DETEKSI KAWASAN HUTAN KOTA PADA CITRA RUPA BUMI KOTA KUPANG MENGGUNAKAN KOMPONEN WARNA RGB, HSV, YIQ DAN ALGORITMA PARALLELPIPED

dokumen-dokumen yang mirip
PENGEMBANGAN APLIKASI PERHITUNGAN JUMLAH OBJEK PADA CITRA DIGITAL DENGAN MENGGUNAKAN METODE MATHEMATICAL MORPHOLOGY

PERANGKAT LUNAK PERBAIKAN KUALITAS CITRA DIGITAL MODEL RGB DAN IHS DENGAN OPERASI PENINGKATAN KONTRAS

SAMPLING DAN KUANTISASI

PENERAPAN METODE SOBEL DAN GAUSSIAN DALAM MENDETEKSI TEPI DAN MEMPERBAIKI KUALITAS CITRA

Muhammad Zidny Naf an, M.Kom. Gasal 2015/2016

PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK

Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner

ANALISIS CONTRAST STRETCHING MENGGUNAKAN ALGORITMA EUCLIDEAN UNTUK MENINGKATKAN KONTRAS PADA CITRA BERWARNA

One picture is worth more than ten thousand words

Model Citra (bag. 2)

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang

PENGOLAHAN CITRA DIGITAL

GRAFIK KOMPUTER DAN PENGOLAHAN CITRA. WAHYU PRATAMA, S.Kom., MMSI.

Operasi Titik Kartika Firdausy

BAB 2 TINJAUAN PUSTAKA 2.1 Dasar Teori Citra Digital

APLIKASI PENGENALAN DAUN UBI JALAR UNTUK JENIS UBI JALAR UNGU, MERAH, PUTIH DAN KUNING MENGGUNAKAN METODE PRINCIPAL COMPONENT ANALYSIS

PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MENDESAIN KARTU UCAPAN

BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL

SEGMENTASI WARNA CITRA DENGAN DETEKSI WARNA HSV UNTUK MENDETEKSI OBJEK

PENERAPAN METODE CONTRAST STRETCHING UNTUK PENINGKATAN KUALITAS CITRA BIDANG BIOMEDIS

BAB 2 TINJAUAN PUSTAKA

KONSEP DASAR PENGOLAHAN CITRA

Proses memperbaiki kualitas citra agar mudah diinterpretasi oleh manusia atau komputer

BAB II TEORI DASAR. Beberapa definisi tentang tutupan lahan antara lain:

DETEKSI GERAK BANYAK OBJEK MENGGUNAKAN BACKGROUND SUBSTRACTION DAN DETEKSI TEPI SOBEL

BAB 2 LANDASAN TEORI

Implementasi Edge Detection Pada Citra Grayscale dengan Metode Operator Prewitt dan Operator Sobel

Suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagai cara.

BAB III ANALISIS DAN PERANCANGAN SISTEM

Pertemuan 2 Representasi Citra

BAB III METODOLOGI PENELITIAN

PENINGKATAN KUALITAS CITRA DENGAN METODE FUZZY POSSIBILITY DISTRIBUTION

GLOSARIUM Adaptive thresholding Peng-ambangan adaptif Additive noise Derau tambahan Algoritma Moore Array Binary image Citra biner Brightness

PENGOLAHAN CITRA DIGITAL

BAB II TEORI PENUNJANG

ANALISIS PERBANDINGAN METODE PREWITT DAN CANNY UNTUK IDENTIFIKASI IKAN AIR TAWAR

PENERAPAN SEGMENTASI MULTI KANAL DALAM MENDETEKSI SEL PARASIT PLASMODIUM SP. I Made Agus Wirahadi Putra 1, I Made Satria Wibawa 2 ABSTRAK

IMPLEMENTASI METODE RETINEX UNTUK PENCERAHAN CITRA

ANALISA PERBANDINGAN VISUAL METHOD DAN LIQUID PENETRANT METHOD DALAM PERBAIKAN CITRA FILM RADIOGRAFI

PENGKONVERSIAN IMAGE MENJADI TEKS UNTUK IDENTIFIKASI PLAT NOMOR KENDARAAN. Sudimanto

... BAB 2 LANDASAN TEORI. 2.1 Citra

BAB 2 LANDASAN TEORI

oleh: M BAHARUDIN GHANIY NRP

PENDETEKSIAN TEPI OBJEK MENGGUNAKAN METODE GRADIEN

BAB II CITRA DIGITAL

BAB 3 IMPLEMENTASI SISTEM

PERBANDINGAN SEGMENTASI CITRA BERWARNA DENGAN FUZZY CMEANS CLUSTERING PADA BEBERAPA REPRESENTASI RUANG WARNA

KLASIFIKASI TELUR AYAM DAN TELUR BURUNG PUYUH MENGGUNAKAN METODE CONNECTED COMPONENT ANALYSIS

PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING )

Pengantar Pengolahan Citra. Ade Sarah H., M. Kom

UKDW BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB II LANDASAN TEORI

Perbaikan Kualitas Citra Menggunakan Metode Contrast Stretching (Improvement of image quality using a method Contrast Stretching)

APLIKASI PENGOLAHAN CITRA DIGITAL DENGAN PROSES PERKALIAN DAN PEMBAGIAN UNTUK PENGGESERAN BIT DENGAN MENGGUNAKAN METODE BITSHIFT OPERATORS

Implementasi Noise Removal Menggunakan Wiener Filter untuk Perbaikan Citra Digital

APLIKASI PENGHITUNG JUMLAH WAJAH DALAM SEBUAH CITRA DIGITAL BERDASARKAN SEGMENTASI WARNA KULIT

IMPLEMENTASI METODE SPEED UP FEATURES DALAM MENDETEKSI WAJAH

BAB II LANDASAN TEORI

PENERAPAN METODE MOST SIGNIFICANT BIT UNTUK PENYISIPAN PESAN TEKS PADA CITRA DIGITAL

MKB3383 TEKNIK PENGOLAHAN CITRA Pemrosesan Citra Biner

Representasi Citra. Bertalya. Universitas Gunadarma

BAB II LANDASAN TEORI

BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM

Pengenalan Plat Nomor Mobil Menggunakan Metode Learning Vector Quantization

PENGEMBANGAN APLIKASI PENGKELASAN MUTU BUAH TOMAT BERDASARKAN BOBOT BUAH MENGGUNAKAN PENGOLAHAN CITRA DIGITAL DENGAN ANALISIS REGRESI.

BAB III METODE PENELITIAN. Tujuan tugas akhir ini akan membangun suatu model sistem yang

SCENE COMPLETION MENGGUNAKAN TEMPLATE MATCHING DAN POISSON BLENDING

BAB II LANDASAN TEORI. Pengolahan Citra adalah pemrosesan citra, khususnya dengan menggunakan

BAB 4 HASIL DAN ANALISA

BAB II LANDASAN TEORI

BAB II DASAR TEORI. 2.1 Meter Air. Gambar 2.1 Meter Air. Meter air merupakan alat untuk mengukur banyaknya aliran air secara terus

BAB III PELAKSANAAN PENELITIAN

BAB I PENDAHULUAN. 1.1 Latar Belakang

PENGHITUNG JUMLAH MOBIL MENGGUNAKAN PENGOLAHAN CITRA DIGITAL DENGAN INPUT VIDEO DIGITAL

SISTEM PENJEJAK POSISI OBYEK BERBASIS UMPAN BALIK CITRA

BAB III METODOLOGI PENELITIAN

OPTIMASI ALGORITMA IDENTIFIKASI STRABISMUS

BAB 2 LANDASAN TEORI

PENDETEKSI TEMPAT PARKIR MOBIL KOSONG MENGGUNAKAN METODE CANNY

BAB I PENDAHULUAN. Citra (image) istilah lain untuk gambar sebagai salah satu komponen

IMPLEMENTASI ALGORITMA CONNECTED-LABELLING UNTUK MENDETEKSI OBJEK BINTANG PADA CITRA DIGITAL

BAB 2 LANDASAN TEORI

BAB IV PENGUJIAN SISTEM. koordinat pada tiap-tiap area, akses pixel, contrast streching, histogram. yang

SATIN Sains dan Teknologi Informasi

BAB II LANDASAN TEORI

PELACAKAN LEVEL KETINGGIAN AIR BERDASARKAN WARNA DENGAN BACKGROUND SUBSTRACTION

BINARISASI CITRA MENGGUNAKAN PENCOCOKAN PIKSEL

UJI COBA THRESHOLDING PADA CHANNEL RGB UNTUK BINARISASI CITRA PUPIL ABSTRAK

BAB II Tinjauan Pustaka

PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MENDETEKSI UANG LOGAM DENGAN METODE EUCLIDEAN

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

IMPLEMENTASI METODE HARMONIC MEAN FILTERDAN CANNY UNTUK MEREDUKSI NOISEPADA CITRA DIGITAL

BAB 2 TINJAUAN PUSTAKA

Aplikasi Pembesaran Citra Menggunakan Metode Nearest Neighbour Interpolation

BAB 2 TINJAUAN TEORETIS

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI. dari sudut pandang matematis, citra merupakan fungsi kontinyu dari intensitas cahaya

Implementasi Morphology Concept and Technique dalam Pengolahan Citra Digital Untuk Menentukan Batas Obyek dan Latar Belakang Citra

DETEKSI POSISI PLAT NOMOR KENDARAAN BERMOTOR BERDASARKAN AREA CITRA

Transkripsi:

J ~ ICON, Vol. 2 No. 2, Oktober 2014, pp. 133 ~ 139 133 DETEKSI KAWASAN HUTAN KOTA PADA CITRA RUPA BUMI KOTA KUPANG MENGGUNAKAN KOMPONEN WARNA RGB, HSV, YIQ DAN ALGORITMA PARALLELPIPED Wahjudi 1, Adriana Fanggidae 2, Emerensye S.Y. Pandie 3 1,2,3 Jurusan Ilmu Komputer, Fakultas Sains dan Teknik, Universitas Nusa Cendana ABSTRAK Pengolahan citra digital pada masa sekarang mempunyai cakupan aplikasi yang sangat luas dalam berbagai bidang kehidupan, antara lain penginderaan jauh. Salah satu penerapan penginderaan jauh yakni untuk mendeteksi kawasan hutan kota pada suatu wilayah tertentu dengan menggunakan algoritma parallelpiped pada komponen warna RGB, YIQ dan HSV. Masukan yang diberikan pada sistem adalah citra peta rupa bumi yang didapat dari aplikasi google earth. Pada proses deteksi dilakukan pengecekan piksel pada citra yang dideteksi apakah masuk dalam kategori hutan atau tidak. Setiap piksel yang terdeteksi sebagai area hutan kota kemudian ditandai. Pada citra hasil deteksi dilakukan proses penandaan komponen terhubung dan penapisan luas. Pengujian dilakukan pada citra yang tidak mengalami proses peregangan kontras dan citra yang mengalami proses peregangan kontras, dengan nilai p=3 dan p=4. Berdasarkan pengujian didapatkan hasil bahwa komponen warna YIQ menghasilkan tingkat kesesuaian yang baik yaitu sebesar 87,4753527 % (untuk citra yang tidak mengalami peregangan kontras) dan 81,89477178 % (untuk citra yang mengalami peregangan kontras) dengan nilai p = 3. Kata kunci : penginderaan jauh, paralelpiped, hutan kota, RGB, YIQ, HSV, penandaan komponen terhubung, tapis luas. ABSTRACT Detection of the City Forest Area in Kupang Topographical Image with RGB, HSV, YIQ Components of Color and Parallelpiped Algorithm Digital image processing at the present day has a very wide coverage application in various walks of life, among others are remote sensing. One of the remote sensing application is who detect city s forest area in a particular region by using algorithm paralelpiped classification to the RGB, YIQ and HSV colors component. Input that was given is a topographical image that obtained by google earth application. In the detection process will be done pixel checking to the detected, is it the forest category or not. Every pixel that detected as a city s forest area will be marked. In the detection result image, will be done connected component labeling process and extensive filter. Tests performed on images that do not undergo the contrast stretching process and the image that has undergone a contrast stretching process, with use of p = 3 and p = 4. Based on the testing showed that the YIQ color components produce a better of fitness is equal to 87.4753527% (for images that do not undergo contrast stretching), and 81.89477178% (for image contrast stretching experience) with p = 3. Key words : remote sensing, paralelpiped, forest city, rgb, yiq, hsv, connected component labeling, extensive filter. ISSN 2337-7631

134 ISSN 2337-7631 I. PENDAHULUAN Perkembangan teknologi dewasa ini membuat manusia ingin meningkatkan efektifitas dan efisiensi dengan teknologi informasi. Komputer mempunyai peran yang sangat besar dalam pengolahan data karena memiliki kemampuan komputasi tinggi, sehingga data dapat diolah menjadi sebuah informasi yang berguna bagi pemakai (user). Data tersebut bisa berupa gambar atau citra. Secara harafiah citra adalah gambar pada bidang dua dimensi. Ditinjau dari sudut pandang matematis, citra merupakan fungsi kontinyu dari intensitas cahaya pada bidang dua dimensi. Sumber cahaya menerangi objek-objek yang memantulkan kembali sebagian dari berkas cahaya tersebut. Pantulan cahaya ini ditangkap oleh alat-alat optik, misalnya mata pada manusia, kamera, scanner dan sebagainya, sehingga bayangan objek yang disebut citra tersebut terekam (Usman,2005). Penggunaan aplikasi pengolahan citra digital untuk menginterpretasi suatu informasi dari citra digital. seperti pada penelitian Segmentasi warna citra dengan deteksi warna HSV untuk mendeteksi objek (Putranto, 2010) yang memaparkan penerapan metode segmentasi warna dengan deteksi warna oleh Giannakopoulos yang menghasilkan objek segmen berupa citra blob sehingga dapat terdeteksi komputer. Pengolahan citra digital pada masa sekarang mempunyai cakupan aplikasi yang sangat luas dalam berbagai bidang kehidupan antara lain bidang arkeologi, astronomi, biomedis, bidang industri dan penginderaan jauh. Penginderaan jauh dapat dilakukan dengan menggunakan teknologi citra satelit untuk mengidentifikasi suatu daerah dengan karakteristik tertentu. Penerapan penginderaan jauh yakni untuk mendeteksi kawasan hutan kota pada suatu wilayah tertentu. Deteksi kawasan hutan kota dengan penginderaan jauh dapat dilakukan melalui foto udara maupun citra satelit. Untuk mendapatkan informasi dalam penginderaan jauh, maka dilakukan pengolahan citra digital yakni segmentasi daerah hutan pada citra digital yang memiliki ciri warna tertentu. Salah satu tujuan deteksi hutan kota adalah mengetahui tingkat ketersediaan, perubahan dan penggunaan kawasan hutan kota pada suatu wilayah. Informasi yang didapat dari penerapan penginderaan jauh tersebut dapat digunakan sebagai dasar pengembangan untuk berbagai kepentingan penelitian, perencanaan, dan pengembangan suatu wilayah. Algoritma parallelpiped merupakan salah satu metode yang dapat digunakan untuk melakukan klasifikasi setiap piksel dalam sebuah citra digital. Algoritma Parallepiped merupakan algoritma klasifikasi yang dapat memberikan kepekaan terhadap varian kategori dengan memperhitungkan nilai dari masing-masing rangkaian kategori nilai piksel sampel. Rangkaian kategori suatu piksel berupa ciri warna dari piksel tersebut. Komponen warna yang dapat digunakan sebagai ciri dari suatu piksel antara lain RGB, HSV dan YIQ. Komponen HSV dan YIQ merupakan hasil konversi dari komponen warna RGB. II. METODE PENELITIAN 2.1 Data Penelitian Input data yang digunakan pada penelitian ini berupa citra digital. Citra yang dimasukkan merupakan citra satelit berupa peta rupa bumi yang diambil aplikasi google earth. Citra digital yang digunakan berupa citra RGB dengan ukuran bervariasi mulai dari ukuran 128 x 128 hingga 1024 x 1024 piksel dengan dengan format 24 bit. 2.2 Peregangan Kontras Kontras suatu citra adalah distribusi terang dan gelap. Citra grayscale dengan kontras rendah maka akan terlihat terlalu gelap, terlalu terang atau terlalu abu-abu. Citra dengan kontras yang baik menampilkan rentangan nilai piksel yang lebar pada grafik histogramnya. J ~ ICON, Vol. 2 No. 2, Oktober 2014, pp. 133 ~ 139

J ~ ICON ISSN 2337-7631 135 Nilai piksel pada sebagian data citra penginderaan jauh hanya menempati bagian sempit pada kisaran nilai citra, sehingga pada tampilan citra asli tergambar dengan kontras yang rendah. Peregangan kontras adalah teknik yang sangat berguna untuk memperbaiki kontras citra, terutama citra yang memiliki kontras rendah. Peregangan kontras memperluas daerah nilai piksel. Teknik ini bekerja baik pada citra memiliki distribusi Gaussian atau mendekati distribusi Gaussian (Putra, 2010). Pada peregangan kontras, tiap piksel pada citra U ditransformasikan menggunakan persamaan (Balza dan Firdausy, 2005): O(i,j) = G (U(i,j)- P) + P (1) Dimana : i = baris piksel j = kolom piksel o(i,j) = nilai piksel sesudah ditransformasikan. u(i,j) =nilai piksel sebelum ditransformasikan. G =Koefisien penguatan kontras. P = nilai skala keabuan yang dipakai sebagai pusat pengontrasan. 2.3 Algoritma Parallelpiped Algoritma Parallepiped merupakan algoritma klasifikasi yang dapat memberikan kepekaan terhadap varian kategori, dengan memperhitungkan nilai dari masing-masing rangkaian kategori nilai piksel sampel. Suatu piksel tak dikenal dapat dikelaskan pada kisaran kategori kelas sesuai dengan wilayah dimana letak atau posisi piksel tersebut berada. Apabila letak nilai piksel di luar kisaran nilai semua kategori maka piksel tersebut dikatakan tak terklasifikasi (Danoedoro, 2012). Klasifikasi ini dapat dijelaskan dengan langkah-langkah sebagai berikut, a. Langkah 1: Inisialisasi sampel berupa kumpulan nilai piksel yang merepresentasikan warna daerah hutan kota. b. Langkah 2 : Dari kumpulan nilai sampel hitung nilai rerata dan simpangan baku dari nilai- nilai sampel. n BV ik µ k = i=1 (2) n dimana : µ k = nilai rerata sampel komponen warna k BV ik = nilai kecerahan piksel i pada komponen warna k n = jumlah piksel sampel sedangkan nilai simpangan baku dihitung dengan. s d = 1 n 1 n i=1 (BV ik µk ) 2 (3) dimana : s d = simpangan baku BV ik = nilai kecerahan piksel i pada komponen warna k µ k = nilai rerata sampel komponen warna k n = jumlah piksel sampel c. Langkah 3 : Nilai simpangan baku dari setiap komponen warna dikalikan dengan koefisien pengali p yang digunakan sebagai nilai panjang tiap sisi yang dibangun pada nilai rerata sebagai pusat kotak. Range box dibentuk dengan menentukan batas-batas nilai sebuah kelas. Batas nilai terendah dapat disebut sebagai batas bawah dan batas nilai tertinggi dapat disebut sebagai batas atas. Untuk menentukan nilai batas bawah dan batas atas dapat digunakan persamaan berikut : Pencarian Minimum Spanning Tree (MST) Dengan Teknik Pengkodean (Emsi M. Y. Monifani)

136 ISSN 2337-7631 sd p Batas atas = µ k + 2 sd p Batas bawah = µ k - (4) 2 dimana : s d = simpangan baku µ k = nilai rerata sampel ruang warna k p = nilai pengali d. Langkah 4 : Sebuah nilai piksel dikatakan masuk dalam range box apabila berada di antara nilai batas atas dan batas bawah pada semua komponen warna pada sebuah ruang warna. e. Langkah 5 : Dimulai dari piksel pada baris pertama kolom pertama, Apabila vektor piksel tersebut masuk ke dalam range kotak (box) sampel maka piksel tersebut ditandai sebagai kelas yang ditandai kotak tersebut. Hal tersebut dilakukan hingga baris terakhir kolom terakhir. Aspek yang harus diperhatikan dalam penerapan algoritma ini kemungkinan sebuah piksel dinyatakan sebagai piksel tak terklasifikasi. Besarnya nilai pengali p menentukan jumlah piksel yang tak terklasifikasi. Semakin besar nilai p, semakin besar ukuran tiap kotak, dan semakin kecil resiko suatu vektor piksel untuk tidak masuk ke kotak manapun. Akan tetapi hal tersebut dapat menyebabkan semakin kurang teliti hasil klasifikasi karena tingkat generalisasi pun semakin besar. 2.4 Penandaan Komponen Terhubung Penandaan Komponen Terhubung memeriksa suatu citra dan mengelompokkan setiap piksel pada citra ke dalam suatu komponen terhubung menurut aturan keterhubungan (4 atau 8-connectivity). Setiap piksel bertetangga yang tidak saling terhubung (disjoin) pada suatu citra akan diberi tanda (label) yang berbeda. Memisahkan dan memberikan tanda pada setiap komponen terhubung maupun tidak terhubung pada suatu citra memegang peranan sentral pada aplikasi beberapa analisis citra secara otomatis. Penandaan komponen terhubung dilakukan dengan memeriksa suatu citra, piksel per piksel (dari kiri ke kanan dan atas ke bawah ) untuk mengidentifikasi area piksel terhubung yaitu suatu area dari piksel berbatasan yang memiliki nilai intensitas yang sama atau berada dalam sebuah himpunan yang nilainya dapat disesuaikan. Penandaan komponen terhubung dapat dilakukan pada citra biner maupun citra keabuan (Putra, 2010). Periksa citra sampai menemukan piksel x (piksel dengan nilai intensitas yang dicari). Bila x telah ditemukan maka periksa nilai piksel tetangga dari x, yaitu piksel di atas dan di kiri dari x juga memeriksa kedua piksel diagonal atas dari x, sehingga ada 4 piksel tetangga x yang diperiksa, kemudian dilakukan pemeriksaan sebagai berikut : Bila kedua piksel tetangga bernilai 0 (tidak sama) maka berilah tanda label baru pada x. Bila hanya satu saja piksel tetangga tersebut benilai 1 (bernilai sama) maka beri tanda dari piksel tetangga tersebut pada x. Bila kedua piksel tetangga tersebut bernilai 1 (bernilai sama) maka beri tanda dari piksel tetangga tersebut pada x. Bila kedua piksel tetangga bernilai 1 dan memiliki tanda yang berbeda maka berilah salah satu tanda piksel tetangga tersebut dan buat catatan kedua tanda tersebut adalah ekuivalen. Untuk setiap kelompok equivalen yang anggotanya ditemukan di kelompok equivalen yang lain, anggota kedua kelompok tersebut digabungkan. III. HASIL DAN PEMBAHASAN Pengujian dilakukan pada citra uji yaitu 10 citra uji berupa citra rupa bumi di kota kupang yang akan diuji pada 4 kondisi, yakni citra tanpa proses peregangan kontras dengan nilai p = 3, citra tanpa J ~ ICON, Vol. 2 No. 2, Oktober 2014, pp. 133 ~ 139

J ~ ICON ISSN 2337-7631 137 proses peregangan kontras dengan nilai p = 4, citra mengalami proses peregangan kontras dengan nilai p = 3 dan citra mengalami proses peregangan kontras dengan nilai p = 4. 3.1 Hasil Hasil keluaran dari sistem yang dibuat pada penelitian ini yakni berupa citra yang merepresentasikan area yang mewakili kawasan hutan kota. Data latih yang digunakan berjumlah 4460 piksel yang merupakan bagian dari citra latih yang dianggap mewakili area hutan kota. Hasil output dari sistem yang dibuat dapat dilihat seperti pada gambar 1. Gambar 1 Hasil output dari sistem yang dibuat Kemudian dilakukan penandaan pada area pada citra yang diduga sebagai hutan kota berdasarkan pengamatan manual seperti dapat dilihat pada gambar 2. 3.2 Pembahasan Gambar 2 Hasil penandaan kawasan hutan kota berdasarkan pengamatan manual Hasil yang akan dibahas adalah hasil klasifikasi dengan menggunakan komponen warna RGB, YIQ dan HSV pada citra tanpa peregangan kontras dan citra yang mengalami peregangan kontras dengan nilai pengali p = 3 dan p = 4. Dari penandaan area yang terduga sebagai hutan kota yang dilakukan dapat dihitung luas daerah yang diduga sebagai hutan kota berdasarkan pengamatan. Luas daerah hutan kota pada setiap gambar dapat dilihat pada tabel 1. Citra Tabel 1 Hasil pengamatan secara manual Piksel terduga hutan kota (piksel) Luas area terduga hutan kota (m 2 ) Piksel terduga non hutan kota (piksel) Luas area terduga non hutan kota(m 2 ) Liliba 11.806 88.364,53865 108.694 813.543,5511 Tarus 24.802 66.392,84289 95.698 256.175,4003 Oesapa 20.275 271.548,5384 100.225 1.342.340,432 Lasiana 26.213 73.271,03448 94.287 263.552,6658 kota baru 1.600 6.265,359775 118.900 465.594,5483 Fontein 24.382 74.362,57711 96.118 293.149,9543 Undana 3.690 13.256,54867 116.810 419.647,0054 kota lama 3.072 6.958,150864 117.428 265.977,1288 pasir panjang 8.102 33.567,84949 112.398 465.682,4422 Oebobo 2.851 11.029,98601 117.649 455.161,9866 Pencarian Minimum Spanning Tree (MST) Dengan Teknik Pengkodean (Emsi M. Y. Monifani)

138 ISSN 2337-7631 Evaluasi dilakukan dengan membandingkan citra hasil deteksi dan hasil penandaan yang dilakukan berdasarkan pengamatan manual. Sebuah piksel dikatakan sesuai apabila nilai pada piksel pada koordinat tertentu pada citra hasil sama dengan nilai piksel pada koordinat yang sama pada citra hasil penandaan secara manual. Evaluasi dilakukan pada citra yang tidak mengalami peregangan kontras dan citra yang mengalami peregangan kontras dengan nilai p = 3 dan p = 4. Dari pembahasan sebelumnya didapat nilai rata-rata tingkat kesesuaian deteksi kawasan hutan kota menggunakan komponen warna RGB, YIQ dan HSV untuk 10 buah pada beberapa kondisi seperti pada tabel 2. Tabel 2 Rata-rata nilai tingkat kesesuaian deteksi kawasan hutan kota untuk komponen RGB, YIQ dan HSV Kondisi RGB YIQ HSV Citra tanpa kontras nilai p = 3 17,68962656 % 87,4753527 % 77,22887967 % Citra tanpa kontras nilai p = 4 13,69917012 % 72,9380083 % 52,06655602 % Citra dengan kontras nilai p = 3 23,50912863 % 81,89477178 % 0 % Citra dengan kontras nilai p = 4 19,58804979 % 80,66414938 % 16,80705394 % Dari tabel 2 dapat dilihat bahwa proses deteksi pada komponen HSV dengan nilai p = 3 pada citra yang telah mengalami proses peregangan kontras memberikan tingkat kesesuaian yang paling rendah dengan 0 %. Deteksi yang dilakukan dengan komponen warna HSV pada citra yang telah mengalami peregangan kontras tidak dapat melakukan proses deteksi dengan baik. Untuk proses deteksi pada citra yang tidak mengalami peregangan kontras penggunaan nilai pengali p = 3 memberikan kesesuaian yang lebih baik yakni 77,22887967 % dibandingkan.tingkat kesesuaian yang dihasilkan pada penggunaan nilai pengali p = 4 yakni 52,06655602 % Pada proses deteksi komponen warna RGB menghasilkan tingkat kesesuaian yang paling rendah dibandingkan dengan komponen warna YIQ dan HSV. Untuk deteksi pada citra yang tidak mengalami peregangan kontras dengan nilai p = 3 menghasilkan tingkat kesesuaian sebesar 17,68962656 %, sedangkan pada penggunaaan nilai p = 4 menghasilkan kesesuaian sebesar 13,69917012 %. Kemudian deteksi pada citra yang telah mengalami peregangan kontras dengan nilai p = 3 menghasilkan tingkat kesesuaian sebesar 23,50912863 %, sedangkan pada penggunaaan nilai p = 4 menghasilkan kesesuaian sebesar 19,58804979 %. Untuk komponen warna YIQ, proses deteksi menghasilkan tingkat kesesuaian yang paling baik jika dibandingkan dengan komponen warna RGB dan HSV, dimana deteksi dengan menggunakan nilai = 3 pada citra yang tidak mengalami proses peregangan kontras menghasilkan tingkat kesesuaian yang paling tinggi dengan 87,4753527 %. Untuk deteksi pada citra yang tidak mengalami peregangan kontras dengan nilai p = 4 menghasilkan tingkat kesesuaian sebesar 72,9380083 % yang lebih rendah dibandingkan dengan deteksi pada citra yang telah mengalami peregangan kontras dengan nilai p = 3 dan p = 4 yang menghasilkan tingkat kesesuaian sebesar 81,89477178 % dan 80,66414938 %. IV. KESIMPULAN DAN SARAN 4.1 KESIMPULAN 1) Pada proses deteksi kawasan hutan kota menggunakan komponen warna RGB, YIQ dan HSV pada citra yang tidak mengalami peregangan kontras diperoleh hasil tingkat kesesuaian sebagai berikut: Untuk penggunaan nilai p = 3 : RGB = 17,68962656 %, YIQ = 87,4753527 % dan HSV = 77,22887967 %. J ~ ICON, Vol. 2 No. 2, Oktober 2014, pp. 133 ~ 139

J ~ ICON ISSN 2337-7631 139 Untuk penggunaan nilai p = 4 : RGB (13,69917012 %), YIQ = 72,9380083 % dan HSV = 52,06655602 %. Sedangkan pada proses deteksi kawasan hutan kota menggunakan komponen warna RGB, YIQ dan HSV pada citra yang telah mengalami peregangan kontras diperoleh hasil tingkat kesesuaian sebagai berikut: Untuk penggunaan nilai p = 3 : RGB = 23,50912863 %, YIQ = 81,89477178 % dan HSV = 0 %. Untuk penggunaan nilai p = 4 : RGB = 19,58804979 %), YIQ = 80,66414938 % dan HSV = 16,80705394 %. Dari hasil di atas dapat disimpulkan bahwa tingkat kesesuaian yang paling baik diperoleh pada deteksi dengan menggunakan komponen warna YIQ, sehingga penggunaan komponen warna YIQ disarankan sebagai ciri warna yang paling baik dibandingkan komponen warna RGB dan YIQ. 2) Penggunaan nilai pengali p dapat mempengaruhi nilai kesesuaian yang dihasilkan. Pada penelitian ini pada kondisi kontras citra yang sama, penggunaan nilai p = 3 menghasilkan kesesuaian yang lebih baik dibandingkan penggunaan nilai p = 4. Hal ini disebabkan penggunaan nilai p yang terlalu besar akan menyebabkan range linepiped yang terlalu besar sehingga memungkinkan banyak piksel yang sebenarnya tidak mewakili hutan kota namun terdeteksi sebagai hutan kota. 4.2 SARAN 1) Melakukan pengujian klasifikasi menggunakan algoritma parallelpiped pada komponen warna yang lainnya seperti IHS, YUV dan sebagainya, serta menggunakan ciri lainnya selain ciri warna seperti penggunaan ciri bentuk dalam melakukan klasifikasi menggunakan algoritma parallelpiped untuk mendapatkan hasil deteksi yang lebih baik. 2) Menambahkan jumlah kategori untuk data latih agar sistem dapat membedakan kategori-kategori lahan yang memiliki kemiripan ciri. Misalnya untuk membedakan kategori lahan sawah, pepohonan, jalan raya, laut dan semak yang memiliki kemiripan ciri. 3) Menggunakan teknik atau algoritma lainnya untuk dikombinasikan dengan penggunaan algoritma parallelpiped sehingga diperoleh hasil yang lebih baik. DAFTAR PUSTAKA [1] Balza, A.,Firdausy, K., 2005. Teknik Pengolahan Citra menggunakan Delphi, Ardi Publishing, Yogyakarta. [2] Danoedoro, Projo. 2012, Pengantar Penginderaan Jauh Digital, Penerbit ANDI, Yogyakarta. [3] Putra, Darma, 2010, Pengolahan Citra Digital, Penerbit ANDI, Yogyakarta. [4] Putranto, Benedictus, 2010, Segmentasi warna citra dengan deteksi warna HSV untuk mendeteksi objek, Jurnal Informatika Volume 6 Nomor 2, Yogyakarta. [5] Usman, Ahmad, 2005. Pengolahan Citra Digital dan Teknik Pemrogramannya. GRAHA ILMU, Yogyakarta. Pencarian Minimum Spanning Tree (MST) Dengan Teknik Pengkodean (Emsi M. Y. Monifani)