BAB IV HASIL DAN PEMBAHASAN. coba untuk penentuan daya serap dari arang aktif. Sampel buatan adalah larutan

dokumen-dokumen yang mirip
PRISMA FISIKA, Vol. I, No. 1 (2013), Hal ISSN :

HASIL DAN PEMBAHASAN. nm. Setelah itu, dihitung nilai efisiensi adsorpsi dan kapasitas adsorpsinya.

BAB IV ANALISIS DAN PEMBAHASAN 4.2 DATA HASIL ARANG TEMPURUNG KELAPA SETELAH DILAKUKAN AKTIVASI

HASIL DAN PEMBAHASAN y = x R 2 = Absorban

BAB II TINJAUAN PUSTAKA. pertumbuhan produksinya. Faktor lingkungan adalah sinar matahari, temperatur,

HASIL DAN PEMBAHASAN. Lanjutan Nilai parameter. Baku mutu. sebelum perlakuan

UJI DAYA SERAP ARANG AKTIF DARI KAYU MANGROVE TERHADAP LOGAM Pb DAN Cu

JURNAL REKAYASA PROSES. Kinetika Adsorpsi Nikel (II) dalam Larutan Aqueous dengan Karbon Aktif Arang Tempurung Kelapa

BAB III METODOLOGI PENELITIAN. furnace, desikator, timbangan analitik, oven, spektronik UV, cawan, alat

Pengaruh Temperatur terhadap Adsorbsi Karbon Aktif Berbentuk Pelet Untuk Aplikasi Filter Air

LAMPIRAN A DATA DAN PERHITUNGAN. Berat Sampel (gram) W 1 (gram)

Simposium Nasional Teknologi Terapan (SNTT) ISSN: X

Pemanfaatan Kulit Singkong Sebagai Bahan Baku Karbon Aktif

BAB 1 PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN A. Latar Belakang Masalah

BAB III METODE PENELITIAN

PEMBUATAN ARANG AKTIF DARI CANGKANG BUAH KARET UNTUK ADSORPSI ION BESI (II) DALAM LARUTAN

HASIL DAN PEMBAHASAN. = AA diimpregnasi ZnCl 2 5% selama 24 jam. AZT2.5 = AA diimpregnasi ZnCl 2 5% selama 24 jam +

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. Gambar 1.1 Diagram konsumsi energi final per jenis (Sumber: Outlook energi Indonesia, 2013)

Bab IV Hasil dan Pembahasan

BAB I PENDAHULUAN. minyak ikan paus, dan lain-lain (Wikipedia 2013).

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN. Tabel 7. Hasil Analisis Karakterisasi Arang Aktif

Keywords : activated charcoal, rice hurks, cadmium metal.

Gambar 3.1 Diagram Alir Penelitian Secara Keseluruhan

PEMBUATAN DAN KUALITAS ARANG AKTIF DARI SERBUK GERGAJIAN KAYU JATI

ADSORPSI Pb 2+ OLEH ARANG AKTIF SABUT SIWALAN (Borassus flabellifer)

BAB IV HASIL DAN PEMBAHASAN. Modifikasi Ca-Bentonit menjadi kitosan-bentonit bertujuan untuk

PENGARUH SUHU AKTIVASI TERHADAP DAYA SERAP KARBON AKTIF KULIT KEMIRI

BAB III METODE PENELITIAN. Ide Penelitian. Studi Literatur. Persiapan Alat dan Bahan Penelitian. Pelaksanaan Penelitian.

I. PENDAHULUAN. makhluk hidup, baik manusia, hewan, maupun tumbuhan. Akses terhadap air

BAB III METODE PENELITIAN. 3.1 Kerangka Penelitian Kerangka penelitian secara umum dijelaskan dalam diagram pada Gambar 3.

HASIL DAN PEMBAHASAN. Skema interaksi proton dengan struktur kaolin (Dudkin et al. 2004).

ADSORPSI LOGAM KADMIUM (Cd) OLEH ARANG AKTIF DARI TEMPURUNG AREN (Arenga pinnata) DENGAN AKTIVATOR HCl

4 Hasil dan Pembahasan

BAB IV HASIL DAN PEMBAHASAN

ITM-05: PENGARUH TEMPERATUR PENGERINGAN PADA AKTIVASI ARANG TEMPURUNG KELAPA DENGAN ASAM KLORIDA DAN ASAM FOSFAT UNTUK PENYARINGAN AIR KERUH

BAB III METODE PENELITIAN

BAB III METODOLOGI PENELITIAN

POTENSI ARANG AKTIF DARI TULANG SAPI SEBAGAI ADSORBEN ION BESI, TEMBAGA, SULFAT DAN SIANIDA DALAM LARUTAN

Metodologi Penelitian

BAB I PENDAHULUAN. Universitas Sumatera Utara

PEMBUATAN DAN KARAKTERISASI KARBON AKTIF DARI TEMPURUNG KELUWAK (Pangium edule) DENGAN AKTIVATOR H 3 PO 4

BAB II LANDASAN TEORI. (Balai Penelitian dan Pengembangan Industri, 1984). 3. Arang gula (sugar charcoal) didapatkan dari hasil penyulingan gula.

LAMPIRAN I DATA PENGAMATAN. 1.1 Analisa Kadar Air Karbon Aktif dari Tempurung Kelapa

JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: ( Print) F-116

BAB III METODE PENELITIAN. Penelitian ini dilaksanakan di laboratorium Riset (Research Laboratory),

I.1.1 Latar Belakang Pencemaran lingkungan merupakan salah satu faktor rusaknya lingkungan yang akan berdampak pada makhluk hidup di sekitarnya.

BAB I PENDAHULUAN. dalam bidang perindustrian. Penggunaan logam krombiasanya terdapat pada industri

4 HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN. Penelitian ini dilaksanakan dari tanggal 15 April 3 Mei 2013, dimana

PEMBUATAN KARBON AKTIF DARI KULIT KACANG TANAH (Arachis hypogaea) DENGAN AKTIVATOR ASAM SULFAT

BAB IV HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN I.1 Latar Belakang

BAB I PENDAHULUAN A. Latar Belakang Masalah

PENINGKATAN KUALITAS MINYAK DAUN CENGKEH DENGAN METODE ADSORBSI

DATA PENGAMATAN. 2. Untuk Konsentrasi Aktivator H2SO4 4M Serbuk kayu. No Pengamatan Kelapa (gr) (gr)

BENTONIT SEBAGAI ADSORBEN PADA PEMUCATAN CINCAU HIJAU SERTA KARAKTERISASINYA

PENENTUAN MASSA DAN WAKTU KONTAK OPTIMUM ADSORPSI KARBON GRANULAR SEBAGAI ADSORBEN LOGAM BERAT Pb(II) DENGAN PESAING ION Na +

STUDI PEMBUATAN ARANG AKTIF DARI TIGA JENIS ARANG PRODUK AGROFORESTRY DESA NGLANGGERAN, PATUK, GUNUNG KIDUL, DAERAH ISTIMEWA YOGYAKARTA PENDAHULUAN

ADSORPSI FENOL MENGGUNAKAN ADSORBEN KARBON AKTIF DENGAN METODE KOLOM

BAB III METODE PENELITIAN. Matematika dan Ilmu Pengetahuan Alam Universitas Udayana. Untuk sampel

Kata kunci: surfaktan HDTMA, zeolit terdealuminasi, adsorpsi fenol

BAB IV HASIL DAN PEMBAHASAN. Pengujian kali ini adalah penetapan kadar air dan protein dengan bahan

III. BAHAN DAN METODA 3.1. Tempat dan Waktu Penelitian Penelitian ini akan dilakukan di laboratorium Kimia Analitik Fakultas matematika dan Ilmu

HASIL DAN PEMBAHASAN. Preparasi Adsorben

PENURUNAN KADAR COD (Chemical Oxygen Demand) LIMBAH CAIR INDUSTRI KELAPA SAWIT MENGGUNAKAN ARANG AKTIF BIJI KAPUK (Ceiba Petandra)

BAB III METODE PENELITIAN

BAB I PENDAHULUAN. limbah organik dengan proses anaerobic digestion. Proses anaerobic digestion

PROPOSAL PROGRAM KREATIVITAS MAHASISWA PEMBUATAAN ARANG AKTIF DARI KULIT PISANG DENGAN AKTIVATOR KOH DAN APLIKASINYA TERHADAP ADSORPSI LOGAM Fe

3 Percobaan. Untuk menentukan berat jenis zeolit digunakan larutan benzena (C 6 H 6 ).

Gambar sekam padi setelah dihaluskan

LAPORAN PRAKTIKUM KIMIA FISIKA

POTENSI ARANG AKTIF CANGKANG BUNGA PINUS SEBAGAI ADSORBEN ION KADMIUM (II) DAN TIMBAL (II) DENGAN AKTIVATOR H2SO4 DALAM LARUTAN

JKK, Tahun 2015, Volume 4(1), halaman ISSN ADSORPSI FENOL MENGGUNAKAN ADSORBEN KARBON AKTIF DENGAN METODE KOLOM

BAB I PENDAHULUAN. oleh karena itu kebutuhan air tidak pernah berhenti (Subarnas, 2007). Data

telah melakukan pengujian untuk mengetahui konsentrasi bahan-bahan kimia yang

3. Metodologi Penelitian

(Experimental Study on the Effectiveness of Liquid Waste Absorption Using Mesh-80 Active Charcoal Made from Teak Wood Saw Scratches) ABSTRACT

BAB V HASIL DAN PEMBAHASAN

PENGARUH BAHAN AKTIVATOR PADA PEMBUATAN KARBON AKTIF TEMPURUNG KELAPA

ANALISIS GAS BUANG KENDARAAN BERMOTOR DENGAN MEDIA ABSORBSI KARBON AKTIF JENIS GAC DAN PAC

JKK,Tahun 2014,Volum 3(3), halaman 7-13 ISSN

BABrV HASIL DAN PEMBAHASAN

Hasil dan Pembahasan

PENENTUAN DAYA SERAP ARANG AKTIF TEKNIS TERHADAP IODIUM SECARA POTENSIOMETRI

4 Hasil dan Pembahasan

BAB I PENDAHULUAN. Air merupakan zat kehidupan tidak satupun makhluk hidup di kehidupan ini

LAPORAN TUGAS AKHIR PEMBUATAN KARBON AKTIF DARI LIMBAH KULIT SINGKONG DENGAN MENGGUNAKAN FURNACE

POTENSI ARANG AKTIF BIJI ALPUKAT (Persea americana Mill) SEBAGAI ADSORBEN ION KADMIUM (II) DAN TIMBAL (II) DENGAN AKTIVATOR H 2 SO 4

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN ANALISIS DATA

ADSORPSI ZAT WARNA PROCION MERAH PADA LIMBAH CAIR INDUSTRI SONGKET MENGGUNAKAN KITIN DAN KITOSAN

Pemanfaatan Biomaterial Berbasis Selulosa (TKS dan Serbuk Gergaji) Sebagai Adsorben Untuk Penyisihan Ion Krom dan Tembaga Dalam Air

KARAKTERISASI DAN UJI KEMAMPUAN SERBUK AMPAS KELAPA ASETAT SEBAGAI ADSORBEN BELERANG DIOKSIDA (SO 2 )

BAB III METODE PENELITIAN

ACTIVATED CARBON PRODUCTION FROM COCONUT SHELL WITH (NH 4 )HCO 3 ACTIVATOR AS AN ADSORBENT IN VIRGIN COCONUT OIL PURIFICATION ABSTRACT

BAB IV HASIL DAN PEMBAHASAN. Universitas Islam Indonesia dapat dilihat pada tabel 4.1

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan uji kapasitas adsorben kitosan-bentonit terhadap

Transkripsi:

BAB IV HASIL DAN PEMBAHASAN 4.1 Pembuatan Sampel Buatan Pada prosedur awal membuat sampel buatan yang digunakan sebagai uji coba untuk penentuan daya serap dari arang aktif. Sampel buatan adalah larutan Hg(NO 3 ) 2 10 7 ppb. Dalam penelitian ini dibagi menjadi 3 tahapan. Tahapan pertama pembuatan karbon aktif, tahap kedua adsorpsi logam Hg oleh arang aktif, dan tahap ketiga hasil analisis daya serap karbon aktif terhadap larutan I 2 4.2 Pembuatan Arang Aktif Penelitian ini diawali dengan pembuatan arang aktif dari tempurung kelapa. Pembuatan arang aktif tempurung kelapa dilakukan melalui beberapa tahapan yaitu tahap karbonasi dan aktivasi. Tahap pertama adalah karbonasi (pengarangan). Pada tahap ini dilakukan dengan cara membakar bahan baku (tempurung kelapa) dengan tungku pengarangan sederhana yang terbuat dari drum bekas dengan ruangannya tanpa oksigen dan bahan kimia lainya, tujuan pembakaran dilakukan tanpa oksigen agar arang yang dihasilkan arang yang mempunyai daya serap dan struktur yang rapi. Energi panas yang terjadi pada saat pirolisis akan menguraikan molekul kompleks karbon menjadi karbon. Tahap kedua adalah arang hasil karbonasi dilanjutkan pada tahap aktivasi kimia, tetapi sebelumnya arang dihaluskan dan diayak dengan berbagai macam variasi ukuran yaitu 38, 45, 90 mesh. Perbedaan variasi ukuran dilakukan untuk meyeragamkan ukuran pori dari arang aktif dan melihat daya serap dari arang 23

aktif yang paling baik. Kemudian diaktivasi menggunakan bahan kimia, karena arang hasil karbonasi biasanya masih mengandung zat yang menutupi pori-pori permukaan arang. Zat yang menutupi pori dihilangkan dengan menggunakan aktivator H 2 SO 4 3M. Selain itu juga aktivator telah mengikat senyawa-senyawa tar sisa karbonasi keluar dari mikropori arang, sehingga permukaanya semakin porous (Kurniati, 2008). Arang yang telah dihaluskan direndam dengan H 2 SO 4 3 M dengan waktu perendaman 24 jam (satu malam). Pada saat peredaman H 2 SO 4 akan melarutkan senyawa tar dan mineral organik. Hilangnnya zat tersebut dari permukaan arang aktif berakibat meningkatnya luas permukaan arang aktif, (Subadra, dkk, 2005 dalam Budiono, 2013). Setelah satu malam arang hasil aktivasi ditiriskan dan dipanaskan dalam oven selema 4 jam dengan suhu 105 C. Setelah melalui proses aktivasi arang atau karbon semakin banyak mikropori, Pada proses pemanasan setelah aktivasi bertujuan agar bahan pengaktif masuk pada sela-sela lapisan dan selanjutnya membuka permukaan yang tertutup (Kienle, 1986 dalam Rumidatul, 2006). Dalam penelitian ini menggunakan aktivator H 2 SO 4 karena kemampuan adsorpsi selain dipengaruhi oleh luas permukaan juga dipengaruhi oleh adanya gugus aktif dari arang aktif. H 2 SO 4 (Asam Sulfat) memberikan pengaruh terhadap gugus aktif pada arang aktif, sehingga menyebabkan arang aktif bersifat hidrofilik sehingga molekul-molekul polar (senyawa organik) akan berinteraksi lebih kuat daripada molekul-molekul nonpolar (Newcombe dan Drikas, 1997, dalam Budiono, 2013). 24

Pemanfaatan semua bagian-bagian kelapa dipercaya mempunyai banyak manfaat karena banyaknnya unsur-unsur yang terkandung didalamnya, disamping sebagai bahan bangungan, makanan, tempurung kelapa dapat dimanfaatkan sebagai adsorben. Seperti yang dilakukan pada penelitian ini, tempurung kelapa dijadikan sebagai arang aktif yang bermanfaat sebagai adsorben untuk mengadsorbsi logam-logam berat, salah satunya adalah logam Hg (Merkuri) (Kuriati,2008). Dimana logam Hg sangatlah berbahaya bila terkontaminasi ke lingkungan. 4.3 Hasil Analisis Daya Serap Arang Aktif Terhadap IOD (I 2 ) Parameter yang dapat menujukan kualitas arang aktif adalah daya adsorpsi terhadap larutan Iodium. Semakin besar bilangan iodnya maka semakin besar kemampuan dalam mengadsopsi adsorbat atau zat terlarut. Oleh karena itu, daya serap terhadap iodium merupakan indikator penting dalam menilai arang aktif. Daya serap terhadap iodium menunjukkan kemampuan arang aktif menyerap zat dengan ukuran molekul yang lebih kecil dari 10 Ȧ atau memberikan indikasi jumlah pori yang berdiameter 10 15Ȧ. Semakin tinggi daya serap iodium maka semakin baik kualitas arang aktif (Rumidatul, 2006). Pada penelitian ini metode yang digunakan dalam analisis daya adsopsi arang aktif terhadap iodium tidak menggunakan metode titrasi iodometri yang biasa digunakan oleh penelitian sebelumnya, akan tetapi pada penelitian ini menggunakan sedertan larutan iod yang diketahui kosentrasinya. Daya adsorpsi tersebut dapat ditunjukkan dengan besarnya angka iod yaitu angka yang 25

menujukkan seberapa besar adsorben dapat mengadsopsi iod. Semakin besar nilai angka iod maka semakin besar pula daya adsorpsi dari adsorben. Penambahan larutan iodium 0,1 N berfungsi sebagai adsorbatnya yang akan diserap oleh arang aktif sebagai adsorben. Terserapnya larutan iod ditunjukkan dengan berkurangnnya kosentrasi larutan iodium. Pengukuran kosentrasi iod sisa dapat dilakukan dengan menyusuaikan warna filtrat dari larutan iod dengan sederetan larutan iod yang telah dibuat dengan diketahui kosentrasinya. Tujuan uji daya serap iodium adalah guna mengetahui kemampuan arang aktif untuk menyerap larutan berwarna. Hasil analisis daya serap iodium yang dihasilkan dari ukuran partikel arang aktif yang berbeda dapat dilihat pada Tabel 4.1 Tabel 4.1 Hasil analisis daya adsorpsi arang aktif pada iod Ukuran Partikel 38 Mesh 45 Mesh 90 Mesh Waktu Perendaman 10 Menit 10 menit 10 menit Daya Serap Terhadap Larutan I 2 85% 95% 98% Dari Tabel 4.1 terlihat bahwa semakin kecil ukuran partikel dari arang aktif maka dengan kata lain semakin bertambah luas permukaanya. Semakin luas permukaan dari arang aktif maka semakin tinggi daya adsorpsinya. Hal tersebut dapat dibuktikan dengan semakin meningkatnya daya adsorpsi terhadap ion dengan bertambahnya ukuran partikel. Pada Tabel 4.1 hasil arang aktif yang maksimal terdapat pada ukuran partikel 90 Mesh dengan waktu perendaman 10 menit dan adsorbsi 98%. Hasil 26

Daya adsorpsi terhadap larutan iodium (%) minimun terdapat pada ukuran partikel 38 mesh dengan daya adsorbpsi 85%. Dari hasil tersebut jika dilihat dari ketiga jenis ukuran partikel memenuhi persyaratan arang aktif menurut SII No.0258-79 daya serap terhadap larutan Iod adalah 20 % (Sembiring dan Sinaga, 2003), akan tetapi dari ketiga ukuran tersebut yang sangat baik daya adsorbsinya adalah ukuran partikel 90 mesh. Peran ukuran partikel sangat berpengaruh terhadap kemampuan dayaserap arang aktif yang dihasilkan, sebagaimana terlihat pada Gambar 4.1 100% 98% 95% 95% 90% 85% 85% 80% 75% 38 mesh 45 mesh 90 mesh Ukuran Partikel Arang Aktif. Gambar 4.1 Grafik hubungan ukuran partikel dengan daya serap adsopsi arang aktif terhadap larutan iodium 4.4 Adsorpsi Logam Hg Oleh Arang Aktif Arang aktif yang telah diketahui kualitas penyerapannya diaplikasikan untuk mengadsorpsi logam merkuri (Hg) pada Limbah yang mengandung merkuri. Aplikasinya dengan cara mencampurkan arang aktif dengan air limbah dan mengaduk sampai homogen kemudian disaring dan dianalisis (Rumidatul, 27

2006). Untuk melihat perbedaan daya serap dari arang aktif, dalam penelitian ini menggunakan beberapa ukuran partikel dari arang aktif dan waktu kontak dari arang aktif. Filtrat dari limbah merkuri yang telah diadsorpsi dianalisis dengan menggunakan metode SSA (Spektrokopi Serapan Atom) AA450FS tanpa nyala pada panjang gelombang 283,3 nm. Metode SSA sangat baik digunakan dalam analisis karena proses analisis sangat rendah serta dapat menentukan konsentrasi dari logam yang sangat rendah sampai dengan kosentrasi ppb (Khopkar, 2008). Hasil analisa kadar merkuri (ppm) yang diadsorpsi oleh arang aktif dengan ukuran partikel yang berbeda, dan waktu perendaman berbeda yang terbaca pada SSA (Spektroskopi Serapan Atom) AA240FS dengan panjang gelombang 283,3 nm dapat dilihat pada Tabel 4.2 Tabel 4.2 Hasil Analisis Kadar Merkuri (Hg) yang diadsorpsi oleh Arang Aktif dalam ppm. Partikel Waktu 10 Menit 20 Menit 30 Menit Daya Serap Arang Aktif (ppm) 38 Mesh 45 Mesh 90 Mesh 3912 5651 7136 5483 6973 7337 5651 7093 8462 Dari Tabel 4.2 terlihat bahwa semakin kecil ukuran partikel maka daya serap arang aktif pula semakin besar. Demikian halnya dengan waktu peredaman, semakin lama waktu kontak dengan arang aktif, maka semakin besar pula daya serap dari arang aktif tersebut. Hal ini terjadi karena arang aktif yang memiliki ukuran partikel sangat kecil atau ukuran mesh yang besar, maka luas 28

permukaannya sangat besar. Luas permukaan yang semakin besar dapat menjebak banyak senyawa-senyawa. Hal ini sesuai dengan penelitian yang dilakukan oleh Singgih dan Ratnawati (2010), dimana arang aktif yang memiliki luas permukaan sangat besar mampu mengadsorpsi logam merkuri sangat besar. Hasil presentase dari daya adsorpsi arang aktif pada penelitian ini, dapat dilihat pada Tabel 4.3. Tabel 4.3 Hasil Analisis Kadar Merkuri (Hg) yang diadsorpsi Oleh Arang Aktif dalam persen (%) Partikel Waktu 10 Menit 20 Menit 30 Menit Daya Serap Arang Aktif (%) 38 Mesh 45 Mesh 90 Mesh 39,12 56,51 71,36 54,83 69,73 73,37 56,51 70,93 84,62 Pada Tabel 4.2 dapat dilihat kodisi optimum dari daya serap arang aktif terdapat pada ukuran partikel 90 mesh dan waktu perendaman 30 menit, dimana presentase daya serapnya adalah 84,62 %. Sedangkan, hasil terendah dari tabel tersebut terlihat pada ukuran partikel arang aktif 38 mesh dan waktu perendaman 10 menit, dimana presentase daya serapnya adalah 39,12 %. Dari hasil presentase tersebut dapat dilihat perbedaan yang sangat besar. Selain luas permukaan, aktivator juga mempengaruhi daya serap dari arang aktif, dimana aktivator H 2 SO 4 merupakan aktivator yang paling baik dari aktivator lainnya. Hal ini disebabkan H 2 SO 4 memiliki gugus pengaktif yang paling baik menggantikan gugus yang ada pada arang aktif. Perbedaan dari adsorpsi logam Hg oleh arang aktif dengan berbagai ukuran dapat dilihat pada Gambar 4.2. 29

Daya Adsorpsi LogamHg (ppm) 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 7136 7337 6973 7093 5651 3912 8462 5483 5651 0 1 2 3 4 Waktu (Menit) x 10 38 Mesh 45 Mesh 90 Mesh Gambar 4.2 Grafik Hubungan daya adsorpsi antara Partikel dan waktu perendaman arang aktif Pada Gambar 4.2 dapat dilihat ukuran partikel 38 dan 45 mesh waktu optimum kemungkinan terletak pada 30 menit, sedangkan ukuran partikel 90 mesh waktu optimum kemungkinan diatas 30 me nit. Logam merkuri merupakan logam yang sangat berbahaya jika tercemar ke lingkungan baik berupa cairan atau padatan. Pencemaran logam berat Merkuri ini dapat menjadi masalah besar bagi lingkungan karena logam merkuri bersifat racun yang kumulatif, sejumlah kecil merkuri terserap dalam tubuh dalam jangka waktu lama akan menimbulkan bahaya. Bahaya penyakit yang timbulkan oleh senya wa merkuri diantaranya adalah kerusakan rambut dan gigi, hilang daya ingat dan terganggunya sistem syaraf (Bambang Tjahjono Setiabudi, 2005 dalam Mirdat, 2013). Untuk menghidari keracunan dari logam berat Merkuri (Hg) yang tercemar di lingkungan, maka logam merkuri perlu diminimalisir dengan cara mengadsorpsi menggunakan arang aktif. 30