PENGARUH TEMPERATUR CETAKAN PADA PENGECORAN SQUEEZE TERHADAP SIFAT FISIS DAN MEKANIS ALMINIUM DAUR ULANG (Al 6,4%Si 1,93%Fe)

dokumen-dokumen yang mirip
PENGEMBANGAN MEKANISME DAN KUALITAS PRODUKSI SEPATU KAMPAS REM BERBAHAN ALUMUNIUM DAUR ULANG DENGAN METODE PENGECORAN SQUEEZE

Momentum, Vol. 10, No. 2, Oktober 2014, Hal ISSN

PENGARUH JARAK DARI TEPI CETAKAN TERHADAP KEKUATAN TARIK DAN KEKERASAN PADA CORAN ALUMINIUM

Momentum, Vol. 10, No. 2, Oktober 2014, Hal ISSN

PENGEMBANGAN METODE PENGECORAN SQUEEZE UNTUK MENINGKATKAN KUALITAS SEPATU KAMPAS REM KENDARAAN BERMOTOR BERBAHAN ALUMUINUM DAUR ULANG

PENGARUH TEKANAN DAN TEMPERATUR CETAKAN TERHADAP STRUKTUR MIKRO DAN KEKERASAN HASIL PENGECORAN PADA MATERIAL ALUMINIUM DAUR ULANG

Momentum, Vol. 12, No. 1, April 2016, Hal ISSN , e-issn

Analisa Pengaruh Variasi Temperatur Tuang Pada Pengecoran...

Pengaruh Temperatur Bahan Terhadap Struktur Mikro

PENGARUH TEKANAN INJEKSI PADA PENGECORAN CETAK TEKANAN TINGGI TERHADAP KEKERASAN MATERIAL ADC 12

PENGUJIAN KEKUATAN TARIK PRODUK COR PROPELER ALUMUNIUM. Hera Setiawan 1* Gondangmanis, PO Box 53, Bae, Kudus 59352

PENGARUH TEMPERATUR TUANG DAN TEMPERATUR CETAKAN PADA HIGH PRESSURE DIE CASTING (HPDC) BERBENTUK PISTON PADUAN ALUMINIUM- SILIKON

K. Roziqin H. Purwanto I. Syafa at. Kata kunci: Pengecoran Cetakan Pasir, Aluminium Daur Ulang, Struktur Mikro, Kekerasan.

Pengaruh Tekanan dan Temperatur Die Proses Squeeze Casting Terhadap Kekerasan dan Struktur Mikro Pada Material Piston Komersial Lokal

PENGARUH PUTARAN TERHADAP LAJU KEAUSAN Al-Si ALLOY MENGGUNAKAN METODE PIN ON DISK TEST

ANALISIS STRUKTUR MIKRO CORAN PENGENCANG MEMBRAN PADA ALAT MUSIK DRUM PADUAN ALUMINIUM DENGAN CETAKAN LOGAM

PENGARUH Cu PADA PADUAN Al-Si-Cu TERHADAP PEMBENTUKAN STRUKTUR KOLUMNAR PADA PEMBEKUAN SEARAH

Analisa Pengaruh Penambahan Sr atau TiB Terhadap SDAS, Sifat Mekanis dan Fluiditas Pada Paduan Al-6%Si

L.H. Ashar, H. Purwanto, S.M.B. Respati. produk puli pada pengecoran evoporatif (lost foam casting) dengan berbagai sistem saluran.

ANALISA PENGARUH PENGECORAN ULANG TERHADAP SIFAT MEKANIK PADUAN ALUMUNIUM ADC 12

PENGARUH TEKANAN, TEMPERATUR DIE PADA PROSES SQUEEZE CASTING TERHADAP KEKERASAN DAN STRUKTUR MIKRO PISTON BERBASIS MATERIAL BEKAS

PENGARUH PENAMBAHAN Mg TERHADAP SIFAT KEKERASAN DAN KEKUATAN IMPAK SERTA STRUKTUR MIKRO PADA PADUAN Al-Si BERBASIS MATERIAL PISTON BEKAS

PENGUJIAN KEKERASAN DAN KOMPOSISI KIMIA PRODUK COR PROPELER ALUMUNIUM

PENGARUH TEMPERATUR TUANG DAN KANDUNGAN SILICON TERHADAP NILAI KEKERASAN PADUAN Al-Si

VARIASI PENAMBAHAN FLUK UNTUK MENGURANGI CACAT LUBANG JARUM DAN PENINGKATAN KEKUATAN MEKANIK

ANALISA PERBEDAAN SIFAT MEKANIK DAN STRUKTUR MIKRO PADA PISTON HASIL PROSES PENGECORAN DAN TEMPA

Pengaruh Tekanan, Temperatur Die Pada Proses Squeeze Casting Terhadap Kekerasan dan Struktur Mikro Pada Material Piston Berbasis Material Piston Bekas

BAB IV HASIL DAN PEMBAHASAN

Pengaruh Variasi Komposisi Kimia dan Kecepatan Kemiringan Cetakan Tilt Casting Terhadap Kerentanan Hot Tearing Paduan Al-Si-Cu

ANALISIS PEMBUATAN HANDLE REM SEPEDA MOTOR DARI BAHAN PISTON BEKAS. Abstrak

BAB IV ANALISA DAN PEMBAHASAN. Pembuatan spesimen dilakukan dengan proses pengecoran metode die

BAB IV HASIL DAN ANALISA. Gajah Mada, penulis mendapatkan hasil-hasil terukur dan terbaca dari penelitian

ANALISA PENGARUH AGING 400 ºC PADA ALUMINIUM PADUAN DENGAN WAKTU TAHAN 30 DAN 90 MENIT TERHADAP SIFAT FISIS DAN MEKANIS

STUDI KEKUATAN IMPAK PADA PENGECORAN PADUAL Al-Si (PISTON BEKAS) DENGAN PENAMBAHAN UNSUR Mg

KAJIAN JUMLAH SALURAN MASUK (INGATE) TERHADAP KEKERASAN DAN STRUKTUR MIKRO HASIL PENGECORAN Al-11Si DENGAN CETAKAN PASIR

BAB IV HASIL DAN ANALISA. pengujian komposisi material piston bekas disajikan pada Tabel 4.1. Tabel 4.1 Hasil Uji Komposisi Material Piston Bekas

ANALISIS SIFAT FISIS DAN MEKANIS ALUMINIUM (Al) PADUAN DAUR ULANG DENGAN MENGGUNAKAN CETAKAN LOGAM DAN CETAKAN PASIR

ISSN hal

PENGARUH PENAMBAHAN Sr ATAU TiB TERHADAP STRUKTUR MIKRO DAN FLUIDITAS PADA PADUAN Al-6%Si-0,7%Fe

TUGAS PENGETAHUAN BAHAN TEKNIK II CETAKAN PERMANEN

Analisa Pengaruh Aging 450 ºC pada Al Paduan dengan Waktu Tahan 30 dan 90 Menit Terhadap Sifat Fisis dan Mekanis

KAJIAN KOMPREHENSIF STRUKTUR MIKRO DAN KEKERASAN TERHADAP PADUAN Al-7,1Si-1,5Cu HASIL PENGECORAN DENGAN METODE EVAPORATIVE

ANALISIS HASIL PENGECORAN ALUMINIUM DENGAN VARIASI MEDIA PENDINGINAN

PENGGUNAAN 15% LUMPUR PORONG, SIDOARJO SEBAGAI PENGIKAT PASIR CETAK TERHADAP CACAT COR FLUIDITAS DAN KEKERASAN COR

ANALISA SIFAT MEKANIK PROPELLER KAPAL BERBAHAN DASAR ALUMINIUM DENGAN PENAMBAHAN UNSUR Cu. Abstrak

PENGARUH DEOKSIDASI ALUMINIUM TERHADAP SIFAT MEKANIK PADA MATERIAL SCH 22 Yusup zaelani (1) (1) Mahasiswa Teknik Pengecoran Logam

BAB I PENDAHULUAN. berkembangnya ilmu pengetahuan dan teknologi yang selalu. sehingga tercipta alat-alat canggih dan efisien sebagai alat bantu dalam

Perbaikan Sifat Mekanik Paduan Aluminium (A356.0) dengan Menambahkan TiC

BAB I PENDAHULUAN. Aluminium (Al) adalah salah satu logam non ferro yang memiliki. ketahanan terhadap korosi, dan mampu bentuk yang baik.

Kekuatan Tarik Dan Porositas Silinder Al-Mg-Si Hasil Die Casting Dengan Variasi Tekanan

PENGARUH TEMPERATUR TUANG DAN KETEBALAN BENDA TERHADAP KEKERASAN BESI COR KELABU DENGAN PENGECORAN LOST FOAM

Simposium Nasional RAPI XI FT UMS 2012 ISSN :

ANALISIS KEGAGALAN PISTON SEPEDA MOTOR BENSIN 110 cc

ANALISIS HASIL PENGECORAN SENTRIFUGAL DENGAN MENGGUNAKAN MATERIAL ALUMINIUM

BAB I PENDAHULUAN. Penemuan logam memberikan manfaat yang sangat besar bagi. kehidupan manusia. Dengan ditemukannya logam, manusia dapat

PENGARUH TEMPERATUR CETAKAN LOGAM TERHADAP KEKERASAN PADA BAHAN ALUMINIUM BEKAS

Jurnal Flywheel, Volume 1, Nomor 2, Desember 2008 ISSN :

BAB III METODE PENELITIAN

STUDI EKSPERIMEN PENGARUH WAKTU PENIUPAN PADA METODA DEGASSING JENIS LANCE PIPE, DAN POROUS PLUG TERHADAP KUALITAS CORAN PADUAN ALUMINIUM A356.

ANALISA SIFAT MEKANIS PISTON BEKAS HASIL PROSES TEMPA

BAB III METODOLOGI PENELITIAN. Studi Literatur. Persiapan Alat dan Bahan bahan dasar piston bekas. Proses pengecoran dengan penambahan Ti-B 0,05%

KARAKTERISTIK PENGECORAN LOST FOAM PADA BESI COR KELABU DENGAN VARIASI KETEBALAN BENDA

PENGARUH PENAMBAHAN Sr TERHADAP PERILAKU PERAMBATAN RETAK FATIK PADA PADUAN Al-6%Si-0,7%Fe

PEMBUATAN BRACKET PADA DUDUKAN CALIPER. NAMA : BUDI RIYONO NPM : KELAS : 4ic03

STUDI BAHAN ALUMUNIUM VELG MERK SPRINT DENGAN METODE TERHADAP SIFAT FISIS DAN MEKANIS

Pencegahan Terjadinya Retak Panas pada Proses Pengecoran Squeeze Benda Tipis Al-Si

ANALISIS SIFAT FISIS DAN MEKANIS ALUMUNIUM PADUAN Al, Si, Cu DENGAN CETAKAN PASIR

PENGARUH PERBEDAAN LAJU WAKTU PROSES PEMBEKUAN HASIL COR ALUMINIUM 319 DENGAN CETAKAN LOGAM TERHADAP STRUKTUR MIKRO DAN SIFAT MEKANIS

PENGARUH TEMPERATUR TUANG DAN KETEBALAN BENDA TERHADAP KEKERASAN BESI COR KELABU DENGAN PENGECORAN LOST FOAM

PENGARUH PENAMBAHAN NIKEL TERHADAP KEKUATAN TARIK DAN KEKERASAN PADA BESI TUANG NODULAR 50

EFEK PERLAKUAN PANAS AGING TERHADAP KEKERASAN DAN KETANGGUHAN IMPAK PADUAN ALUMINIUM AA ABSTRAK

ANALISA STRUKTUR MIKRO DAN SIFAT MEKANIK PADUAN ALUMINIUM HASIL PENGECORAN CETAKAN PASIR

EFEK PERLAKUAN PANAS AGING TERHADAP KEKERASAN DAN KETANGGUHAN IMPAK PADUAN ALUMINIUM AA Sigit Gunawan 1 ABSTRAK

PENGARUH KONSENTRASI Cu TERHADAP SIFAT MEKANIS PADUAN Al Cu PADA PROSES PEMBEKUAN SEARAH (UNIDIRECTIONAL SOLIDIFICATION)

11 BAB II LANDASAN TEORI

PENGARUH CHILLER PENDINGIN PADA KEKUATAN TARIK PRODUK COR PROPELER ALUMUNIUM

TUGAS AKHIR. Tugas Akhir ini Disusun Guna Memperoleh Gelar Sarjana Strata Satu Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah Surakarta

BAB I PENDAHULUAN. industri terus berkembang dan di era modernisasi yang terjadi saat. ini, menuntut manusia untuk melaksanakan rekayasa guna

Analisis Parameter Proses Pengecoran Squeeze Terhadap Cacat Porositas Produk Flens Motor Sungai

Studi Pengaruh Temperatur Tuang Terhadap Sifat Mekanis Pada Pengecoran Paduan Al-4,3%Zn Alloy

ANALISIS PROSES TEMPERING PADA BAJA DENGAN KANDUNGAN KARBON 0,46% HASILSPRAY QUENCH

SATUAN ACARA PERKULIAHAN MATA KULIAH TEKNIK PENGECORAN KODE / SKS : KK / 2 SKS. Sub Pokok Bahasan dan Sasaran Belajar

ANALISA PERBEDAAN SIFAT MEKANIK DAN STRUKTUR MIKRO PADA PISTON HASIL PROSES PENGECORAN DAN TEMPA

REDESAIN DAPUR KRUSIBEL DAN PENGGUNAANNYA UNTUK MENGETAHUI PENGARUH PEMAKAIAN PASIR RESIN PADA CETAKAN CENTRIFUGAL CASTING

BAB I PENDAHULUAN. Aluminium merupakan logam ringan yang mempunyai sifat ketahanan

ADC 12 SEBAGAI MATERIAL SEPATU REM MENGGUNAKAN PENGECORAN HIGH PRESSURE DIE CASTING DENGAN VARIASI TEMPERATUR PENUANGAN

ANALISIS PERBANDINGAN MODEL CACAT CORAN PADA BAHAN BESI COR DAN ALUMINIUM DENGAN VARIASI TEMPERATUR TUANG SISTEM CETAKAN PASIR

BAB 1 PENDAHULUAN. Silinder liner adalah komponen mesin yang dipasang pada blok silinder yang

ANALISA PENGARUH BEBAN TERHADAP LAJU KEAUSAN AL-Si ALLOY DENGAN METODE PIN ON DISK TEST

NASKAH PUBLIKASI ILMIAH

I. PENDAHULUAN. Aluminium merupakan logam yang banyak digunakan dalam komponen

TUGAS AKHIR. BIDANG TEKNIK PRODUKSI DAN PEMBENTUKAN MATERIAL PENGARUH PENAMBAHAN LARUTAN MnCl2.H2O TERHADAP SIFAT MEKANIK PADUAN ALUMINIUM AA 7075

BAB I PENDAHULUAN. dimana logam dicairkan dalam tungku peleburan kemudian. dituangkan kedalam rongga cetakan yang serupa dengan bentuk asli

BAB III TINJAUAN PUSTAKA

Perubahan Nilai Kekerasan dan Struktur Mikro Al-Mg-Si Akibat Variasi Temperatur Pemanasan. Disusun Oleh

TUGAS AKHIR PENGARUH ELEKTROPLATING TERHADAP SIFAT FISIS DAN MEKANIS ALUMINIUM PADUAN

BAB I PENDAHULUAN. yaitu logam besi (ferro) dan logam bukan besi (non ferro). Logam ferro yaitu

SEMINAR NASIONAL ke-8 Tahun 2013 : Rekayasa Teknologi Industri dan Informasi

ANALISA PENGARUH VARIASI MEDIA QUENCHING DAN PENAMBAHAN SILIKON PADA PADUAN Al-Si REMELTING VELG SEPEDA MOTOR TERHADAP SIFAT FISIK DAN MEKANIS SKRIPSI

Analisis Sifat Fisis dan Mekanis Pada Paduan Aluminium Silikon (Al-Si) dan Tembaga (Cu) Dengan Perbandingan Velg Sprint

Transkripsi:

PENGARUH TEMPERATUR CETAKAN PADA PENGECORAN SQUEEZE TERHADAP SIFAT FISIS DAN MEKANIS ALMINIUM DAUR ULANG (Al 6,4%Si 1,93%Fe) Helmy Purwanto 1), Suyitno 2) dan Prio Tri Iswanto 2) 1) Program Studi Teknik Mesin Universitas Wahid Hasyim Semarang Jl. Menoreh Tengah X/22 Sampangan Semarang 50236 2) Jurusan Teknik Mesin dan Industri Universitas Gadjah Mada Yogyakarta Jl. Grafika No. 2 Bulaksumur Jogjakarta e-mail : helmy_uwh@yahoo.co.id; suyitno@ugm.ac.id; priyotri@yahoo.com Abstrak Aluminium merupakan logam yang banyak digunakan dalam berbagai aplikasi. Untuk menghasilkan produk cor yang unggul dengan mengguanakan bahan daur ulang dapat dilakukan dengan metode pengecoran squeeze. Pegecoran squeeze adalah pengecoran dengan pengaruh tekanan pada saat pembekuan logam cair dan merupakan pengabungan antara pengecoran dan penempaan. Penelitian ini bertujuan untuk mempelajari pengaruh temperatur cetakan terhadap struktur mikro dan kekerasan hasil pengecoran squeeze (squeeze casting) pada paduan Al 6,4%Si 1,93%Fe. Paduan dilebur pada dapur krusibel dan dituang pada temperatu 700 C pada cetakan yang berbentuk die-punch yang dipanaskan pada temperatur 300, 400, 500 C dan dengan tekanan squeeze 0 (tuang) dan 100 MPa. Hasil pengujian menunjukkan bahwa pengecoran squeeze akan menurunkan dan meratakan ukuran struktur silicon dan meningkatkan kekerasan. Semakin tinggi temperatur cetakan, SDAS (Scondary Denrite Arm Spacing) semakin besar dan harga kekerasan brinell semakin rendah. Kata kunci: pengecoran squeeze, temperatu cetakan, struktruk mikro, kekerasan. PENDAHULUAN Aluminium merupakan logam yang banyak digunakan dalam berbagai aplikasi meliputi peralatan rumah tangga, kontruksi, komponen otomotif dan pesawat terbang (aerospace). Pemakaian aluminium diperkirakan pada masa mendatang masih terbuka luas baik sebagai material utama maupun material pendukung dengan ketersediaan biji aluminium di bumi yang melimpah. Aluminium disamping mempunyai massa jenis kecil, tahan terhadap korosi, daya hantar listrik yang baik, jika dipadu dengan unsur dan diproses dengan metode tertentu akan mempunyai sifat fisis dan mekanis yang unggul. Komponen otomotif sebagian besar mengunakan paduan alumunium silicon (Al-Si) yang proses produksinya menggunakan proses pengecoran. Silikon (Si) merupakan salah satu unsur yang jika dipadu dengan aluminium mampu meningkatkan sifat mekanis, mampu cor (castability), mampu mesin (Brown, 1999). Pengecoran squeeze adalah pengeoran bertekanan dengan menggunakan cetakan berbentuk die-punch di mana tekanan langsung diberikan pada logam cair pada saat terjadi pembekuan. Pengecoran ini pertama kali diperkenalkan oleh Chernov pada tahun 1878 di Russia (Tjitro dan Firdaus, 2001). Dengan menggunakan cetakan logam dan pengaruh tekanan maka akan terjadi perpindahan panas yang relatif cepat dan mengurangi cacat porositas serta penyusutan. Pengecoran squeeze juga disebut squeeze forging atau penempaan logam cair adalah proses pengecoran dengan memberikan tekanan ekternal saat pembekuan dan merupakan penggabungan keunggulan proses tempa (forging) dan cor (casting). Proses squeeze, mampu meningkatkan sifat fisis dan mekanis terutama pada material dengan paduan dasar Aluminium dan Magnesium (Ghomashchi dkk., 1998). Squeeze pada paduan dasar aluminium mampu menghasilkan coran yang mempunyai propertis seperti hasil tempa (Yue, 1997). Berdasarkan mekanisme pengisian logam cair kedalam cetakan, pengecoran squeeze dibagi menjadi dua kelompok yaitu direct squeeze casting (DSC), dan in-direct squeeze casting (ISC) (Yue et.al.,1996). Industri pengecoran aluminium lokal terutama industri kecil menengah, disamping menggunakan proses pengecoran tuang (gravity casting) material yang digunakan adalah Al-Si daur ulang dan dalam proses peleburan banyak menggunakan peralatan dari besi (mengandung unsur Fe) sehingga dalam proses unsur Fe akan bertambah pada paduan. Fe dalam paduan Al-Si merupakan unsur pengotor yang menyebabkan turunnya kekuatan dan ketahanan terhadap korosi Prosiding Seminar Nasional Sains dan Teknologi ke-2 Tahun 2011 Fakultas Teknik Universitas Wahid Hasyim Semarang D.37

D.8. Pengaruh Temperatur Cetakan pada Pengecoran Squeeze terhadap Sifat Fisis... (Helmy Purwanto) (Smith, 1993), Fe lebih dari 2% pada Al Si akan memicu terbentuknya fase intermetalik AlSiFe yang dapat mengurangi kekuatan tarik (Fang, dkk., 2000), dan ini merupakan masalah yang utama dalam industri pengecoran aluminium daur ulang (Mondolfo, 1976). Penelitian ini menggunakan alumunium daur ulang dimana paduan mengandung unsure Fe 1,93%, dengan proses pengecoran squeeze (direct squeeze casting), selanjutnya dipelajari pengaruh temperatur cetakan terhadap struktur mikro dan sifat mekanis serta sebagai pembanding dilakukan pengecoran dengan metode tuang (gravity casting) pada paduan yang sama. CARA PENELITIAN Paduan aluminium dengan komposisi seperti ditunjukkan pada Table 1 dalam bentuk ingot dilebur pada dapur krusibel dan dituang pada temperatur 700 C pada cetakan (die) yang telah dipanaskan pada variasi 300, 400 dan 500 C. Untuk menghindari efek pengelasan antara die dan punch serta coran, cetakan dilapisi die coat pasta yang dicairkan dan disemprotkan. Die coat pasta dengan merk dagang Acheson lubrication beyond oil dari bahan vermiculite dan mica. Setelah paduan dituang punch diletakkan pada die dan ditekan dengan menggunakan penggerak tenaga hidrolis dan ditahan selama 100 detik sebesar 100 MPa. Dimensi cetakan dengan sistim die-punch ditunjukkan pada Gambar 1. Hasil pengecoran dibuat specimen untuk dilakukan pengamatan struktur mikro dan uji kekerasan. Spesimen pengamatan struktur mikro dan uji kekerasan diperoleh dari hasil pengecoran yang berbentuk silindris. Pengamatan dan pengujian dilakukan pada bagian atas, tengah dan bawah dan tiap-tiap bagian diamati dan diuji mulai dari daerah tepi ke sumbu. Pengamatan struktur mikro dilakukan dengan menggunakan mikroskop optik dan pengukuran kekerasan dengan mengunakan pengujian Brinell (Brinell Hardness) dengan indentor bola baja 2,5 mm dengan pembebanan 60 kgf. Gambar 1. Disain die-punch Tabel 1. Komposisi kimia paduan (%) Si Fe Cu Mn Mg Zn Ti Cr Ni Pb Sn Al 6,43 1,.933 0,319 0,0502 0,0281 0,3121 0,1110 0,0140 0,0206 0,0429 0,0096 90,72 Tabel 2. Variasi perlakuan No Temperatur Tuang Temperatur Cetakan (ºC) (ºC) Besar Tekanan (MPa) 1 700 300 0 2 700 400 0 3 700 500 0 4 700 300 100 5 700 400 100 6 700 500 100 D.38 ISBN. 978-602-99334-0-6

HASIL DAN PEMBAHASAN 1. Hasil Pengamatan Struktur Mikro a b Gambar 2. Hasil pengecoran (a). Tuang, (b). Squeeze Gambar 2. menunjukan perbedaan hasil pengecoran tuang dengan pengecoran squeeze. Pengecoran tuang menunjukan cacat penyusutan pada bagian atas dengan kedalaman antara 10 hingga 20 mm pada dimensi spesimen tinggi 70 mm dan diameter 52 mm. Hal ini menunjukkan bahwa dengan squeeze dapat menghasilkan produk tanpa penyusutan dengan bentuk mendekati ukuran standarnya (near-net shape). a \b c Gambar 3. Struktur mikro spesimen pada temperatur cetakan 400 C, tekanan 0 MPa (pengecoran tuang) pada jarak (a). 0 mm, (b). 12 mm, (c). 24 mm dari sumbu Gambar 4. Struktur mikro spesimen pada temperatur cetakan 300 C, tekanan 0 MPa (pengecoran tuang) pada jarak (a). 0 mm, (b). 12 mm, (c). 24 mm dari sumbu Gambar 5. Struktur mikro spesimen pada temperatur cetakan 500 C, tekanan 0 MPa (pengecoran tuang) pada jarak (a). 0 mm, (b). 12 mm, (c). 24 mm dari sumbu Prosiding Seminar Nasional Sains dan Teknologi ke-2 Tahun 2011 Fakultas Teknik Universitas Wahid Hasyim Semarang D.39

D.8. Pengaruh Temperatur Cetakan pada Pengecoran Squeeze terhadap Sifat Fisis... (Helmy Purwanto) Gambar 6. Struktur mikro spesimen pada temperatur cetakan 300 C, tekanan 100 MPa pada jarak (a). 0 mm, (b). 12 mm, (c). 24 mm dari sumbu Gambar 7. Struktur mikro spesimen pada temperatur cetakan 400 C, tekanan 100 MPa pada jarak (a). 0 mm, (b). 12 mm, (c). 24 mm dari sumbu Gambar 8. Struktur mikro spesimen pada temperatur cetakan 500 C tekanan 100 MPa pada jarak (a). 0 mm, (b). 12 mm, (c). 24 mm dari sumbu Struktur mikro diperoleh pada jarak 0 mm, 12 mm dan 24 mm dari sumbu hasil pengecoran tuang pada variasi temperatur cetakan yang diperlihatkan Gambar 3 5 dan struktur mikro diperoleh pada jarak 0 mm, 12 mm dan 24 mm dari sumbu hasil pengecoran dengan tekanan 100 MPa (squeeze) pada variasi temperatur cetakan yang diperlihatkan Gambar 4 8. Struktur silikon yang berbentuk serpih terlihat semakin kasar secara signifikan seiring dengan peningkatan temperatur cetakan. Pengkasaran struktur silikon ini disebabkan semakin tinggi temperatur cetakan maka perbedaan atau gradien dengan temperatur logam cair semakin rendah yang mengakibatkan laju pembekuan yang semakin lambat. Pengecoran tuang (tekanan 0) pada temperatur cetakan 300 C dan 400 C menunjukkan semakin ke tepi coran atau jarak 24 mm dari sumbu menunjukkan struktur silikon semakin halus, ini juga disebabkan daerah tepi mengalami laju pembekuan yang lebih cepat dibandingkan dengan daerah sumbu karena pengaruh gradien temperatur antar muka cetakan dengan logam cair. Tetapi tidak signifikan pada pengecoran dengan tekanan 100 MPa (squeeze). Struktur silikon relatif cenderung sama. Homogenitas struktur silikon dengan pengaruh tekanan akan lebih merata baik pada daerah tepi maupun daerah tengah atau sumbu. Hal berbeda ditunjukkan pada temperatur cetakan 500 C, dengan gradien temperatur yang rendah mengakibatkan laju pendinginan antara daerah tepi dan daerah sumbu coran tidak terlalu D.40 ISBN. 978-602-99334-0-6

Kekerasan (BHN) SDAS berbeda. Laju pendinginan yang lambat menyebabkan struktur silikon yang kasar baik pada daerah sumbu atau tengah maupun daerah tepi. 57 55 53 51 49 47 0 MPa, 300 C 0 Mpa, 400 C 0 Mpa, 500 C 100 Mpa, 300 C 100 Mpa, 400 C 100 Mpa, 500 C 45 0 12 24 Jarak dari sumbu (mm) Gambar 9. Ukuran SDAS pada perubahan temperatur cetakan dan jarak pengamatan Ukuran SDAS pada penambahan temperatur cetakan pada setiap pengamatan 0, 12, 24 mm dari sumbu hasil pengecoran dengan pengecoran tuang dan squeeze ditunjukkan pada gambar 9. Seperti pada pengamatan mikro dari grafik membuktikan bahwa ukuran SDAS dapat dipengaruhi oleh temperatur cetakan dan tekanan. Semakin tinggi temperatur cetakan maka semakin besar ukuran SDAS. Ukuran SDAS pada pengecoran squeeze antara jarak pengamatan 0, 12, 24 mm pada temperatur cetakan yang sama menunjukan perbedaan yang kecil. Hal ini dapat memperkuat analisa bahwa struktur silikon relatif lebih merata dibandingkan pengecoran tampa tekanan. 2. Kekerasan Gambar 10. memperlihatkan hubungan antara temperatur cetakan dengan kekerasan pada temperatur tuang 700 C, tekanan 100 MPa dan pembanding dilakulan pengecoran tuang (tekanan 0). 75 70 65 60 55 50 45 Atas P=100 MPa Tengah P=100 MPa Baw ah P=100 MPa Atas P=0 Tengah P=0 Baw ah P=0 40 250 300 350 400 450 500 550 Temperatur Cetakan ( C) Gambar 10. Harga kekerasan Brinell pada variasi temperatur cetakan Hasil pengujian menunjukkan pada tekanan konstan kekerasan menurun dengan semakin tingginya temperatur cetakan sebagaimana dilaporkan oleh Duskiradi dan Tjitro, (2002) pada material piston komersial lokal. Kekerasan turun rata rata 6,16% dari temperatur 300 C ke 400 C serta 15,50% dari temperatur 400 C ke 500 C. Kekerasan spesimen bagian bawah pada temperatur cetakan 300 C adalah 71,84 BHN turun menjadi 66,91 BHN pada temperatur cetakan 400 C serta 55,51 BHN pada temperatur cetakan 500 C. Dari hasil ini pengaruh struktur mikro sangat signifikan terhadap kekerasan, terlihat struktur silikon semakin kasar atau jarak dendrit sekunder atau SDAS yang semakin besar pada temperatur cetakan 500 C (Gambar 5 dan Gambar 8) mengakibatkan kekerasan yang rendah. Kenyataan ini menunjukkan bahwa perubahan temperatur cetakan sangat signifikan pengaruhnya Prosiding Seminar Nasional Sains dan Teknologi ke-2 Tahun 2011 Fakultas Teknik Universitas Wahid Hasyim Semarang D.41

D.8. Pengaruh Temperatur Cetakan pada Pengecoran Squeeze terhadap Sifat Fisis... (Helmy Purwanto) terhadap kekerasan produk hasil direct squeeze casting maupun pengecoran tuang. Hal ini disebabkan semakin tinggi temperatur cetakan maka laju pembekuan akan semakin lambat atau kecil. Pada temperatur cetakan 300 C laju pembekuan lebih cepat karena perbedaan suhu yang besar antar muka cetakan dengan material. Rata rata kekerasan pada pengecoran dengan tekanan (squeeze) lebih tinggi terhadap pengecoran tuang. Perbedaan atau perubahan kekerasan yang paling besar antara pengecoran tuang dengan pengecoran squeeze nampak pada temperatur cetakan 400 C. Temperatur 400 C cukup efektif pengaruh tekana terhadap pembekuan, sedangkan kekerasan yang tinggi pada temperatur 300 C lebih dipengaruhi oleh kecepatan pembekuan. Jadi tekanan pada saat pembekuan berpengaruh relatif lebih besar pada temperatur cetakan 400 C. KESIMPULAN 1. Pemberian tekanan ekternal pada proses pengecoran squeeze (direct squeeze casting) berpengaruh pada produk coran, struktur mikro dan kekerasan aluminium daur ulang (Al- 6,4%Si-1,93%Fe). 2. Struktur mikro pada pengecoran tuang maupun squeeze berbentuk serpih, dengan squeeze mampu memperkecil ukuran SDAS dengan distribusi ukuran yang merata antara daerah tepi ke sumbu. 3. Semakin tinggi temperatur tuang maka kekerasan akan semakin turun. 4. Kekerasan pada tiap-tiap bagian spesimen (atas, tengah, bawah) pada pengecoran squeeze lebih merata. Kekerasan Brinell naik rata-rata 20.8% dari metode tuang ke metode squeeze tetapi tidak signifikan pada penambahan tiap tekanan dan pengaruh tekanan yang paling besar pada temperatur 400 C. DAFTAR PUSTAKA ASM Specialty Hand Book, 1993, Aluminium and Aluminium Alloys, Ohio. Brown, J.R., 1999, Non-Ferrous Foundryman s Handbook, Butterworth Heinemann, Eleventh Edition, Oxford, page : 82-83. Champbel,J.,2000, Castings,Butterworth Heinemann, Oxford. Fleemings,M.C., 1974, Solidification Processing, Mc. Graw-Hill Book Company, pp. 134-135. Ghomashchi, M.R., and Vikhrov A., 1998, Squeeze Casting : an overview, Journal of Materials Prosessing Technology, vol. 101, Elseiver, pp. 1-9. Mondolfo, L.F., 1976, Aluminum Alloys: Structure and Properties, Butterworths, London. Surdia, T., dan Chijiiwa K., 1975, Teknik Pengecoran Logam, P.T. Pradnya Paramita, Jakarta, pp. 13-16. Surdia, T. dan Saito, S., 1992, Pengetahuan Bahan Teknik, P.T. Pradnya Paramita, Jakarta, pp. 129-142. Yue, T.M., 1997, Squeeze Casting of High-Strength Alumunium Wrought Alloy AA7010, Journal of Material Processing Technology, vol. 66, pp. 179-185. Yue, T.M., and Chadwick G.A., 1995, Squeeze Casting of Light Alloys and Their Composites, Journal of Material Processing Technology, vol. 58, pp. 302-307. D.42 ISBN. 978-602-99334-0-6