BAB II DASAR TEORI BAB 2 DASAR TEORI

dokumen-dokumen yang mirip
BAB III LANDASAN TEORI. jalan, diperlukan pelapisan ulang (overlay) pada daerah - daerah yang mengalami

Menetapkan Tebal Lapis Perkerasan

BAB IV STUDI KASUS BAB 4 STUDI KASUS

PROGRAM KOMPUTER UNTUK DESAIN PERKERASAN LENTUR JALAN RAYA

BAB III LANDASAN TEORI. A. Parameter Desain

BAB III LANDASAN TEORI. Pada metode Bina Marga (BM) ini jenis kerusakan yang perlu diperhatikan

BAB II DASAR TEORI 2.1 Tinjauan Umum 2.2 Dasar Teori Oglesby, C.H Hicks, R.G

BAB II1 METODOLOGI. Berikut ini adalah bagan alir (Flow Chart) proses perencanaan lapis

BAB III METODOLOGI PENELITIAN

BAB III METODA PERENCANAAN

BAB III LANDASAN TEORI

STUDI KASUS: JALAN RUAS KM. 35 PULANG PISAU. Adi Sutrisno 06/198150/TK/32229

ANALISIS TEBAL PERKERASAN LENTUR DENGAN METODE ANALISA KOMPONEN SKBI 1987 BINA MARGA DAN METODE AASHTO

PERENCANAAN KONSTRUKSI JALAN RAYA RIGID PAVEMENT (PERKERASAN KAKU)

BAB IV PENGOLAHAN DATA DAN ANALISIS

BAB 2 TINJAUAN PUSTAKA. memenuhi syarat-syarat secara teknis maupun ekonomis. Syarat-Syarat umum jalan yang harus dipenuhi adalah:

BAB II TINJAUAN PUSTAKA. Provinsi Banten ini nantinya akan berubah status dari Jalan Kolektor

BAB V HASIL DAN PEMBAHASAN

BAB II TINJAUAN PUSTAKA

I. PENDAHULUAN A. Latar Belakang C. Tujuan Penelitian D. Manfaat Penelitian B. Rumusan Masalah

BAB III PENYUSUNAN PROGRAM BAB 3 PENYUSUNAN PROGRAM

BAB III METODOLOGI 3.1 Metode Pengumpulan Data

BAB IV PERHITUNGAN TEBAL PERKERASAN LENTUR

BAB III LANDASAN TEORI. dapat digunakan sebagai acuan dalam usaha pemeliharaan. Nilai Pavement

Penggunaan Hot Rolled Asphalt Sebagai Alternatif Lapisan Tambahan Perkerasan pada Ruas Jalan Pacitan Glonggong di Pacitan. Sri Wiwoho M, ST, MT

BAB 4 HASIL DAN PEMBAHASAN. cara membandingkan hasil perhitungan manual dengan hasil perhitungan

TINJAUAN TEBAL PERKERASAN LENTUR JALAN SIMPANG BULOH LINE PIPA STA , PEMKOT LHOKSEUMAWE 1 Romaynoor Ismy dan 2 Hayatun Nufus 1

Gambar 3.1. Diagram Nilai PCI

BAB II TINJAUAN PUSTAKA. Sampai saat ini ada 3 (tiga) jenis perkerasan jalan yang sering digunakan, yaitu :

STUDI KORELASI DAYA DUKUNG TANAH DENGAN INDEK TEBAL PERKERASAN JALAN MENGGUNAKAN METODE BINA MARGA

BAB III METODE PERENCANAAN START

BAB V VERIFIKASI PROGRAM

STUDI BANDING DESAIN TEBAL PERKERASAN LENTUR MENGGUNAKAN METODE SNI F DAN Pt T B

BAB 3 METODOLOGI PENULISAN. program sebagai alat bantu adalah sbb: a. Penyelesaian perhitungan menggunakan alat bantu software komputer untuk

BAB III METODOLOGI PERENCANAAN PERKERASAN LENTUR KONSTRUKSI JALAN RAYA. 1. Nama Proyek : Pembangunan Jalan Spine Road III Bukit Sentul

ANALISIS PERBANDINGAN PERHITUNGAN TEBAL PERKERASAN KAKU DENGAN METODE BINA MARGA 2013 DAN AASHTO 1993 (STUDI KASUS JALAN TOL SOLO NGAWI STA

Agus Surandono 1) Rivan Rinaldi 2)

Perbandingan Konstruksi Perkerasan Lentur dan Perkerasan Kaku serta Analisis Ekonominya pada Proyek Pembangunan Jalan Lingkar Mojoagung

BAB III LANDASAN TEORI. dapat digunakan sebagai acuan dalam usaha pemeliharaan. Nilai Pavement

BAB 2 TINJAUAN PUSTAKA

BAB V ANALISIS DATA DAN PEMBAHASAN

DAFTAR ISI. Halaman Judul Pengesahan KATA PENGANTAR

PERKERASAN DAN PELEBARAN RUAS JALAN PADA PAKET HEPANG NITA DENGAN SYSTEM LATASTON

BAB V EVALUASI V-1 BAB V EVALUASI

Perbandingan Perkerasan Lentur dan Perkerasan Kaku serta Analisa Ekonominya pada Proyek Jalan Sindang Barang Cidaun, Cianjur.

ANALISIS TEBAL LAPISAN PERKERASAN LENTUR JALAN LINGKAR MAJALAYA DENGAN MENGGUNAKAN METODE ANALISIS KOMPONEN SNI

SKRIPSI PERBANDINGAN PERHITUNGAN PERKERASAN LENTUR DAN KAKU, DAN PERENCANAAN GEOMETRIK JALAN (STUDI KASUS BANGKALAN-SOCAH)

PERENCANAAN PERBAIKAN TANAH DAN PERKERASAN JALAN CAUSEWAY PENGHUBUNG DERMAGA TELUK LAMONG

BAB II TINJAUAN PUSTAKA. perencanaan tebal perkerasan yang mempunyai lingkup perencanaan bahan dan

BAB V HASIL DAN PEMBAHASAN. A. Metode Analisa Komponen

PENGARUH KELEBIHAN BEBAN TERHADAP UMUR RENCANA JALAN

BAB II TINJAUAN PUSTAKA. Perkerasan kaku (rigid pavement) atau perkerasan beton semen adalah perkerasan

DEPARTEMEN PEKERJAAN UMUM DITERBITKAN OLEH YAYASAN BADAN PENERBIT PU

PERANCANGAN PERKERASAN CONCRETE BLOCK DAN ESTIMASI BIAYA

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB IV ANALISA KONSTRUKSI PERKERASAN JALAN BETON. genangan air laut karena pasang dengan ketinggian sekitar 30 cm. Hal ini mungkin

BAB II TINJAUAN PUSTAKA

Analisis Desain Perkerasan Kaku Berdasarkan AASHTO Rigid Pavement ARI SURYAWAN (hal. 213)

BAB IV PERHITUNGAN TEBAL PERKERASAN LENTUR. perumahan Puri Botanical Residence di jl. Joglo Jakarta barat. ditanah seluas 4058

DR. EVA RITA UNIVERSITAS BUNG HATTA

PERENCANAAN PERKERASAN JALAN

TINJAUAN ULANG PERENCANAAN TEBAL PERKERASAN LENTUR JALAN RAYA MENGGUNAKAN METODE BINA MARGA

PERENCANAAN TEBAL PERKERASAN KAKU PADA RUAS JALAN LINGKAR MAJALAYA MENGGUNAKAN METODE BINA MARGA 2002

BAB I PENDAHULUAN. 1. mahasiswa dapat melakukan identifikasi (identify) metoda-metoda yang digunakan

BAB IV ANALISA DAN PEMBAHASAN. : 1 jalur, 2 arah, 2 lajur, tak terbagi

BAB IV HASIL DAN ANALISIS. Data yang digunakan untuk analisa tugas akhir ini diperoleh dari PT. Wijaya

PERENCANAAN TEBAL PERKERASAN BESERTA ANGGARAN BIAYANYA PADA LAJUR KHUSUS BUS TRANS PAKUAN KOTA BOGOR KORIDOR TERMINAL BUBULAK-POOL BUS WISATA

ANALISA PENGUJIAN DYNAMIC CONE PENETROMETER

BAB III LANDASAN TEORI

PENGGUNAAN METODE CAKAR AYAM MODIFIKASI SEBAGAI SOLUSI PEMBANGUNAN JALAN DI ATAS TANAH EKSPANSIF

LAPORAN. Ditulis untuk Menyelesaikan Matakuliah Tugas Akhir Semester VI Pendidikan Program Diploma III. oleh: NIM NIM.

A. LAPISAN PERKERASAN LENTUR

II. TINJAUAN PUSTAKA. Nasional Sp. Tanjung Karang-Batas Kota Sukamaju-Kalianda dan Sekitarnya,

PERENCANAAN ULANG TEBAL PERKERASAN BERDASARKAN FOKTOR-FAKTOR KERUSAKAN JALAN (Studi Kasus: Jalan Lapang Ujung Barasok, Kecamatan Johan Pahlawan)

Abstrak BAB I PENDAHULUAN

7.1. PERKERASAN JALAN (PAVEMENT)

BAB III LANDASAN TEORI. A. Perkerasan Lentur

TUGAS AKHIR PERENCANAAN PERKERASAN JALAN KAKU DENGAN BETON PRACETAK-PRATEKAN SEBAGAI ALTERNATIF PERCEPATAN KONSTRUKSI PERKERASAN JALAN

BAB II TINJAUAN PUSTAKA

BAB 3 METODOLOGI. a. Peninjauan pustaka yang akan digunakan sebagai acuan penulisan dan

BAB II TINJAUAN PUSTAKA

PERBANDINGAN KONSTRUKSI PERKERASAN LENTUR DAN PERKERASAN KAKU PADA PROYEK PEMBANGUNAN PASURUAN- PILANG KABUPATEN PROBOLINGGO PROVINSI JAWA TIMUR

PERBANDINGAN TEBAL LAPIS PERKERASAN DENGAN METODE ANALISA KOMPONEN DAN ASPHALT INSTITUTE

BAB 2 TINJAUAN PUSTAKA

LAPISAN STRUKTUR PERKERASAN JALAN

BAB I PENDAHULUAN. Tabel 1.1 Perbandingan Konstruksi Flexible Pavement dan Rigid Pavement Flexible Pavement Rigid Pavement

BAB II TINJAUAN PUSTAKA. dasar dan roda kendaraan, sehingga merupakan lapisan yang berhubungan

BAB I PENDAHULUAN. Peningkatan jumlah penduduk dan kemajuan teknologi pada zaman sekarang,

Study of Comparative Methods of Flexible Pavement and Rigid Pavement Alfikri 1), Hendra Taufik 2) 1)

METODE PELAKSANAAN DAN ESTIMASI (PERKIRAAN) BIAYA PADA LAPIS PERKERASAN JALAN BETON

Perbandingan Kekerasan Kaku I Gusti Agung Ayu Istri Lestari 128

TUGAS AKHIR ALTERNATIF PENINGKATAN KONSTRUKSI JALAN DENGAN METODE PERKERASAN LENTUR DAN KAKU DI JL. HR. RASUNA SAID KOTA TANGERANG.

PERENCANAAN JALAN RING ROAD BARAT PEREMPATAN CILACAP DENGAN MENGGUNAKAN BETON

BAB 3 METODOLOGI PENELITIAN

Studi Pengaruh Pengurangan Tebal Perkerasan Kaku Terhadap Umur Rencana Menggunakan Metode AASHTO 1993

Dalam perencanaan lapis perkerasan suatu jalan sangat perlu diperhatikan, bahwa bukan cuma karakteristik

IV. HASIL DAN PEMBAHASAN. Pengujian kadar air menggunakan tanah terganggu (disturbed), dilakukan

ANALISA PERHITUNGAN TEBAL LAPIS PERKERASAN LENTUR ( FLEXIBEL PAVEMENT) PADA PAKET PENINGKATAN STRUKTUR JALAN SIPIROK - PAL XI (KM KM. 115.

BAB II TINJAUAN PUSTAKA. Istilah umum Jalan sesuai dalam Undang-Undang Republik Indonesia. Nomor 38 Tahun 2004 tentang JALAN, sebagai berikut :

BAB II TINJAUAN PUSTAKA

Transkripsi:

2.1 PERKERASAN LENTUR BAB II DASAR TEORI BAB 2 DASAR TEORI Secara umum konstruksi perkerasan lentur terdiri dari lapisan-lapisan yang diletakkan pada tanah dasar. Lapisan-lapisan tersebut berfungsi untuk menerima beban lalu lintas dan menyebarkannya ke lapisan di bawahnya. Konstruksi perkerasan terdiri dari empat lapisan seperti yang terlihat pada gambar 2.1. lapisan permukaan (surface) lapisan pondasi atas (base) lapisan pondasi bawah (subbase) lapisan dasar (subgrade) Gambar 2.1 Lapisan-lapisan Konstruksi Perkerasan 1). Lapisan permukaan (surface course) Lapisan permukaan adalah lapisan yang terletak pada lapisan paling atas dan berfungsi sebagai : - lapis perkerasan penahan beban roda, lapisan ini mempunyai stabilitas tinggi untuk menahan beban roda selama masa pelayanan. - lapis kedap air, sehingga air hujan yang jatuh di atasnya tidak meresap ke lapisan bawahnya. - lapis aus (wearing course), lapisan yang langsung menderita gesekan akibat rem kendaraan sehingga mudah menjadi aus. - lapis yang menyebarkan beban ke lapisan bawah. 2). Lapisan pondasi atas (base course) Lapisan perkerasan yang terletak diantara lapis pondasi bawah dan lapis permukaan dinamakan lapis pondasi atas yang fungsinya antara lain sebagai : - Bagian perkerasan yang menahan gaya lintang dari beban roda dan menyebarkan beban ke lapisan di bawahnya. 6

7 - Lapisan peresapan untuk lapisan pondasi bawah. - Bantalan terhadap lapisan permukaan. 3). Lapisan pondasi bawah (subbase course) Lapis perkerasan yang terletak antara lapis pondasi atas dan tanah dasar dinamakan lapis pondasi bawah, yang berfungsi sebagai : - Bagian dari konstruksi perkerasan untuk menyebarkan beban roda ke tanah dasar - Effisiensi penggunaan material. - Mengurangi tebal lapisan di atasnya yang lebih mahal. - Lapis peresapan, agar air tanah tidak berkumpul di pondasi. - Lapisan pertama, agar pekerjaan dapat berjalan lancar. - Lapisan untuk mencegah partikel-partikel halus dari tanah dasar naik ke lapisan pondasi atas. 4). Lapisan tanah dasar (subgrade) Lapisan tanah setebal 50-100 cm diatas mana akan diletakkan lapisan pondasi bawah dinamakan lapisan tanah dasar. Lapisan tanah dasar dapat berupa tanah asli yang dipadatkan jika tanah aslinya baik, tanah yang didatangkan dari tempat lain dan dipadatkan atau tanah yang distabilisasi dengan kapur atau bahan lainnya. Ditinjau dari muka tanah asli, maka lapisan tanah dasar dibedakan atas : - Lapisan tanah dasar, tanah galian - Lapisan tanah dasar, tanah timbunan - Lapisan tanah dasar, tanah asli Perkerasan lentur memiliki karakteristik: - Bersifat elastis jika menerima beban, sehingga dapat memberi kenyamanan bagi pengguna jalan. - Pada umumnya menggunakan bahan pengikat aspal. - Seluruh lapisan ikut menanggung beban. - Penyebaran tegangan ke lapisan tanah dasar sedemikian sehingga tidak merusak lapisan tanah dasar (subgrade). - Usia rencana maksimum 20 tahun.

8 - Selama usia rencana diperlukan pemeliharaan secara berkala. Perencanaan tebal Perkerasan Lentur umumnya dapat dibedakan atas 2 metode, yaitu : 1). Metode empiris, metode ini dikembangkan berdasarkan pengalaman dan penelitian dari jalan-jalan yang dibuat khusus untuk penelitian atau dari jalan yang sudah ada. Terdapat banyak metode empiris yang telah dikembangkan oleh berbagai negara, seperti : - Metode AASHTO oleh Amerika Serikat. - Metode Bina Marga oleh Indonesia, yang merupakan modifikasi dari metode AASHTO 1972 revisi 1983. Modifikasi ini dilakukan untuk penyesuaian dengan kondisi alam, lingkungan, sifat tanah dasar, dan jenis lapisan perkerasan yang umum dipergunakan di Indonesia. Metode ini juga disebut dengan Metode Analisa Komponen. 2). Metode teoritis, metode yang dikembangkan berdasarkan teori matematika dari sifat tegangan dan regangan pada lapisan perkerasan akibat beban berulang dari lalu lintas. Perencanaan konstruksi lapisan perkerasan lentur jalan yang akan digunakan dalam program bantu ini, yaitu perkerasan lentur untuk jalan baru dengan Metode Analisa Komponen. Rumus umum dalam Metode Analisa Komponen adalah: ITP Gt 1 DDT... logwt18 9.36log 1 0.20 log 0.372 3 2.54 FR 1.175 1094 0.40 5.19 ITP 1 2.54...Rumus 2.1 dimana: Wt18 = beban lalin selama UR atas dasar beban 18 kips yang diperhitungkan terhadap faktor regional IPo IPt Gt = log...rumus 2.2 IPo 1.5 DDT = daya dukung tanah dasar yang merupakan korelasi CBR

9 FR = faktor regional (0.5-4) 2.1.1 LALU-LINTAS RENCANA UNTUK PERKERASAN LENTUR 1). Persentase Kendaraan pada Lajur Rencana Jalur Rencana merupakan jalur lalu-lintas dari suatu ruas jalan raya yang terdiri dari satu jalur atau lebih. Lebar Lajur (m) Tabel 2.1 Tabel Jumlah Lajur dan Koefisien Distribusi Kendaraan (C) Jumlah Lajur Kendaraan Ringan (<5 ton) Kendaraan Berat (>5 ton) 1 arah 2 arah 1 arah 2 arah L < 5.50 1 1.000 1.000 5.50 < L < 8.25 2 0.600 0.500 0.700 0.500 8.25 < L < 11.25 3 0.400 0.400 0.500 0.475 11.25 < L < 15.00 4 0.300 0.450 15.00 < L < 18.75 5 0.250 0.425 18.75 < L < 22.00 6 0.200 0.400 *) Sumber :Bina Marga (1983) 2). Angka Ekivalen Kendaraan Angka ekivalen (E) masing-masing golongan sumbu: E tunggal = P 8.16 4... Rumus 2.3 E tandem = P 0.086 8.16 3). Perhitungan Lalu-lintas - Lintas Ekivalen Permulaan (LEP): 4...Rumus 2.4 LEP n j1 LHR j C j E j Rumus 2.5 - Lintas Ekivalen Akhir (LEA): UR LEA LEP 1 i... Rumus 2.6

10 - Lintas Ekivalen Rencana (LER): 1 LEP LEA LET...Rumus 2.7 2 LER LEP FP... Rumus 2.8 dimana : LET LEP LEA = = = Lintas Ekivalen Tengah Lintas Ekivalen Permulaan Lintas Ekivalen Akhir FP = Faktor Penyesuaian (FP) = UR/10 UR = Umur Rencana Tabel 2.2 Distribusi Beban Sumbu dari Berbagai Jenis Kendaraan

11 2.1.2 DAYA DUKUNG TANAH DASAR Daya dukung tanah dasar (DDT) ditetapkan berdasarkan grafik korelasi. Daya dukung tanah dasar diperoleh dari nilai CBR atau Plate Bearing Test, DCP, dll. Korelasi daya dukung tanah dasar (DDT) dengan CBR subgrade menggunakan grafik pada gambar 2.2 CBR skala log DDT skala linear Gambar 2.2 Grafik Korelasi CBR dan DDT 2.1.3 FAKTOR REGIONAL Faktor regional (FR) adalah factor korelasi sehubungan dengan adanya perbedaan kondisi percobaan AASHTO Road Test dan disesuaikan dengan keadaan di Indonesia. FR ini dipengaruhi oleh bentuk alinemen, kendaraan berat dan yang berhenti, serta iklim. Menurut Bina Marga FR merupakan faktor pengaruh dari curah hujan

12 Tabel 2.3 Faktor Regional Curah Hujan Iklim I <900mm/th Iklim II 900mm/th Kelandaian I (<6%) Kelandaian II (6-10%) Kelandaian III (>10%) % kendaraan berat % kendaraan berat % kendaraan berat 30 % > 30 % 30 % > 30 % 30 % > 30 % 0.5 1.0 1.5 1.0 1.5 2.0 1.5 2.0 2.5 1.5 2.0 2.5 2.0 2.5 3.0 2.5 3.0 3.5 catatan: pada bagian-bagian jalan tertentu, seperti persimpangan, pemberhentian atau tikungan tajam (R=30m) FR ditambah dengan 0.5. Pada daerah rawa FR ditambah 1.0. 2.1.4 INDEKS PERMUKAAN Ciri khas dalam metode ini adalah dipergunakannya indeks permukaan (IP) sebagai ukuran dasar dalam menentukan nilai perkerasan ditinjau dari kepentingan lalu lintas. Indeks permukaan ini menyatakan nilai daripada kerataan/kehalusan serta kekokohan permukaan yang bertalian dengan tingkat pelayanan bagi lalu lintas yang lewat. Adapun beberapa nilai IP beserta artinya adalah: IPt = 1.0 Ipt = 1.5 Ipt = 2.0 jalan rusak berat jalan dengan tingkat pelayanan rendah (jalan tidak terputus) jalan dengan tingkat pelayanan rendah bagi jalan yang masih mantap Ipt = 2.5 jalan dengan kondisi permukaan masih cukup baik Dalam menentukan indeks permukaan pada akhir umur rencana (IP), perlu dipertimbangkan factor-faktor klasifikasi fungsional jalan dan jumlah lintas ekivalen rencana (LER), menurut Tabel 2.4. Tabel 2.4 Indeks Permukaan pada Akhir Umur Rencana (IPt) LER = Lintas Ekivalen Rencana *) Klasifikasi Jalan Lokal Kolektor Arteri Tol < 10 1.0 1.5 1.5 1.5 2.0-10 100 1.5 1.5 2.0 2.0 -

13 100 1000 1.5 2.0 2.0 2.0 2.5 - > 1000-2.0 2.5 2.5 2.5 *) LER dalam satuan angka ekivalen 8.16 ton beban sumbu tunggal Catatan : Pada proyek penunjang jalan, JAPAT/jalan murah, atau jalan darurat maka IP=1 maka IP dapat diambil 1.0 Dalam menentukan indeks permukaan pada awal umur rencana (IPo), perlu diperhatikan jenis lapis permukaan jalan (kerataan/kehalusan serta kekokohan) pada awal umur rencana, menurut Tabel 2.5. Tabel 2.5 Indeks Permukaan pada Awal Umur Rencana (IPo) Jenis Lapis Perkerasan Ipo Roughness [mm/km] LASTON LASBUTAG HRA 4 1000 3,9 3,5 > 1000 3,9 3,5 2000 3,4 3,0 > 2000 3,9 3,5 2000 3,4 3,0 > 2000 BURDA 3,9 3,5 < 2000 BURTU 3,4 3,0 < 2000 LAPEN 3,4 3,0 3000 2,9 2,5 > 3000 LATASBUM 2,9 2,5 BURAS 2,9 2,5 LATASIR 2,9 2,5 JALAN TANAH 2,4 JALAN KERIKIL 2,4 2.1.5 INDEKS TEBAL PERKERASAN Indeks Tebal Perkerasan (ITP) dinyatakan dalam rumus : ITP a...rumus 2.9 1D1 a2d2 a3d3 a 1, a 2, a 3 = Koefisien kekuatan relatif bahan perkerasan D 1, D 2, D 3 = Tebal masing-masing lapis perkerasan (cm)

14 Tabel 2.6 Tebal Minimum Lapisan Perkerasan ITP Tebal Minimum (cm) Bahan 1. Lapis Permukaan : < 3,00 5 Lapis pelindung : (Buras/Burtu/Burda) 3,00 6,70 5 Lapen/Aspal Macadam, HRA, Lasbutag, Laston. 6,71 7,49 7,5 Lapen/Aspal Macadam, HRA, Lasbutag, Laston. 7,50 9,99 7,5 Lasbutag, Laston. ³ 10,00 10 Laston. 2. Lapis Pondasi Atas : < 3,00 15 Batu pecah, stabilisasi tanah dengan semen, stabilisasi tanah dengan kapur. 3,00 7,49 20*) Batu pecah, stabilisasi tanah dengan semen, stabilisasi tanah dengan kapur. 10 Laston Atas. 7,50 9,99 20 Batu pecah, stabilisasi tanah dengan semen, stabilisasi tanah dengan kapur, pondasi Macadam. 15 Laston Atas. Batu pecah, stabilisasi tanah dengan semen, 10 12,14 20 stabilisasi tanah dengan kapur, pondasi Macadam, Lapen, Laston Atas. Batu pecah, stabilisasi tanah dengan semen, >12,25 25 stabilisasi tanah dengan kapur, pondasi Macadam, Lapen, Laston Atas. 3. Lapis Pondasi Bawah : Untuk setiap nilai ITP bila digunakan pondasi baw ah, tebal minimum adalah 10 cm

15 Kekuatan Tabel 2.7 Koefisien Kekuatan Relatif Kekuatan Bahan a 1 A 2 a 3 MS (kg) Kt (kg/cm) CBR (%) 0,40 744 0,35 590 0,32 454 0,30 340 0,35 744 0,31 590 0,28 454 0,26 340 0,30 340 HRA 0,26 340 Aspal Macadam 0,25 Lapen (mekanis) 0,20 Lapen (manual) 0,28 590 0,26 454 0,24 340 0,23 Lapen (mekanis) 0,19 Lapen (manual) 0,15 Stab. tanah dengan semen 0,13 0,15 22 0,13 18 Jenis Bahan Laston Lasbutag Laston Atas Stab. tanah dengan kapur 0,14 100 Batu Pecah (kelas A) 0,13 80 Batu Pecah (kelas B) 0,12 60 Batu Pecah (kelas C) 0,13 70 Sirtu/pitrun (kelas A) 0,12 50 Sirtu/pitrun (kelas B) 0,11 30 Sirtu/pitrun (kelas C) 0,10 20 Tanah/lempung kepasiran

16 2.2 PERKERASAN KAKU Perkerasan kaku adalah perkerasan yang menggunakan beton semen sebagai bahan utama. Pada prisnipnya perkerasan ini memakai lapisan paling atas, yaitu beton, sebagai penerima beban dari lalu lintas di atasnya. Pada umumnya perkerasan kaku menggunakan tulangan untuk menghubungkan antara pelat beton yang satu dengan pelat beton di sekitarnya. Selain berfungsi sebagai bidang kontak dan penyebar beban dari lalu lintas di atasnya, beton pada perkerasan kaku juga berfungsi sebagai penerima atau pemikul beban dari lalu lintas di atasnya. Pada umumnya susunan lapisan perkerasan kaku seperti pada gambar 2.3. Plat beton (concrete slab) Lapisan pondasi pondasi bawah Lapisan tanah dasar Gambar 2.3 Susunan Lapisan Perkerasan Kaku Dalam program bantu ini untuk perencanaan perkerasan kaku, digunakan Metode Bina Marga. Metode ini didasarkan atas perencanaan yang dikembangkan oleh NAASRA (National Association of Australian State Road Authorities). Metode perencanaan yang diambil untuk menentukan tebal lapisan perkerasan didasarkan pada perkiraan sebagai berikut: - Kekuatan lapisan tanah dasar yang dinamakan nilai CBR atau Modulus Reaksi Tanah Dasar (k). - Kekuatan beton yang digunakan untuk lapisan perkerasan. - Prediksi volume dan komposisi lalu-lintas selama usia rencana. - Ketebalan dan kondisi lapisan pondasi bawah yang diperlukan untuk menopang konstruksi, lalu-lintas, penurunan akibat air dan perubahan volume lapisan tanah dasar serta sarana perlengkapan daya dukung permukaan yang seragam di bawah dasar beton.

17 2.2.1 KEKUATAN LAPISAN TANAH DASAR Untuk perencanaan tebal perkerasan kaku, daya dukung tanah dasar diperoleh dengan nilai CBR, seperti halnya pada perencanaan perkerasan lentur, meskipun pada umumnya dilakukan dengan menggunakan nilai (k) yaitu modulus reaksi tanah dasar. Nilai k, dapat diperoleh dengan pengujian Plate Bearing. Jika nilai k pada perencanaan belum dapat diukur, maka dapat digunakan nilai k hasil korelasi dengan nilai CBR, akan tetapi nilai korelasi ini harus diuji kembali di lapangan jika permukaan tanah dasar sudah disiapkan. Untuk menentukan Modulus Reaksi Tanah Dasar (k) Rencana yang mewakili suatu seksi jalan, dipergunakan rumus sebagai berikut: kº = k 2 S (u/ jalan tol) kº = k 1.64 S (u/ jalan arteri) kº = k 1.28 S (u/ jalan kolektor/lokal) dimana: kº = modulus reaksi tanah dasar yang mewakili segmen k = modulus reaksi tanah dasar rata-rata S = standar deviasi = n = jumlah data n 2 k k n n 1 2... Rumus 2.10

18 Gambar 2.4 Korelasi Hubungan antara Nilai (k) dan CBR 2.2.2 SAMBUNGAN Perencanaan sambungan pada perkerasan kaku, merupakan bagian yang harus dilakukan pada perencanaan, begitu juga dengan perencanaan perkerasan beton tanpa tulangan. 1). Dowel Dowel berupa batang baja tulangan polos maupun profil, yang digunakan sebagai sarana penyambung pada beberapa jenis sambungan pelat beton perkerasan jalan. Tabel 2.8 Ukuran Dowel Bar Tebal Pelat (cm) Diameter Dowel Bar (mm) Panjang Dowel Bar (mm) Jarak Spacing antar Dowel Bar (cm) 12,5 16 300 30 15,0 19 350 30 17,5 22 350 30 20,0 25 350 30 22,5 29 400 30 25,0 32 450 30 Sumber: (Portland Cement Association, PCA, 1975)

19 CATATAN : Dowel Bar pada sambungan melintang boleh tidak digunakan apabila jalan tidak dilewati truk 2). Batang pengikat (Tie bar) Adalah potongan baja yang diprofilkan yang dipasang pada sambungan lidah-alur dengan maksud untuk mengikat pelat agar tidak bergerak horisontal. Batang pengikat dipasang pada sambunga memanjang. Tabel 2.9 Ukuran Tie Bar Tebal Pelat (cm) Diameter Tie Bar (mm) Panjang Tie Bar (mm) Jarak Spacing antar Tie Bar (cm) 12,5 12 600 75 15,0 12 600 75 17,5 12 600 75 20,0 12 600 75 22,5 12 750 90 25,0 16 750 90 Sumber: (Portland Cement Association, PCA, 1975) 2.2.3 KEKUATAN BETON (MODULUS KERUNTUHAN LENTUR = FR) Beton semen adalah agregat yang dicampur dengan semen PC secara basah. Lapisan beton semen dapat digunakan sebagai lapisan pondasi bawah pada perkerasan lentur dan kaku, dan sebagai lapisan pondasi atas pada perkerasan kaku. Perkerasan kaku dapat didefinisikan sebagai perkerasan yang mempunyai alas/dasar atau landasan beton semen. Prinsip parameter perencanaan untuk perencanaan beton didasarkan pada kuat lentur 90 hari. Kuat lentur rencana beton 90 hari dianggap estimasi paling baik digunakan untuk menentukan tebal perkerasan. Kuat tekan karakteristik beton pada usia 28 hari untuk perkerasan jalan dengan beton bertulang harus tidak kurang dari 30 Mpa.

20 Besarnya Modulus Keruntuhan Lentur Beton (f r ), yaitu: f 0.556 f '...Rumus 2.11 - ct c f 1. 115 f... Rumus 2.12 - r ct f 0.62 f '... Rumus 2.13 - r c dimana: - f c = kuat tekan karakteristik beton usia 28 hari (MPa) - fct = kuat tarik (MPa) 2.2.4 LALU-LINTAS RENCANA UNTUK PERKERASAN KAKU Metode penentuan beban lalu-lintas rencana untuk perencanaan perkerasan tebal perkerasan kaku dilakukan dengan cara mengakumulasikan jumlah beban sumbu (dalam rencana lajur selama usia rencan) untuk masing-masing jenis kelompok sumbu, termasuk distribusi beban ini. Umur rencana untuk perkerasan kaku: 20-40 th. Tahapan perhitungan yang dilakukan adalah: 1). Menentukan Karakteristik Kendaraan a). Jenis kendaraan yang diperhitungkan hanya kendaraan niaga dengan berat total minimum 5 ton. b). Konfigurasi sumbu yang diperhitungkan ada 3 macam, yaitu: - Sumbu tunggal roda tunggal (STRT) - Sumbu tunggal roda ganda (STRG) - Sumbu tandem/ganda roda ganda (SGRG) 2). Tata cara Perhitungan Lalu Lintas Rencana a). Hitung volume lalu lintas (LHR) yang diperkirakan pada akhir umur rencana, sesuaikan dengan kapasitas jalan.

21 b). Untuk masing-masing jenis kelompok sumbu kendaraan niaga, diestimasi angka LHR awal dari kelompok sumbu dengan beban masing-masing kelipatan 0,5 ton (5-5,5 ton), (5,5-6 ton), (6-6,5 ton) dst. c). Mengubah beban trisumbu ke beban sumbu tandem didasarkan bahwa trisumbu setara dengan dua sumbu tandem. d). Hitung jumlah sumbu kendaraan niaga (JSKN) selama usia rencana. JSKN 365 JSKNH R... Rumus 2.14 dimana: JSKN = jumlah sumbu kendaraan niaga JSKNH = jumlah sumbu kendaraan niaga harian pada saat tahun ke 0 R = faktor pertumbuhan lalu lintas berdasarkan pertumbuhan lalu lintas tahunan (i) dan umur rencana (n) untuk i 0 ; R n 1 i 1... Rumus 2.15 e log 1 i untuk i 0, jika setelah m tahun pertumbuhan lalu lintas tidak terjadi lagi m 1 i 1 m1 R n m1 i... Rumus 2.16 e log 1 i untuk i' 0, jika setelah n tahun pertumbuhan lalu lintas berbeda dengan sebelumnya (i' / tahun) R m 1 i 1 e log 1 i m n 1 i 1 i' e log1 i' m 1... Rumus 2.17 e). Menghitung persentase masing-masing kombinasi konfigurasi beban sumbu terhadapo jumlah sumbu kendaraan niaga harian. f). Hitung jumlah repetisi kumulatif tiap kombinasi konfigurasi beban sumbu pada lajur rencana dengan perumusan:

22 JSKN % kombinasi terhadapjsknh Cd... Rumus 2.18 Dimana: C d = koefisien distribusi (lihat Tabel.8.) Tabel 2.10 Koefisien Distribusi Kendaraan Niaga pada Lajur Rencana Jumlah Lajur Kendaraan Niaga 1 arah 2 arah 1 lajur 1.00 1.00 2 lajur 0.70 0.50 3 lajur 0.50 0.48 4 lajur 0.45 5 lajur 0.43 6 lajur 0.40 Pedoman perencanaan tebal perkerasan menggunakan metode NAASRA pavement design yang memperhitungkan akumulasi jumlah beban sumbu (dalam rencana lajur selama umur rencana) untuk masing-masing jenis kelompok sumbu, termasuk distribusi beban. Tabel 2.11 Faktor Keamanan Peranan Jalan Jalan Tol Jalan Arteri Jalan Kolektor/Lokal Faktor Keamanan 1.2 1.1 1.0 2.2.5 TATA CARA PERENCANAAN KETEBALAN Kebutuhan tebal perkerasan ditentukan dari jumlah kendaraan niaga selama umur rencana. Perencanaan tebal pelat didasarkan pada total fatigue mendekati atau sama dengan 100 %. Tahapan perencanaan adalah sebagai berikut: 1). Pilih tebal pelat tertentu 2). Kombinasi konfigurasi dan beban sumbu serta harga k tertentu.

23 3). Persentase fatigue untuk tiap kombinasi ditentukan dengan membagi jumlah pengulangan beban rencana dengan jumlah pengulangan beban ijin. 4). Cari total fatigue dengan menjumlhkan persentase fatigue dari seluruh kombinasi konfigurasi/beban sumbu. 5). Mengulangi langkah-langkah diatas sampai didapat tebal plat terkecil dengan total fatigue lebih kecil atau sama dengan 100 %. Tabel 2.12 Perbandingan Tegangan dan Jumlah Pengulangan Beban Ijin Perbandingan Jumlah Pengulangan Perbandingan Jumlah Tegangan Beban Ijin Tegangan Pengulangan Beban Ijin 0.51 400000 0.69 2500 0.52 300000 0.70 2000 0.53 240000 0.71 1500 0.54 180000 0.72 1100 0.55 130000 0.73 850 0.56 100000 0.74 650 0.57 75000 0.75 490 0.58 57000 0.76 360 0.59 42000 0.77 270 0.60 32000 0.78 210 0.61 24000 0.79 160 0.62 18000 0.80 120 0.63 14000 0.81 90 0.64 11000 0.82 70 0.65 8000 0.83 50 0.66 6000 0.84 40 0.67 4500 0.85 30 0.68 3500

24 Gambar 2.5 Nomogram STRT Gambar 2.6 Nomogram STRG

25 Gambar 2.7 Nomogram SGRG 2.3 BAHASA PEMROGRAMAN BORLAND DELPHI 7 Bahasa pemograman Borland Delphi 7 merupakan program yang telah menyediakan banyak komponen komponen termasuk tabel dan grafik, sehingga memudahkan bagi penggunanya untuk menggunakan komponen komponen tersebut dalam programnya. Ide munculnya Delphi sebenarnya berasal dari bahasa pemograman yang cukup terkenal, yaitu Pascal. Bahasa Pascal sendiri telah diciptakan pada tahun 1971 oleh ilmuwan dari Swiss, yaitu Niklaus Wirth. Nama Pascal diambil dari ahli matematika dan filsafat dari Perancis, yaitu Blaise Pascal (1623 1662). Pada program Delphi, tampilan pada saat pertama kali dijalankan disebut IDE (Integrated Development Environtment). IDE milik Delphi dibagi menjadi enam bagian utama, yaitu Menu, Speed Bar, Component Palette, Form Designer, Code Editor, Object TreeView, dan Object Inspector. Lihat Gambar 2.7. untuk lebih jelasnya.

26 Menu Component Speed Bar Code Editor Object TreeView Form Designer Object Inspector Gambar 2.8 Bagian-bagian IDE Delphi 1). Menu pada Delphi Menu pada Delphi memiliki kegunaan seperti menu pada aplikasi windows lainnya. Dari menu ini, pengguna bisa memanggil atau menyimpan program, menjalankan dan melacak bug program, dan sebagainya. Singkatnya segala sesuatu yang berhubungan dengan IDE Delphi, dapat di lakukan dari menu. 2). Speed Bar Speed Bar atau sering juga disebut toolbar barisi kumpulan tombol yang tidak lain adalah pengganti beberapa item menu yang sering digunakan. Dengan kata lain, setiap tombol pada Speed Bar menggantikan salah satu item menu. Sebagai contoh, tombol kiri atas adalah pengganti menu File New, tombol di sebelah kanannya adalah pengganti menu File Open. Gambar 2.9 Speed Bar pada IDE Delphi

27 3). Component Palette Component Palette berisi kumpulan icon yang melambangkan komponen komponen pada VCL (Visual Component Library). VCL merupakan pustaka komponen yang dengannya pengguna dapat membangun aplikasi. Gambar 2.10 Component Palette pada IDE Delphi 4). Form Designer Sesuai dengan namanya, Form Designer merupakan tempat dimana pengguna dapat merancang jendela dari aplikasi Windows pengguna. Perancangan form dilakukan dengan meletakkan komponen komponen yang diambil dari Component Palette. 5). Code Editor Code Editor adalah tempat dimana pengguna menuliskan program. Disini pengguna meletakkan pernyataan pernyataan dalam bahasa Object Pascal. Pemrogram Borland Pascal pasti tidak asing lagi dengan Code Editor karena sangat serupa dengan editor milik Borland Pascal. 6). Object Inspector Object Inspector digunakan untuk mengubah karakterisitik sebuah komponen. Pada Object Inspector, terlihat dua Tab, yaitu Properties dan Events. Pengguna dapat mengaktifkan salah satu tab ini dengan mengklik teks Properties atau Events. Tab Properties digunakan untuk mengubah properti komponen. Properti tanda (+) menunjukkan bahwa properti tersebut mempunyai sub properti. Klik pada tanda (+) untuk membuka sub properti. Tab Events merupakan bagian yang dapat diisi dengan kode program tertentu yang berfungsi untuk menangani event-event yang dapat direspon oleh sebuah komponen. Contoh, jika ingin suatu kejadian akan dikerjakan pada suatu komponen, maka kode program dapat dituliskan pada bagian OnClick.

28 Gambar 2.11 Object Inspector pada IDE Delphi Pada tab Properties, pengguna dapat mengubah properti dari komponent. Secara mudah, properti dapat dijelaskan sebagai data yang menentukan karakterisitk komponen. Pada tab Events, pengguna dapat menyisipkan kode untuk menangani kejadian tertentu. Kejadian bisa dibangkitkan karena beberapa hal, seperti pengklikan Mouse, penekanan tombol keyboard, penutupan jendela, dan sebagainya.