DAFTAR GAMBAR. Gambar 2.1 Denah Lantai Dua Existing Arsitektur II-3. Tegangan dan Gaya pada Balok dengan Tulangan Tarik

dokumen-dokumen yang mirip
DAFTAR ISI KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SIMBOL

TUGAS AKHIR PERENCANAAN ULANG SISTEM STRUKTUR FLAT PLATE GEDUNG PERLUASAN PABRIK BARU PT INTERBAT - SIDOARJO YANG MENGACU PADA SNI

TUGAS AKHIR DESAIN ALTERNATIF STRUKTUR GEDUNG YAYASAN PRASETIYA MULYA DENGAN LANTAI BETON BERONGGA PRATEGANG PRACETAK

DAFTAR ISI. 1.1 Latar Belakang Perumusan Masalah Tujuan Batasan Masalah Manfaat... 4 BAB II TINJAUAN PUSTAKA...

PERANCANGAN STRUKTUR ATAS GEDUNG CONDOTEL MATARAM CITY YOGYAKARTA. Oleh : KEVIN IMMANUEL KUSUMA NPM. :

PERENCANAAN GEDUNG BETON BERTULANG BERATURAN BERDASARKAN SNI DAN FEMA 450

PERANCANGAN STRUKTUR HOTEL DI JALAN LINGKAR UTARA YOGYAKARTA

PERANCANGAN STRUKTUR ATAS STUDENT PARK APARTMENT SETURAN YOGYAKARTA

ANALISIS DAN DESAIN STRUKTUR TAHAN GEMPA DENGAN SISTEM BALOK ANAK DAN BALOK INDUK MENGGUNAKAN PELAT SEARAH

PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA. Oleh : LEONARDO TRI PUTRA SIRAIT NPM.

3.4.5 Beban Geser Dasar Nominal Statik Ekuivalen (V) Beban Geser Dasar Akibat Gempa Sepanjang Tinggi Gedung (F i )

BAB I PENDAHULUAN. Perkembangan teknologi dibidang pembangunan gedung bertingkat semakin

BAB II TINJAUAN PUSTAKA

BAB III METODE PENELITIAN

PERANCANGAN ULANG STRUKTUR ATAS GEDUNG PERKULIAHAN FMIPA UNIVERSITAS GADJAH MADA

TUGAS AKHIR MODIFIKASI PERENCANAAN GEDUNG HOTEL IBIS PADANG MENGGUNAKAN FLAT SLAB BERDASARKAN SNI

MODIFIKASI STRUKTUR GEDUNG WISMA SEHATI MANOKWARI DENGAN MENGGUNAKAN SISTEM GANDA

ANALISIS DINAMIK RAGAM SPEKTRUM RESPONS GEDUNG TIDAK BERATURAN DENGAN MENGGUNAKAN SNI DAN ASCE 7-05

PERANCANGAN GEDUNG APARTEMEN DI JALAN LAKSAMANA ADISUCIPTO YOGYAKARTA

BAB III METODOLOGI PENELITIAN

TUGAS AKHIR PERENCANAAN STRUKTUR ATAS DAN STRUKTUR BAWAH GEDUNG BERTINGKAT 25 LANTAI + 3 BASEMENT DI JAKARTA

ANALISIS DAN DESAIN STRUKTUR FLAT PLATE BETON BERTULANG UNTUK GEDUNG EMPAT LANTAI TAHAN GEMPA

TUGAS AKHIR PERENCANAAN GEDUNG DUAL SYSTEM 22 LANTAI DENGAN OPTIMASI KETINGGIAN SHEAR WALL

BAB II TINJAUAN PUSTAKA

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS ATMA JAYA YOGYAKARTA YOGYAKARTA

BAB III METODOLOGI PENELITIAN. basement dan Roof floor. Dimana pelat lantai yang digunakan dalam perencanaan

BAB III METODOLOGI PERENCANAAN

UCAPAN TERIMA KASIH. Jimbaran, September Penulis

UNIVERSITAS MERCU BUANA FAKULTAS TEKNIK PROGRAM STUDI TEKNIK SIPIL 2017

BAB III LANDASAN TEORI. untuk bangunan gedung (SNI ) dan tata cara perencanaan gempa

ANALISA PERBANDINGAN PERILAKU STRUKTUR PADA GEDUNG DENGAN VARIASI BENTUK PENAMPANG KOLOM BETON BERTULANG

ANALISIS DAN DESAIN STRUKTUR BETON BERTULANG UNTUK GEDUNG TINGKAT TINGGI

BAB II TINJAUAN PUSTAKA Pendahuluan Permasalahan Yang Akan Diteliti 7

STUDI DESAIN STRUKTUR BETON BERTULANG TAHAN GEMPA UNTUK BENTANG PANJANG DENGAN PROGRAM KOMPUTER

BAB III LANDASAN TEORI. dasar ke permukaan tanah untuk suatu situs, maka situs tersebut harus

PERENCANAAN STRUKTUR GEDUNG KANTOR SEWAKA DHARMA MENGGUNAKAN SRPMK BERDASARKAN SNI 1726:2012 DAN SNI 2847:2013 ( METODE LRFD )

Gambar 4.9 Tributary area C 12 pada lantai Gambar 5.1 Grafik nilai C-T zona gempa Gambar 5.2 Pembebanan kolom tepi (beban mati)... 7

STUDI KOMPARATIF PERANCANGAN STRUKTUR GEDUNG TAHAN GEMPA DENGAN SISTEM RANGKA GEDUNG BERDASARKAN TATA CARA ASCE 7-05 DAN SNI

DESAIN TAHAN GEMPA BETON BERTULANG PENAHAN MOMEN MENENGAH BERDASARKAN SNI BETON DAN SNI GEMPA

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN

PERENCANAAN ULANG STRUKTUR GEDUNG TUNJUNGAN PLAZA V SURABAYA DENGAN METODE SISTEM GANDA. Huriyan Ahmadus ABSTRAK

PERHITUNGAN STRUKTUR GEDUNG UNIVERSAL MEDICAL CENTER DI PANDAAN DENGAN MENGGUNAKAN SISTEM GANDA (DUAL SISTEM) Alexander Vedy Christianto ABSTRAK

APLIKASI BUILDING INFORMATION MODELING (BIM) DALAM PERANCANGAN BANGUNAN BETON BERTULANG 4 LANTAI ABSTRAK

BAB IV ANALISIS STRUKTUR ATAS

BIDANG STUDI STRUKTUR DEPARTEMEN TEKNIK SIPIL FAKULTAS TEKNIK USU MEDAN 2013

ANALISIS DAN DESAIN STRUKTUR RANGKA GEDUNG 20 TINGKAT SIMETRIS DENGAN SISTEM GANDA ABSTRAK

PERANCANGAN STRUKTUR HOTEL PESONA TUGU YOGYAKARTA

2.5.3 Dasar Teori Perhitungan Tulangan Torsi Balok... II Perhitungan Panjang Penyaluran... II Analisis dan Desain Kolom...

TUGAS AKHIR ANALISA PEMBESARAN MOMEN PADA KOLOM (SRPMK) TERHADAP PENGARUH DRIFT GEDUNG ASRAMA MAHASISWI UNIVERSITAS TRUNOJOYO MADURA

BAB 3 METODE PENELITIAN

MODIFIKASI GEDUNG BANK CENTRAL ASIA CABANG KAYUN SURABAYA DENGAN MENGGUNAKAN SISTEM GANDA

MODIFIKASI PERENCANAAN MENGGUNAKAN METODE PRACETAK DENGAN SHERWALL PADA GEDUNG BANK BCA CABANG RUNGKUT SURABAYA

BAB IV ANALISIS STRUKTUR

BAB III LANDASAN TEORI

BAB III METODOLOGI PENELITIAN

Modifikasi Struktur Gedung Graha Pena Extension di Wilayah Gempa Tinggi Menggunakan Sistem Ganda

BAB 4 HASIL DAN PEMBAHASAN

PEMODELAN DINDING GESER BIDANG SEBAGAI ELEMEN KOLOM EKIVALEN PADA MODEL GEDUNG TIDAK BERATURAN BERTINGKAT RENDAH

PERANCANGAN HOTEL 7 LANTAI DAN 1 BASEMENT YOGYAKARTA (SNI 1726:2012 & SNI 2847:2013)

BAB III METODOLOGI PENELITIAN

BAB III METODELOGI PENELITIAN

BAB III METODOLOGI PENELITIAN. untuk mencari ketinggian shear wall yang optimal untuk gedung perkantoran 22

BAB II DASAR DASAR PERENCANAAN STRUKTUR ATAS. Secara umum struktur atas adalah elemen-elemen struktur bangunan yang

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. Menurut Iswandi Imran (2014) konsep dasar perencanaan struktur

BAB III METODE PENELITIAN SKRIPSI

BAB III METODE PENELITIAN

DESAIN DINDING GESER TAHAN GEMPA UNTUK GEDUNG BERTINGKAT MENENGAH. Refly. Gusman NRP :

PERENCANAAN STRUKTUR RANGKA BAJA BERATURAN TAHAN GEMPA BERDASARKAN SNI DAN FEMA 450

ANALISIS STRUKTUR MODEL BANGUNAN SEKOLAH DASAR DI DAERAH RAWAN GEMPA

BAB III METEDOLOGI PENELITIAN. dilakukan setelah mendapat data dari perencanaan arsitek. Analisa dan

TUGAS AKHIR PERENCANAAN STRUKTUR KONSTRUKSI BAJA GEDUNG DENGAN PERBESARAN KOLOM

PENERAPAN DAN PELAKSANAAN APARTEMEN UNTUK MBR DENGAN SISTEM PRACETAK PENUH BERBASIS MANUFACTUR OTOMATIS

PERANCANGAN STRUKTUR BANGUNAN RUMAH SUSUN DI SURAKARTA

PERANCANGAN STRUKTUR GEDUNG APARTEMEN 26 LANTAI BERDASARKAN SNI DAN SNI Oleh: Yohan Aryanto NPM

3. BAB III LANDASAN TEORI

Gambar 2.1 Spektrum respons percepatan RSNI X untuk Kota Yogyakarta

Gambar 4.1 Bentuk portal 5 tingkat

PERBANDINGAN DESAIN TAHAN GEMPA BANGUNAN GEDUNG BETON BERTULANG MENGGUNAKAN PELAT KONVENSIONAL DAN FLAT SLAB WITH DROP PANEL

BIDANG STUDI STRUKTUR DEPARTEMEN TEKNIK SIPIL FAKULTAS TEKNIK USU MEDAN 2013

TUGAS AKHIR PERENCANAAN STRUKTUR BANGUNAN BETON BERTULANG BERLANTAI BANYAK DENGAN KOLOM MIRING DAN MEMAKAI SISTEM KEKAKUAN PERBESARAN KOLOM DAN BALOK

BAB VI PERBANDINGAN DESAIN. perhitungan volume struktur utama bangunan..

BAB IV POKOK PEMBAHASAN DESAIN. Perhitungan prarencana bertujuan untuk menghitung dimensi-dimensi

PERANCANGAN STRUKTUR GEDUNG KAMPUS STMIK AMIKOM YOGYAKARTA

PERENCANAAN STRUKTUR GEDUNG APARTEMEN SALEMBA RESIDENCES LAPORAN TUGAS AKHIR

PERBANDINGAN ANALISIS RESPON STRUKTUR GEDUNG ANTARA PORTAL BETON BERTULANG, STRUKTUR BAJA DAN STRUKTUR BAJA MENGGUNAKAN BRESING TERHADAP BEBAN GEMPA

PERANCANGAN STRUKTUR GEDUNG KUSUMA MULIA TOWER SOLO MENGGUNAKAN RANGKA BAJA

ANALISIS DAN DESAIN STRUKTUR PELAT SLAB BETON BERTULANG UNTUK GEDUNG EMPAT LANTAI TAHAN GEMPA

MODIFIKASI PERENCANAAN GEDUNG APARTEMEN TRILIUM DENGAN METODE PRACETAK (PRECAST) PADA BALOK DAN PELAT MENGGUNAKAN SISTEM RANGKA GEDUNG (BUILDING

PERANCANGAN STRUKTUR GEDUNG KULIAH UMUM UNIVERSITAS ISLAM INDONESIA YOGYAKARTA TUGAS AKHIR SARJANA STRATA SATU

STUDI PENEMPATAN DINDING GESER TERHADAP WAKTU GETAR ALAMI FUNDAMENTAL STRUKTUR GEDUNG

DAFTAR NOTASI BAB I β adalah faktor yang didefinisikan dalam SNI ps f c adalah kuat tekan beton yang diisyaratkan f y

LEMBAR PENGESAHAN TUGAS AKHIR

PROGRAM STUDI TEKNIK SIPIL

MODIFIKASI STRUKTUR GEDUNG ASRAMA MAHASISWA UGM KOMPLEKS KINANTI MENGGUNAKAN METODE PRACETAK (PRECAST) DENGAN SISTEM RANGKA GEDUNG (BUILDING FRAME

Yogyakarta, Juni Penyusun

PERENCANAAN STRUKTUR GEDUNG PUSAT GROSIR BARANG SENI DI JALAN Dr. CIPTO SEMARANG

PERENCANAAN STRUKTUR RANGKA BAJA BRESING TAHAN GEMPA

PERANCANGAN STRUKTUR ATAS APARTEMEN KALIBATA RESIDENCE TOWER D JAKARTA. Laporan Tugas Akhir. Atma Jaya Yogyakarta. Oleh :

ANALISIS DINAMIK BEBAN GEMPA RIWAYAT WAKTU PADA GEDUNG BETON BERTULANG TIDAK BERATURAN

Transkripsi:

DAFTAR GAMBAR Gambar 2.1 Denah Lantai Dua Existing Arsitektur II-3 Gambar 2.2 Tegangan dan Gaya pada Balok dengan Tulangan Tarik Saja II-4 Gambar 2.3 Tegangan dan Gaya pada Balok dengan Tulangan Ganda II-7 Gambar 2.4 Pelat Satu Arah (One Way Slab) II-10 Gambar 2.5 Pelat Dua Arah ( Two Way Slab ) II-13 Gambar 2.6 Tegangan dan Regangan pada Kolom II-14 Gambar 2.7 Beban Gempa pada Struktur Gedung II-25 Gambar 2.8 (a) Model Struktur Sederhana (b) Getaran Bebas Pada Struktur saat Gempa (c) Amplitudo Getaran Bebas II-26 Gambar 2.9 Contoh Peta Parameter Ss ( Percepatan Batuan Dasar Pada Perioda Pendek ) II-32 Gambar 2.10 Contoh Peta Parameter S1 ( Percepatan Batuan Dasar Pada Perioda 1 detik ) II-32 Gambar 3.1 Denah Arsitektur Existing Lantai Dua III-4 Gambar 3.2 Denah Arsitektur Existing Lantai Tiga s/d Tujuh Belas (Typical) III-5 Gambar 3.3 Potongan Arsitektur Existing III-6 Gambar 3.4 Denah Struktur Existing Lantai Dua III-7 Gambar 3.5 Denah Struktur Existing Lantai Tiga s/d Tujuh Belas (Typical) III-8 Gambar 3.6 Potongan Struktur Existing III-9 xvi

Gambar 3.7 Denah Struktur Alternatif Lantai Dua III-10 Gambar 3.8 Denah Struktur Alternatif Lantai Tiga s/d Tujuh Belas (Typical) III-11 Gambar 3.9 Potongan Struktur Alternatif ( Elevasi Bertambah dari +50.300 ke +52.900 ) III-12 Gambar 3.10 Pembebanan Pada Struktur HCS Gambar 3.11 Diagram Alir Perencanaan III-15 III-16 Gambar 4.1 Detail Tumpuan Pelat Lantai HCS pada Balok Struktur IV-2 Gambar 4.2 Detail Potongan Pelat Lantai HCS dan Shear Connector IV-3 Gambar 4.3 Denah / Model Pembebanan yang diterima Balok, tipe (1) Pembebanan 1 sisi dan tipe (2) Pembebanan 2 sisi IV-5 Gambar 4.4 Tinggi Kolom Bangunan Alternatif dan Pengelompokan Kolom untuk Pra-Desain IV-11 Gambar 4.5 Denah Pembebanan HCS Terhadap Kolom IV-12 Gambar 4.6 Detail Pembebanan Kolom Interior Type 3 IV-13 Gambar 4.7 Detail Pembebanan Kolom Ekterior Type 3 IV-18 Gambar 4.8 Detail Pembebanan Kolom Sudut Type 3 IV-20 Gambar 4.9 Lokasi Gedung IV-36 Gambar 4.10 Kurva Respons Spektrum Gambar 4.11 Input Respons Spektrum SNI 1726:2012 Gambar 4.12 Output Modal Partisipating Mass Ratio Gambar 4.13 Grafik Gaya Lateral Arah X Gambar 4.14 Grafik Gaya Lateral Arah Y Gambar 4.15 Grafik Drift Lateral Arah X Gambar 4.16 Grafik Drift Lateral Arah Y IV-47 IV-49 IV-52 IV-53 IV-55 IV-60 IV-62 xvii

Gambar 4.17 Grafik Simpangan Lateral Arah X dan Y IV-65 Gambar 5.1 Kurva PCACOL pada Kolom K1 V-13 Gambar 5.2 Diagram Interaksi ( Kurva) PCACOL pada Kolom K1 V-16 xviii

DAFTAR ISI LEMBAR JUDUL LEMBAR PENGESAHAN LEMBAR PERNYATAAN KEASLIAN KARYA ABSTRAK SKRIPSI KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR SIMBOL i ii iii iv v vii xiii xvi xix BAB I PENDAHULUAN 1.1 Latar Belakang I-1 1.2 Tujuan Penulisan I-3 1.3 Ruang Lingkup dan Batasan Masalah I-3 1.4 Sistematika Penulisan I-5 BAB II KAJIAN LITERATUR 2.1 Umum II-1 vii

2.2 Konstruksi Beton II-1 2.2.1 Beton Bertulang II-1 2.2.2 Beton Prategang II-2 2.2.3 Beton Pracetak II-3 2.3 Analisis Penampang Persegi terhadap Beban Lentur II-4 2.3.1 Balok Penampang Persegi Tulangan Tunggal II-4 2.3.2 Balok Penampang Persegi Tulangan Rangkap II-6 2.4 Tulangan Geser II-9 2.5 Pelat Satu Arah dan Dua Arah II-10 2.5.1 Pelat Satu Arah ( One-Way Slab ) II-10 2.5.2 Pelat Dua Arah ( Two-Way Slab ) II-13 2.6 Kolom II-14 2.6.1 Kolom Pendek II-14 2.6.2 Kolom Langsing II-16 2.6.3 Kolom Biaksial II-19 2.7 Tata Cara Perencanaan Bangunan Gedung II-20 2.8 Perancangan Kapasitas II-20 2.9 Pembebanan II-20 2.9.1 Faktor Pembebanan II-20 2.9.1.1 Kombinasi Pembebanan Metoda Ultimate II-20 2.9.1.2 Kombinasi Pembebanan Metoda Tegangan Ijin II-21 2.9.2 Pedoman Pembebanan II-22 2.9.3 Faktor Reduksi II-22 2.10 Karakteristik Risiko Gempa Wilayah II-23 viii

2.10.1 Beban Gempa II-23 2.10.2 Perilaku Struktur II-26 2.10.3 Konsep Keamanan Gempa II-26 2.10.4 Menentukan Kategori Risiko Bangunan Struktur dan Faktor Keutamaan II-29 2.10.5 Menentukan Parameter Percepatan Gempa ( Ss, S1 ) II-31 2.10.6 Menentukan Kategori Desain Seismik ( A-D ) II-33 BAB III METODELOGI PERENCANAAN 3.1 Umum III-1 3.2 Data-Data Gambar Existing Arsitektur dan Struktur III-4 3.2.1 Gambar Denah dan Potongan Arsitektur (Existing) III-4 3.2.2 Gambar Denah dan Potongan Struktur (Existing) III-7 3.2.3 Gambar Denah dan Potongan Struktur (Perubahan) III-10 3.3 Pra-Rencana Desain III-13 3.3.1 Pra-Rencana Komponen Struktur III-13 3.3.1.1 Pra-Rencana Balok III-13 3.3.1.2 Pra-Rencana Kolom III-14 3.3.1.3 Pembebanan Akibat Pelat Lantai HCS III-14 3.3.2 Diagram Alir Perencanaan III-16 BAB IV ANALISIS STRUKTUR ATAS 4.1 Data Perancangan Bangunan Alternatif IV-1 ix

4.2 Desain Pendahuluan IV-1 4.2.1 Pra-desain Pelat Beton Berongga Prategang Pracetak IV-1 4.2.2 Pra-desain Struktur Balok IV-4 4.2.3 Pra-desain Struktur Kolom IV-9 4.2.3.1 Pra-desain Kolom Interior Type 3 IV-13 4.2.3.2 Pra-desain Kolom Eksterior Type 3 IV-18 4.2.3.3 Pra-desain Kolom Sudut Type 3 IV-20 4.2.3.4 Pra-desain Kolom Interior Type 2 IV-23 4.2.3.5 Pra-desain Kolom Eksterior Type 2 IV-24 4.2.3.6 Pra-desain Kolom Sudut Type 2 IV-25 4.2.3.7 Pra-desain Kolom Interior Type 1 IV-26 4.2.3.8 Pra-desain Kolom Eksterior Type 1 IV-28 4.2.3.9 Pra-desain Kolom Sudut Type 1 IV-30\ 4.2.3.10 Dimensi Pra-desain Struktur Utama IV-31 4.3 Perhitungan Pembebanan yang Bekerja IV-33 4.3.1 Beban Lantai IV-33 4.3.2 Beban Dinding IV-34 4.4 Perhitungan Beban Gempa IV-35 4.4.1 Data Gedung IV-35 4.4.2 Perhitungan Gaya Geser Akibat Gempa IV-39 4.4.3 Periode Getar Struktur IV-42 4.4.4 Perhitungan Beban Gempa Statik Ekuivalen IV-43 4.4.4.1 Distribusi Vertikal Gaya Gempa IV-43 x

4.4.4.2 Distribusi Horisontal Gaya Gempa IV-45 4.4.5 Perhitungan Beban Gempa Dinamik IV-47 4.4.6 Modal Participating Mass Ratio IV-51 4.4.7 Skala Gaya IV-52 4.4.8 Gaya Lateral Arah X dan arah Y IV-53 4.4.9 Kontrol Simpangan Antar Lantai (Story Drift) IV-58 BAB V DESAIN STRUKTUR ATAS 5.1 Desain Penulangan Struktur Balok V-1 5.1.1 Desain Penulangan Lentur pada Balok B1 V-1 5.1.1.1 Perencanaan Penulangan Tarik (Tumpuan kiri) V-1 5.1.1.2 Perencanaan Tulangan Tekan (Lapangan) V-3 5.1.1.3 Perencanaan Tulangan Tarik (Tumpuan kanan) V-4 5.1.2 Desain Penulangan Geser V-5 5.2 Desain Penulangan Struktur Kolom V-11 5.2.1 Desain Penulangan V-11 5.2.2 Pengekangan Kolom V-14 5.2.3 Desain Penulangan Geser Kolom V-15 BAB VI PERBANDINGAN DESAIN xi

BAB VII PENUTUP 7.1 Kesimpulan VII-1 7.2 Saran VII-2 DAFTAR PUSTAKA xii

Daftar Pustaka DAFTAR PUSTAKA 1. Peraturan Pembebanan Indonesia untuk Gedung, SNI-1727-1989-F 2. Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Gedung dan Non Gedung, SNI 1726:2012 3. American Concrete Institure Building Code Requirements for Reinforced Concrete, ACI318RM-2002 and Commentary, 2002 4. Indarwanto, Muji, Ir. MT., Kutipan Perkuliahan Teknik Bangunan 5 dan 6, Jakarta, Universitas Mercu Buana 5. Mulyono, Tri. 2004. Teknologi Beton. Jakarta:Penerbit Andi 6. Dewobroto, Wiryanto. 2007. Precast Hollow-Core Slab. Wiryanto.wordpress.com. Jakarta.

DAFTAR SIMBOL Cd Cs CVX = Faktor amplifikasi defleksi = Koofisien respons gempa = Faktor distribusi vertical Fa = Koofisien situs untuk periode pendek (pada periode 0.2 detik) FPGA Fi, Fx g h hi, hx Ie K MCE MCEG Qe Ss = Koofisien situs untuk PGA = Bagian dari gaya geser, V, pada tingkat I atau x = Percepatan gravitasi (m/detik2) = tinggi rata-rata struktur dari dasar hingga level atap = tinggi dari dasar sampai tingkat I atau x (m) = Faktor keutamaan = eksponen yang terkait dengan periode struktur = Gempa tertimbang maksimum = nilai tengah geometric gempa tertimbang maksimum = pengaruh gaya gempa horizontal = parameter percepatan respons spectral MCE pada peta Gempa pada periode pendek,redaman persen S1 = parameter percepatan respons spectral MCE pada peta Gempa pada periode 1 detik, redaman persen SDS = parameter percepatan respons spectral pada periode Pendek, redaman 5 persen SD1 = parameter percepatan respons spectral pada periode 1 Detik, redaman 5 persen xix

T Tingkat I = periode fundamental bangunan = tingkat bangunan yang dirujuk dengan subskrip I;I=1 Menunjukan tingkat pertma diatas dasar Tingkat n V = tingkat yang paling atas pada bagian utama bangunan = geser desain total di dasar struktur dalam arah yang Ditinjau Vx W Δ Δa Ρ Ώ0 = geser gempa desain di tingkat i = berat seismic efektif bangunan = simpangan antar lantai tingkat desain = simpangan antar lantai yang diijinkan = factor redundansi struktur = factor kuat lebih xx

DAFTAR TABEL Tabel 2.1 Tabel Daya Dukung Maksimal HCS (dengan topping) II-11 Tabel 2.2 Koefisien Reduksi Beban Hidup untuk Perhitungan Wt II-18 Tabel 2.3 Kategori Risiko Bangunan Gedung dan Non Gedung Untuk Beban Gempa II-29 Tabel 2.4 Faktor Keamanan Gempa (Ie) II-31 Tabel 2.5 Kategori Desain Seismik Berdasarkan Parameter Respons Percepatan Pada Periode Pendek II-34 Tabel 2.6 Kategori Desain Seismik Berdasarkan Parameter Respons Percepatan Pada Periode 1 detik II-34 Tabel 3.1 Tabel Tinggi Balok Minimumbila Lendutan tidak dihitung III-13 Tabel 4.1 Pembebanan yang Bekerja pada Balok IV-6 Tabel 4.2 Perhitungan Dimensi Balok yang diperlukan IV-9 Tabel 4.3 Pengurangan Tinggi Kolom per-lantai pada Bangunan Alternatif IV-10 Tabel 4.4 Beban Terhadap Kolom Ekterior Type 3 IV-19 Tabel 4.5 Beban Terhadap Kolom Sudut Type 3 IV-21 Tabel 4.6 Beban Terhadap Kolom Interior Type 3 IV-23 Tabel 4.7 Pra Desain Kolom Eksterior Type 2 IV-24 Tabel 4.8 Pra Desain Kolom Sudut Type 2 IV-25 Tabel 4.9 Beban Terhadap Kolom Interior Type 1 IV-27 Tabel 4.10 Pra Desain Kolom Eksterior Type 1 IV-28 Tabel 4.11 Beban Terhadap Kolom Sudut Type 1 IV-30 Tabel 4.12 Dimensi Hasil Pra-Desain Struktur Bangunan Alternatif IV-32 xiii

Tabel 4.13 Input Beban Mati dan Beban Hidup Terhadap Pelat IV-34 Tabel 4.14 Input Beban Mati Dinding Terhadap Balok IV-35 Tabel 4.15 Tabel Paramter Gempa IV-37 Tabel 4.16 Berat Seismik Bangunan IV-41 Tabel 4.17 Periode Pembatasan dan Periode Output ETABS IV-42 Tabel 4.18 Perhitungan Distribusi Vertikal Gaya Gempa IV-45 Tabel 4.19 Perhitungan Distribusi Horisontal Gaya Gempa IV-46 Tabel 4.20 Data Respons Spektrum IV-48 Tabel 4.21 Gempa Respons Spektrum SPEC-X dan SPEC-Y IV-51 Tabel 4.22 Perbandingan V dinamik dan V statik IV-53 Tabel 4.23 Gaya Lateral Arah X IV-54 Tabel 4.24 Gaya Lateral Arah Y IV-56 Tabel 4.25 Drift Antar Tingkat Arah X IV-59 Tabel 4.26 Drift Antar Tingkat Arah Y IV-61 Tabel 4.27 Simpangan Antar Tingkat Arah X IV-63 Tabel 4.28 Simpangan Antar Tingkat Arah Y IV-64 Tabel 5.1 Tabel Pembesian Balok B1 V-8 Tabel 5.2 Tabel Perencanaan Penulangan Balok V-9 Tabel 5.3 Tabel Perencanaan Tulangan Geser Balok V-10 Tabel 5.4 Tabel Pembesian Kolom K1 V-18 Tabel 5.5 Tabel Perencanaan Penulangan Kolom V-19 Tabel 5.6 Tabel Perencanaan Tulangan Geser Kolom V-20 Tabel 6.1 Perbandingan Volume Beton dan Besi Beton Bangunan Kolom Existing vs Kolom Alternatif VI-1 xiv

Tabel 6.2 Perbandingan Volume Beton Bangunan Balok Existing vs Balok Alternatif VI-2 Tabel 6.3 Selisih Volume Beton Struktur Utama VI-3 Tabel 6.4 Selisih Volume Pembesian Struktur Utama VI-4 Tabel 6.5 Selisih Volume Slab Bangunan Existing dan Alternatif VI-5 Tabel 6.6 Kebutuhan HCS Bangunan Alternatif VI-5 Tabel 6.7 Analisa Harga Satuan Pekerjaan Beton VI-6 Tabel 6.8 Bill of Quantity Struktur Gedung Alternatif VI-7 Tabel 6.9 Bill of Quantity Struktur Gedung Existing VI-8 xv

BAB III METODELOGI PERENCANAAN 3.1. Umum Tugas akhir ini bertemakan desain alternatif struktur gedung Hotel Amaris Surabaya dengan Menggunakan Hollow Core Slab ( HCS ) dengan tujuan suatu proses perancangan bangunan alternatif dimana bangunan existing yang menggunakan plat lantai konvensional dirubah menjadi plat lantai HCS yang kemudian dilakukan perbandingan nilai ekonomis dari kedua bangunan tersebut. Tahap pertama dalam perancangan ini yaitu mengumpulkan data data yang diperlukan dan menentukan spesifikasi material struktur. Dimana untuk data peruntukan, pembebanan maupun mutu dari bahan struktur utama beton bertulang (fc ) direncanakan sama antara bangunan existing dengan bangunan alternatif. Dengan adanya desain alternatif menggunakan lantai beton HCS maka ada beberapa rencana perubahan pada struktur bangunan alternatif, yaitu dihilangkannya balok anak pada bangunan existing dan penambahan tinggi pada bangunan alternatif dikarenakan adanya penambahan lantai HCS dengan ketebalan tertentu dan tambahan topping setebal 50 mm, sehingga diharapkan dengan adanya penambahan ini maka tinggi bersih tiap lantai pada bangunan alternatif sama dengan pada bangunan existing. III - 1

Adapun alasan penulis untuk penambahan topping diatas pelat HCS adalah sebagai berikut: 1. Dengan adanya topping, maka inersia dan kekuatannya meningkat, terutama pada bagian tengah bentang yang mendapat momen positif. 2. Dengan adanya topping, maka mampu meningkatkan kapasitas pelat terhadap beban terpusat, karena setelah pengecoran topping, pelat HCS akan menjadi struktur komposit penuh dimana beban diterima bersama-sama ( beban tidak ditanggung oleh satu pelat HCS saja) 3. Dengan adanya topping, menyebabkan pada arah horizontal, lantai tersebut menjadi solid, dengan demikian ketika adanya pergerakan horizontal maka diharapkan setiap titik yang disatukan oleh slab dan topping menjadi sama sehingga dapat dianggap sebagai efek diafragma yang mana diafragma ini baik untuk melawan gaya gempa. 4. Dengan adanya topping, kenyamanan pengguna bangunan akan meningkat, seperti : berkurangnya efek getaran pada lantai, lebih kedap suara, lebih kedap air dan api. Data data perancangan dan spesifikasi material struktur kemudian dijadikan menjadi panduan dalam perhitungan pembebanan yang dihitung secara manual untuk kemudian masuk ke tahap desain pendahuluan (preliminary design) sehingga didapatkan dimensi pendahuluan dari struktur utama (balok dan kolom). III - 2

Data perencanaan, pembebanan, spesifikasi material dan dimensi struktur utama diinput kedalam program analisa struktur (ETABS) sehingga pada akhirnya dari program ETABS ini akan didapatkan output berupa gaya gaya dalam, reaksi perletakan dan lain lain yang terjadi akibat pembebanan pada bangunan alternatif. Setelah itu dilakukan proses pengecekan struktur secara manual, apakah ukuran dari elemen struktur dari bangunan alternatif lebih ekonomis jika dibandingkan dengan struktur existing. Jika perancangan struktur telah memenuhi persyaratan keamanan, desain bangunan alternatif tersebut ditransfer menjadi detail drawing untuk kemudian dilakukan perhitungan volume antara bangunan existing dengan bangunan alternatif dimana dalam bab penutup didapatkan kesimpulan berupa perbandingan volume antar bangunan existing yang menggunakan pelat lantai beton konvensional dengan bangunan alternatif yang menggunakan pelat lantai HCS. III - 3

3.2. Data Data Gambar Existing Arsitektur dan Struktur 3.2.1 Gambar Denah dan Potongan Arsitektur ( Existing ) Gambar 3.1 Denah Arsitektur Existing Lantai Dua III - 4

Gambar 3.2 Denah Arsitektur Existing Lantai Tiga s/d Tujuh Belas (Typical) III - 5

Gambar 3.3 Potongan Arsitektur Existing III - 6

3.2.2 Gambar Denah dan Potongan Struktur ( Existing ) Gambar 3.4 Denah Struktur Existing Lantai Dua III - 7

Gambar 3.5 Denah Struktur Existing Lantai Tiga s/d Tujuh Belas (Typical) III - 8

Gambar 3.6 Potongan Struktur Existing III - 9

3.2.3 Gambar Denah dan Potongan Struktur ( Perubahan ) Gambar 3.7 Denah Struktur Alternatif Lantai Dua III - 10

Gambar 3.8 Denah Struktur Alternatif Lantai Tiga s/d Tujuh Belas ( Typical ) III - 11

Gambar 3.9 Potongan Struktur Alternatif ( Elevasi bertambah dari +50.300 ke +52.900 ) III - 12

3.3. Pra-Rencana Desain 3.3.1 Pra-Rencana Komponen Struktur Salah satu tahap perancangan adalah preliminary design / prarencana design yaitu proses perhitungan dimensi dimensi awal struktur. Tahap ini meliputi prarencana balok dan kolom sedang untuk pelat lantai pada bangunan alternatif menggunakan produk pelat HCS. 3.3.1.1 Pra-rencana Balok Struktur balok merupakan struktur yang menerima lentur sehingga dalam proses perancangannya momen lentur ditinjau sehingga menghasilkan ukuran penampang dan penulangan yang diperlukan untuk memberikan kapasitas momen yang cukup. Kekuatan suatu balok banyak dipengaruhi oleh tinggi dari pada lebar balok tersebut. Secara umum perkiraan awal dimensi balok non prategang dapat direncanakan sesuai tabel dibawah: Tabel 3.1. Tabel tinggi balok minimum bila lendutan tidak dihitung. - Tinggi Balok, h = 1 L, dimana L adalah bentang terpanjang. 16 - Lebar Balok, b = 1 2 h sampai dengan b = 2 3 h. III - 13

3.3.1.2 Pra-rencana Kolom Kolom adalah bagian vertical struktur yang menyalurkan gaya aksial dengan atau tanpa momen yang merupakan beban dari lantai dan atap untuk disalurkan ke pondasi. Untuk kolom kolom yang dominan menerima gaya aksial atau momen yang bekerja sangat kecil, ukuran awal kolom dapat direncanakan dengan rumus sebagai berikut: - Untuk kolom dengan tulangan sengkang spiral, Ag Pu 0.5(f c+fy.ρt) - Untuk kolom dengan tulangan sengkang pengikat, Ag Pu 0.4(f c + fy. ρt) 3.3.1.3 Pembebanan Akibat Pelat Lantai HCS Dikarenakan pelat lantai HCS memiliki perbandingan bentang panjang dan bentang pendek lebih besar dari 2 (dua) maka pelat tersebut dapat dianggap sebagai pelat satu arah sehingga penyaluran beban yang diterima balok menjadi beban merata. III - 14

Gambar 3.10 Pembebanan pada pelat HCS III - 15

3.3.2 Diagram Alir Perencanaan Untuk lebih jelasnya perancangan tugas akhir ini disajikan dalam bentuk flowchart / diagram alir sebagai berikut: Gambar 3.11 Diagram Alir Perencanaan III - 16