, dan Mochamad Zainuri 1 1 Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111 2 Program Studi Fisika, FMIPA-Universitas Negeri Surabaya Kampus UNESA, Jl. Ketintang Surabaya 60231 Intisari Telah dilakukan pembuatan komposit Al/SiO 2 melalui metode metalurgi serbuk dengan menggunakan aluminium sebagai matrik yang digabungkan dengan nano silika (SiO 2) yang diperoleh dari hasil sintesis pasir Bancar Tuban melalui metode kopresipitasi. Fabrikasi komposit dilakukan dengan metode metalurgi serbuk pencampuran basah, dengan medium pencampur berupa larutan butanol, dan disintering pada temperatur 500 C selama 2 jam dalam furnace vakum. Hasil fabrikasi dilakukan beberapa analisis dan uji untuk mengetahui sifatsifatnya, seperti densitas dan porositas, serta uji menggunakan XRD, SEM-EDX dan uji tekan (Brinnel). Hasil penelitian menunjukkan bahwa dari analisis XRD diperoleh komposit Al/SiO 2 pada x = 0% hingga 30% dengan fase kristal berupa Al dan sedikit Al 2O 3 dan SiO 2 yang ditunjukkan oleh puncak difraksi yang rendah. Peningkatan fraksi volume SiO 2 pada komposit cenderung menurunkan densitas dan meningkatkan porositas. Demikian pula dari hasil uji mekanik, kuat luluh (Yield Strength (YS), kuat tekan (CS), kuat tekan maksimum (UCS) dan modulus elastis (ME) serta kekerasan bahan (BHN) cenderung mengalami penurunan dengan bertambahnya fraksi volume SiO 2 diatas 5% pada komposit Al/SiO 2. Nilai YS, CS, ME dan kekerasan bahan memiliki nilai tertinggi ketika fraksi volume SiO 2 dalam komposit adalah 5%. Abstract Composites of Al/SiO 2 have been fabricated through powder metallurgy method using aluminium as matrix and combined with nano silica (SiO 2). SiO 2 was obtained from the synthesis of sand of Bancar Tuban through copresipitation method. Fabrication of composites was performed by powder metallurgy method by the wet mixing method, by using butanol as solution. The sample was sintered at a temperature of 500 C for 2 hours in a vacuum furnace. The samples were analyzed and tested to determine its properties, as density, porosity, and tested by XRD, SEM-EDX and pressure test. The results showed that based on the XRD analysis was obtained composite Al/SiO 2 at x= 0% to 30% with a crystalline phase of Al and Al 2O 3 and SiO 2 slightly indicated by a low peak. Increased of the volume fraction of SiO 2 on composite was tended to decrease of density and increase porosity. The results of mechanical tests was show that yield strength (YS), compressive strength (CS), elastic modulus (EM), hardness tends to decrease with increasing volume fraction of the composite of SiO 2. Value YS, CS, EM and hardness of materials has the highest value when the volume fraction of SiO 2 in the composite is 5%. KATA KUNCI: Al/SiO 2 composites, nano-composites, aluminum, nanosilika, mechanical properties I. PENDAHULUAN Perkembangan manufaktur dan kebutuhan akan komponen dengan kemampuan struktur yang tinggi, ringan, serta kuat sangat dibutuhkan pada saat ini. Teknologi yang murah dan mudah untuk menfabrikasi material sesuai dengan kebutuhan di atas adalah menggunakan teknik komposit. Komposit merupakan proses penggabungan material yang tak sejenis (matrik dan penguat) yang berikatan hanya pada bagian permukaan. Matrik merupakan bahan dasar yang berperan sebagai penyangga dan pengikat rienforced. Matrik memiliki karakteristik lunak, ulet, dan modulus elastis yang ren- E-MAIL: munasir physics@unesa.ac.id dah. Penguat harus mempunyai sifat kurang ulet, tetapi rigid dan lebih kuat. Komposit yang memanfaatkan logam sebagai material matriknya dikenal sebagai komposit bermatrik logam (Metal Matrix Composites/MMCs) [1]. Pada umumnya logam yang banyak dimanfaatkan dalam MMCs adalah aluminium. Pemilihan aluminium sebagai matrik, karena sifat-sifat unggul yang dimiliki oleh aluminium, yaitu densitasnya rendah, ketahanan korosi yang baik, konduktivitas termal dan listriknya serta kemampuan dampingnya sangat baik [2 4]. Untuk mendapatkan material baru dengan karakteristik sifat mekanik yang baik, aluminium biasanya dipadukan dengan material keramik, yang memiliki sifat keras dan getas akan menghasilkan karakteristik MMCs yang mempunyai sifat lebih baik dari bahan penyusunnya. SiO 2 (silika) merupakan penguat keramik yang belum banyak dieksplorasi karakteristiknya jika dipadukan dengan c Jurusan Fisika FMIPA ITS -61

aluminium. Indonesia merupakan negara yang memiliki bentangan pantai terpanjang di dunia, oleh karena itu, Indonesia kaya akan pasir silika yang merupakan sumber dari silika [5 7]. Salah satu daerah yang kandungan pasir silika mengandung silika yang cukup tinggi adalah pantai Bancar di Tuban Jawa Timur. Dengan metode kopresipitasi pasir silika dari Bancar Tuban dihasilkan silika yang mempunyai orde nano [8, 9]. Pada penelitian ini difokuskan pada pembuatan komposit Al/SiO 2 melalui fase padat (metalurgi serbuk) dengan memvariasikan fraksi volume SiO 2 yang dibuat melalui metode kopresipitasi dicapai orde nano dengan bahan pasir Bancar Tuban. Tujuan penelitian mengetahui fraksi volume SiO 2 pada komposit Al/SiO 2 yang diproses melalui fase padat terhadap sifat fisis dan mekaniknya. II. METODOLOGI Gambar 1: Hubungan fraksi volume SiO 2 dan densitas sampel: teori dan setelah sintering. Komposit Al/SiO 2 yang dibuat dari matrik aluminium (Al) dalam bentuk serbuk dan serbuk nano silika orde nano merupakan komposit partikulit yang isotropik. Komposit isotropik merupakan komposit yang akan memberikan penguatan yang sama dalam segala arah. Komposit partikulit ketangguhannya lebih rendah dari pada komposit yang berserat panjang. Akan tetapi, partikulit memiliki ketahanan aus yang lebih baik [6, 10]. Komposit partikulit pada umumnya keuletan dan ketangguhan menurun dengan semakin tingginya fraksi volume dari penguat [7, 11]. Komposit undireksional merupakan komposit yang mempunyai orientasi penguatan yang sama. Pemberian beban yang arahnya sama dengan arah penguat disebut beban longitudinal, maka komposit akan mengalami strain yang sama antara matrik dan penguat (iso-strain). Modulus elastis longitudinal disebut upper bond dan persamaannya dikenal sebagai hukum campuran yang dinyatakan sebagai: [12, 13] E c = E M V m + E f V f (1) Sedangkan beban transversal adalah beban yang arahnya tegak lurus terhadap orientasi penguat. Pemberian beban menyebabkan terjadinya elongasi yang berbeda antara matrik dan penguat, sedangkan beban yang dialami oleh matrik dan penguat adalah sama besar (iso-stress). Oleh karena itu, beban secara longitudinal dinamakan lower bond dan dinyatakan sebagai: [12, 13] 1 E c = V f E f + V m E m (2) dengan E modulus elastis, V fraksi volume, c komposit, m matrik dan f penguat. Pada penelitian ini komposit aluminium nano silika (Al/SiO 2 ) difabrikasi menggunakan metode metalurgi serbuk yang disentering dalam vakum furnace dan proses pencampurannya dalam larutan butanol. Proses sintering dalam vakum furnace maupun pencampuran dalam larutan butanol, bermaksud untuk melindungi aluminium dari proses oksidasi TABEL I: Massa matrik dan penguat. Aluminium Silika Massa Jenis Massa (Matrik) (filler) Komposit Komposit V m mm(gr) V f mf(gr) (m k ) (gr) (ρ k, gr/cm 3 ) 95% 4,407 5% 0,196 4,603 2,688 90% 4,175 10% 0,391 4,566 2,686 85% 3,943 15% 0,587 4,530 2,684 80% 3,711 20% 0,783 4,494 2,682 75% 3,479 25% 0,979 4,458 2,680 70% 3,248 30% 1,174 4,422 2,678 dengan oksigen. Bahan sebagai matrik menggunakan aluminium (Merck) dengan kemurnian diatas 90% (densitas 2,7 gram/cm 3, modulus elastisitas 70 GPa). Sebagai penguat menggunakan silika ukuran nano hasil dari sintesis pasir Bancar Tuban dengan metode kopresipitasi. Massa dan densitas komposit secara teoritis ditentukan menggunakan persamaan berikut: [10] m c = V m ρ m v c + V f ρ f v c (3) ρ c = V m ρ m + V f ρ f (4) dengan V c = merupakan volume, V m = fraksi volume matrik, V f = volume penguat (SiO 2 ), ρ m = massa jenis matrik = 2,69 gr/cm 3 dan ρ f = massa jenis penguat = 2,27 gr/cm 3. Specimen Al/SiO 2 dibuat berbentuk selinder dengan dimensi tinggi 13 mm dan diameternya 13 mm. Serbuk matrik dan penguat komposit Al/SiO 2 diaduk dalam larutan butanol selama 1 jam dan dikeringkan dalam furnace selama 24 jam dengan temperatur 140 C. Komposit dikompaksi dengan tekanan 2 ton dengan waktu tahan 10 menit. Proses sintering pada temperatur 500 C dengan pre sinter temperatur 200 C. Data hasil perhitungan massa komposit dan densitas komposit seperti ditunjukkan pada Tabel I. Karakterisasi komposit Al/SiO 2 meliputi pengukuran densitas dan porositas, uji kekerasan dan tekan, uji XRD dan uji SEM. Pengukuran densitas dan porositas, untuk mengetahui kompaktibilitas bahan komposit. Uji kekerasan dan tekan untuk mengetahui sifat mekanik, serta uji XRD dan SEM, untuk -62

Gambar 2: Struktur mikro dan mapping unsur atomik (Al,Si dan O) pada sampel komposit Al/SiO 2 untuk fraksi volume SiO 2 (a) 15% dan (b) 25% (Al = warna hijau, O = warna merah dan Si = warna biru). mengetahui fasa-fasa yang terbentuk selama fabrikasi komposit dan mengetahui mikrostruktur. Uji kekerasan menggunakan metode Brinnel. Perhitungan modulus elastis hasil eksperimen menggunakan persamaan berikut: E = σ ɛ (5) dengan E, σ, ɛ masing-masing adalah modulus elastis komposit, tenggangan, regangan. III. HASIL DAN PEMBAHASAN Densitas komposit Al/SiO 2 Pada penelitian ini, densitas komposit yang difabrikasi yang dibahas meliputi densitas teoritis dan densitas sinter. Densitas teoritis adalah densitas komposit yang dihitung secara kualitatif dengan menggunakan Pers.(4), didapatkan nilai densitas teoritis secara umum menurun terhadap meningkatnya fraksi volume SiO 2 (5%,10%, 15%,20%, 25% dan 30%). Densitas sinter adalah pengukuran densitas komposit yang dilakukan setelah proses sintering (sintered density). Dari hasil pengukuran yang dilakukan densitas sinter nilainya cenderung menurun seiring naiknya nilai fraksi volume penguat SiO 2, seperti pada Gambar 1. Nilai densitas sinter terbesar pada saat fraksi volume SiO 2 (10%). Penurunan nilai densitas sinter dapat disebabkan oleh beberapa sebab, diantaranya adanya oksidasi antara aluminium dan oksigen pada saat proses pencampuran, pemanasan (sinter) yaitu terjebaknya gas pada saat proses pemanasan dan adanya pengumpulan partikel-partikel penguat Gambar 3: SiO 2. Kekerasan Komposit Al/SiO 2terhadap fraksi volume pada suatu tempat, yang disebut aglomerat. Dari hasil pengamatan mikrostruktur pada Gambar 2, tampak bahwa peristiwa aglomerasi partikel partikel SiO 2 meningkat dengan meningkatnya fraksi volume penguat (15% dan 25%). Kekerasan komposit Al/SiO 2 Sifat kekerasan pada prinsipnya merupakan kemampuan suatu bahan komposit untuk menahan penetrasi gaya luar. Bahan yang bersifat elastis lebih kuat menahan gaya luar dibandingkan dengan bahan yang bersifat plastis. Semakin sulit suatu bahan mengalami deformasi plastis, maka bahan tersebut menjadi lebih elastis. Nilai kekerasan bahan komposit hasil pengujian dengan metode Brinnel, ternyata nilainya menu- -63

Gambar 4: Kuat tekan maksimum dan modulus elastis komposit Al/SiO 2. run dengan meningkatnya nilai fraksi volume penguat. Nilai kekerasan terbesar dicapai pada saat fraksi volume SiO 2 = 5%. Grafik hubungan antara kekerasan dan fraksi volume SiO 2 seperti pada Gambar 3. Modulus elastis dan tegangan tekan maksimum komposit Al/SiO 2 Sifat mekanik bahan komposit yang juga dipelajari pada penelitian ini adalah batas tegangan tekan maksimum dan kekakuan komposit. Bahan komposit yang menerima tegangan dari luar, maka tegangan tersebut akan didistribusikan dari matrik ke penguat. Matrik dan penguat memiliki sifat keelastisan yang berbeda, oleh karena itu, ketika menerima tegangan dari luar masing masing mengalami deformasi yang berbeda. Sifat keelastisan bahan komposit Al/SiO 2 merupakan gabungan dari sifat keelastisan partikel-partikel penyusunnya. Batas keelastisan maksimum bahan komposit terhadap tegangan luar dinamakan yield strength. Tegangan luar yang menyebabkan bahan komposit menjadi plastis dan menyebabkan terjadinya kerusakan permanen dinamakan batas tekan masimum [6, 7]. Tegangan luar yang bekerja pada komposit dibawah nilai yield strengthnya akan menghasil regangan yang sebanding dengan besarnya tegangan, perbandingan antara nilai tegangan dan regangan yang terjadi dinamakan nilai kekakuan atau modulus elastis. Hasil eksperimen menunjukkan bahwa nilai yield strength (YS), Ultimate Tensile Strength (UTS) dan Modulus Elastis (ME), menurun dengan meningkatnya fraksi volume penguat, seperti pada Gambar 4. Menurunnya sifat mekanik bahan komposit Al/SiO 2, disebabkan distribusi tegangan tidak terdistribusi secara merata dalam bahan komposit, hal ini disebabkan adanya porositas yang disebabkan adanya aglomerasi partikel partikel penguat [6]. Porositas sangat berkaitan erat dengan menurunnya sifat mekanik bahan komposit, karena tegangan luar akan terpusat pada porositas, seperti ditunjukkan pada Gambar 4. Analisis difraksi sinar-x Sintesis komposit Al/SiO 2 pada penelitian ini dilakukan dengan metode proses padat. Mekanisme pembuatan komposit tersebut melalui beberapa tahapan, mulai dari proses penyampuran sampai tahapan proses akhir sintering. Identifikasi kualitas bahan komposit dapat dikarakterisasi secara kualitatif dari fase-fase yang terbentuk pada bahan komposit yang terdiri dari fase utama matriks dan penguat, dan fase perantara yang merupakan fase yang terbentuk diantara interaksi matriks dan penguat atau fase yang timbul akibat adanya oksidasi. Pada penelitian ini difokuskan pada fraksi volume penguat (SiO 2 ) dari fraksi terendah 5% sampai yang tertinggi 30%. Semua fraksi volume yang ada diamati spektrum XRD seperti ditunjukkan Gambar 5. Berdasarkan Gambar 5, menunjukkan fase yang muncul dalam bahan komposit Al/SiO 2, diantaranya matriks Al, fase oksida dari matriks (Al 2 O 3 ), dan fase amorpus pengisi SiO 2. Komposisi Al/SiO 2, Al, dan SiO 2 masing-masing 5%, 15%, dan 25%. Sudut difraksi fase Al pada 38,5; 44,7; 65,1; 78,2; dan 82,4, sedangkan fase Al/SiO 2 pada sudut 45,9; 67. Fase amorpus terlihat melebar dan tidak beraturan, hal tersebut mengindikasikan fase SiO 2. Semakin tinggi fraksi volume penguat partikel nano silika pada bahan komposit isotropik, menunjukkan penurunan puncak-puncak kristalin dari Al maupun Al 2 O 3. Pada spektrum XRD dari analisis komposit Al/SiO 2 menunjukkan fase-fase utama berdiri sendiri, sehingga menunjukkan bahwa tidak terjadi adanya sistem kelarutan padat atau pembentukan senyawa hasil reaksi antara matriks dan pengisi, dan bukan merupakan ikatan utama dalam interaksinya melainkan ikatan kedua seperti gaya elektrostatik atau gaya mekanik yang disebabkan oleh kekasaran permukaan. IV. SIMPULAN Berdasarkan penelitian yang dilakukan dan pengamatan kuantitatif dan kualitatif dapat disimpulkan bahwa 1. bahan komposit Al/SiO 2 dengan menggunakan penguat SiO 2 orde nano, mempunyai densitas dan porositasnya serta sifat mekaniknua cenderung turun terhadap kenaikan fraksi volume SiO 2 diatas 5%, 2. kekerasan dan sifat mekaniknya komposit Al/SiO 2 mencapai nilai terbaik ketika fraksi volume SiO 2 dengan nilai kekerasan 9,28 kg/mm 2 atau 92,8 MPa (uji Brinel), nilai yield strength 131,93 MPa, nilai Ultimate Compression Strength 141,56 MPa, nilai modulus elastis 62,43 MPa. Penurunan densitas, kekerasan, kuat luluh, kuat luluh maksimum dan modulus elastis terjadi ketika bahan komposit Al/SiO 2 semakin porus ketika fraksi volume SiO 2 diatas 5%, 3. orde nano silika cenderung menimbulkan aglomerasi pada fraksi volume SiO 2 diatas 5%, dan hal ini menyebabkan pembentukan rongga, selanjutnya akan mempengaruhi sifat-sifat mekaniknya. -64

Gambar 5: Pola difraksi Al dan AlSiO 2 pada fraksi volume SiO 2 5%. [1] W.D. Callister Jr, Materials Science and Engineering: An Introduction (7 t h edition, John Wiley and Sons, Inc., United States of America, 2007). [2] M. Ariati, dan A. Zulfia, Makara, 10, 18-23 (2006). [3] S. Deni, Jurnal Makara Sains, 12, 126-133 (2008). [4] J. Hasim, L. Looney, M.S.J. Hashmi, J. Material Processing Technology, 119(1-3), 329-335 (2001). [5] H.L. Rizkalla, A. Abdulwahed, J. Material Processing Technology, 56, 398-403 (1996). [6] H. Zuhailawati, P. Samayamutthirian, M.C.H. Haizu, Fabrication of Low Cost of Aluminium Matrix Composite Reinforced with Silica Sand, Scholl of Materials and Mineral Resource Engineering, University Science Malasyia, Engineering Campus, 2007. [7] M. Sayuti, et al., J. Material Processing Technology, 201(1), 731-735 (2008). [8] Surahmat, Munasir, Triwikantoro, J. Fis. dan Apl., 7(2), 110202:1-4 (2011). [9] Munasir, Triwikantoro, M. Zainuri, Darminto, JPFA-Unesa, 3(2), 12-17 (2013). [10] Widyastuti, dkk., Makara Sains, 12(2), 113-119 (2008). [11] S. Suresh, A. Mortensen, Fundamental of Metal Matrix Composites (Butterworth-Heinemann, London, 1993). [12] N. Chabibah, Pengaruh Media Pencampur terhadap Kualitas Mekanik Bahan Komposit Al/SiC, Skripsi, Fisika, FMIPA-ITS, Surabaya, 2011. [13] R.M. Springgs, T. Vasilos, J. Am. Ceram. Soc., 40(4), 187 (1961). -65