BAB II LANDASAN TEORI

dokumen-dokumen yang mirip
BAB II TINJAUAN PUSTAKA. Es krim adalah sejenis makanan semi padat. Di pasaran, es krim

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu

PERPINDAHAN PANAS. Pertemuan 9 Fisika 2. Perpindahan Panas Konduksi

Konduksi Mantap Satu Dimensi (lanjutan) Shinta Rosalia Dewi

TOPIK: PANAS DAN HUKUM PERTAMA TERMODINAMIKA. 1. Berikanlah perbedaan antara temperatur, panas (kalor) dan energi dalam!

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02

Lampiran 1 Tabel Bahan-bahan Isolasi

II. TINJAUAN PUSTAKA

PERPINDAHAN PANAS DAN MASSA

BAB II LANDASAN TEORI

BAB 3 METODOLOGI PENELITIAN

Nama : Nur Arifin NPM : Jurusan : Teknik Mesin Fakultas : Teknologi Industri Pembimbing : DR. C. Prapti Mahandari, ST.

BAB II TINJAUAN PUSTAKA

BAB II TEORI DASAR 2.1 Perancangan Sistem Penyediaan Air Panas Kualitas Air Panas Satuan Kalor

BAB 2 TINJAUAN PUSTAKA

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer

Konduksi Mantap 2-D. Shinta Rosalia Dewi

BAB II LANDASAN TEORI

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian

BAB IV ANALISA DAN PERHITUNGAN

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB 4 ANALISA KONDISI MESIN

PENDINGIN TERMOELEKTRIK

BAB III PERBAIKAN ALAT

BAB III PERANCANGAN.

BAB II Dasar Teori BAB II DASAR TEORI

III. METODELOGI PENELITIAN. Penelitian dilaksanakan pada Mei hingga Juli 2012, dan Maret 2013 di

PERPINDAHAN PANAS PIPA KALOR SUDUT KEMIRINGAN

LAPORAN TUGAS AKHIR BAB II DASAR TEORI

BAB I PENDAHULUAN. khatulistiwa, maka wilayah Indonesia akan selalu disinari matahari selama jam

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat

METODOLOGI PENELITIAN

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut.

BAB III PERANCANGAN SISTEM

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil

BAB II DASAR TEORI. 2.1 Pengertian Radiator

BAB II LANDASAN TEORI

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap

BAB III METODOLOGI PENELITIAN. pirolisator merupakan sarana pengolah limbah plastik menjadi

Proses Desain dan Perancangan Bejana Tekan Jenis Torispherical Head Cylindrical Vessel di PT. Asia Karsa Indah.

BAB II KABEL DAN PERPINDAHAN PANAS

BAB IV PEMILIHAN SISTEM PEMANASAN AIR

BAB II DASAR TEORI. Gambar 2.1 Self Dryer dengan kolektor terpisah. (sumber : L szl Imre, 2006).

I PENDAHULUAN. Pemikiran, dan (6) Tempat dan Waktu Penelitian. bakery oven. Perangkat khusus yang digunakan untuk memanggang produk pastry

BAB II TINJAUAN PUSTAKA. II. 1 Pengertian Ketel Bertenaga Listrik (Electric Boiling)

SUHU DAN KALOR DEPARTEMEN FISIKA IPB

MARDIANA LADAYNA TAWALANI M.K.

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

BAB III PERANCANGAN SISTEM DAN ANALISIS

Pengaruh Variasi Putaran Dan Debit Air Terhadap Efektifitas Radiator

BAB III TINJAUAN PUSTAKA

Teknik Lingkungan S1 TERMODINAMIKA LINGKUNGAN

Dengan cara pemakaian yang benar, Anda akan mendapatkan manfaat yang maksimal selama bertahun-tahun.

PENGANTAR PINDAH PANAS

BAB II LANDASAN TEORI

BAB I PENDAHULUAN. Pembangkit Listrik Tenaga Air Panglima Besar Soedirman. mempunyai tiga unit turbin air tipe Francis poros vertikal, yang

BAB IV ANALISA DAN PERHITUNGAN

PENINGKATAN EFISIENSI PRODUKSI MINYAK CENGKEH PADA SISTEM PENYULINGAN KONVENSIONAL

PENGUKURAN KONDUKTIVITAS TERMAL

BAB 9. PENGKONDISIAN UDARA

Soal Suhu dan Kalor. Jawablah pertanyaan-pertanyaan di bawah ini dengan benar!

TUGAS AKHIR EKSPERIMEN HEAT TRANSFER PADA DEHUMIDIFIER DENGAN AIR DAN COOLANT UNTUK MENURUNKAN KELEMBABAN UDARA PADA RUANG PENGHANGAT

PERCOBAAN PENENTUAN KONDUKTIVITAS TERMAL BERBAGAI LOGAM DENGAN METODE GANDENGAN

BAB II PENERAPAN HUKUM THERMODINAMIKA

BAB II LANDASAN TEORI

BAB II TINJAUAN PUSTAKA

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

DAFTAR ISI. i ii iii iv v vi

PEMILIHAN MATERIAL DALAM PEMBUATAN DAPUR CRUSIBLE PELEBUR ALUMINIUM BERKAPASITAS 50KG DENGAN BAHAN BAKAR PADAT

Heat and the Second Law of Thermodynamics

BAB III PERANCANGAN EVAPORATOR Perencanaan Modifikasi Evaporator

PEMILIHAN BAHAN BAKAR DALAM PEMBUATAN DAPUR CRUCIBLE UNTUK PELEBURAN ALUMINIUM BERKAPASITAS 50KG MENGGUNAKAN BAHAN BAKAR BATU BARA

III. METODE PENELITIAN. Desember 2011 di bengkel Mekanisasi Pertanian Jurusan Teknik Pertanian

GLOSSARY STANDAR KOMPETENSI TENAGA TEKNIK KETENAGALISTRIKAN BIDANG JASA PENDIDIKAN DAN PELATIHAN TENAGA LISTRIK

BAB II TINJAUAN PUSTAKA

ANALISA DISTRIBUSI TEMPERATUR PADA PIPA UAP TEMPERATUR PERMUKAAN KONSTAN

BAB V ANALISIS DAN INTERPRETASI HASIL

PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP PANAS YANG DIHASILKAN SOLAR WATER HEATER (SWH)

BAB II TINJAUAN PUSTAKA

PEMANFAATAN PANAS TERBUANG

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( (2016). www. ferotec.com/technology/thermoelectric)

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur

PERPINDAHAN KALOR J.P. HOLMAN. BAB I PENDAHULUAN Perpindahan kalor merupakan ilmu yang berguna untuk memprediksi laju perpindahan

BAB I PENDAHULUAN Latar Belakang Masalah. dengan globalisasi perdagangan dunia. Industri pembuatan Resin sebagai

Kualitas Air Panas. Alat Pemanas yang sering digunakan :

Momentum, Vol. 9, No. 1, April 2013, Hal ISSN ANALISA KONDUKTIVITAS TERMAL BAJA ST-37 DAN KUNINGAN

Satuan Operasi dan Proses TIP FTP UB

BAB I PENDAHULUAN I.1.

DESAIN DAN ANALISIS ALAT PENUKAR KALOR TIPE CES

IV. PENDEKATAN RANCANGAN

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK

REAKTOR GRAFIT BERPENDINGIN GAS (GAS COOLED REACTOR)

BAB III METODE PENELITIAN. Waktu penelitian dilakukan setelah di setujui sejak tanggal pengesahan

I. TUJUAN PERCOBAAN 1. Mempelajari cara kerja kalorimeter 2. Menentukan kalor lebur es 3. Menentukan kalor jenis berbagai logam

P I N D A H P A N A S PENDAHULUAN

Alat Peraga Pembelajaran Laju Hantaran Kalor

ARUS LISTRIK. Di dalam konduktor / penghantar terdapat elektron bebas (muatan negatif) yang bergerak dalam arah sembarang (random motion)

Penyediaan air panas ke dalam bangunan

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG

Transkripsi:

BAB II LANDASAN TEORI 2.1. PROSES PRETREATMENT Berdasarkan susunan kata, maka pretreatment dapat diartikan sebagai, pre : sebelum, dan treatment : proses atau perlakuan. Pengertian umum pretreatment adalah suatu proses yang dijalankan sebelum melakukan proses inti. Pengertian khusus pretreatment pengecatan adalah proses pendahuluan terhadap bahan sebelum dilakukan pengecatan. Tujuan pretreatment painting ialah : a. Menambah daya rekat (adhesi) antara cat dengan bahan dasar (part) b. Menambah ketahanan terhadap karat pada hasil pengecatan Pada prinsipnya, aliran proses pretreatment dapat dilihat pada Gambar 2.1 berikut ini : Proses Pretreatment Loading Masking Hot Water Degreasing 1 Degreasing 2 Water Rinse 1 Water Rinse 3 Phosphating Surface Conditioning Water Rinse 2 Water Rinse 4 Di Water Rinse Unmasking 2 Baking Oven Pengecatan Dry Oven Unmasking 1 Checkman Unloading Gambar 2.1. Tahap proses Pretreatment 2.2. SIRKULASI FLUIDA ( SYSTEM PLUMBING ) Definisi alat plumbing ialah semua peralatan yang dipasang didalam maupun diluar gedung, untuk menyediakan (memasukkan) air panas atau air dingin, dan untuk menerima (mengeluarkan) air buangan. - 6 -

atau secara ringkas dapat dikatakan semua peralatan yang dipasang pada : Ujung Akhir pipa, untuk memasukan air Ujung Awal pipa, untuk membuang air buangan. Sistem plumbing merupakan bagian yang tidak dapat dipisahkan dalam pembangunan gedung. Oleh karena itu, perencanaan dan perancangan sistem plumbing haruslah dilakukan bersamaan dan sesuai dengan tahapan-tahapan perencanaan dan perancangan gedung itu sendiri, dengan memperhatikan secara seksama hubungannya dengan bagian-bagian konstruksi gedung serta dengan peralatan lainnya yang ada dalam gedung tersebut (seperti, pendingin udara, listnk, dan lain-lain). 2.2.1. Kualitas Air Panas Mengingat sifat anomali air, volumenya akan mencapai minimum pada temperatur 4 C, dan akan bertambah pada temperatur yang lebih rendah maupun lebih tinggi dari angka tersebut. Kalau kerapatan (density) air pada temperatur 4 C dianggap sama dengan satu, kerapatannya pada temperatur lain dinyatakan dalam Tabel 2.1 di bawah ini. Tabel 2.1 Berat spesifik dan volume spesifik air pada berbagai temperatur, pada tekanan atmosfir standar. Temperatur ( C) Berat Spesifik (kg/l ) Volume Spesifik (l/kg) Temperatur ( C) Berat spesifik (kg/l ) Volume spesifik (l/kg) 0 0,99 1,00 80 0.97 1.02900 4 1,00 1,00 85 0,96 1.03240 6 0,99 1,00 90 0,96 1.03590 46 0,98 1,01 100 0,95 1,04340 70 0,97 1.02 110 0,95 1.05150 75 0,97 1.02 120 0,94 1.06000 77 0,97 1.02 130 0,93 1.06940 Sumber : Noerbambang, 1993 Dapat dilihat dalam Tabel 2.1 bahwa apabila air dipanaskan dari temperatur 4 sampai 100 o C, volumenya akan bertambah sekitar 0,0434 l/kg, Jelaslah bahwa dalam perancangan maupun pemasangan instalasi air panas aspek ini harus diperhatikan. Pada suatu bejana tertutup harus dipasangkan pipa atau katup ekspansi untuk "melepaskan" tekanan yang timbul akibat pertambahan volume tersebut. - 7 -

Tabel 2.2 Tekanan relatif dan temperatur didih air. Tekanan (kg/cm2) Temperatur ( C) Tekanan (kg/cm2) Temperatur ( C) 0 100 3 143 0,5 111 3,5 147 1 120 4 151 1.5 127 4,5 156 2 133 5 158 2,5 138 5,5 161 Sumber : Noerbambang, 1993 Kalau air dipanaskan terus, pada suatu temperatur akan mulai mendidih, dan temperatur didih ini berubah bergantung pada besarnya tekanan dalam air tersebut. Lihat Tabel 2.2. 2.2.2. Satuan Kalor Banyaknya energi panas atau kalor yang diperlukan 1 kg air agar temperaturnya naik sebesar 1 C pada kondisi atmosfir standar didefinisikan sebagai 1 kilokalori (kcal). Nilai ini berubah sedikit pada temperatur lain tetapi praktis dapat dianggap konstan. Secara umum kalor yang diperlukan untuk pemanasan adalah: Dimana : Q = Banyaknya kalor (kcal) Q = W.Cp. (T 2 T 1 ) W = Berat air yang dipanaskan (kg) Cp= Spesifik Kalor (kcal/kg o C) T 2 = Temperatur awal ( C) T 1 = Temperatur akhir (air panas) ( C) 2.2.3. Pengaruh Kualitas Air dan Temperatur Selain zat asam (oksigen), air biasanya juga mengandung garam-garaman dan zat-zat yang dapat menimbulkan karat atau kerak pada logam untuk ketel, tangki air panas, pipa, dan sebagainya. Makin sedikit kandungan zat-zat perusak tersebut, dikatakan makin baik kualitas airnya. Temperatur air ternyata juga berpengaruh pada intensitas proses pengkaratan; makin tinggi temperaturnya, makin cepat prosesnya. Secara umum dapat dikatakan bahwa dengan peningkatan temperatur setiap 10 C, kecepatan - 8 -

proses pengkaratan berlipat dua kali. Oleh karena itu tidak diinginkan memanaskan air secara berlebihan. 2.2.4. Sirkulasi Pemanasan Pada Instalasi Condensate Uap Panas T=110oC Pre Degresing Hot Water T = 50oC T = 50oC Degresing T = 50oC T=120oC Phospating T = 41oC T=90o C Burner Proses Pretreatment Ketel Uap T=75oC o T=90 C T=30oC Air PAM Tangki Condensate Uap Panas Tangki Air Gambar 2.2. Sirkulasi Panas pada sistem instalasi pipa condensate uap panas Pada Gambar 2.2 diatas dapat dilihat bahwa ketel uap menghasilkan uap panas hasil dari pembakaran air yang berasal dari air condensate uap panas dan air PAM. Keluaran temperatur dari ketel uap sebesar T= 120oC kemudian dialirkan ke proses pretreatment, temperatur masuk ke proses pretreatment sebesar 110oC, dalam proses pretreatment terjadi pertukaran panas melalui coil pipa dalam masing-masing tangki proses pretreatment. Air condensate uap panas keluaran dari proses pretreatment ini kemudian ditampung pada tangki condensate uap panas, temperatur pada keluaran proses pretreatment ialah o sebesar 90 C. Air condensate uap panas ini kemudian dikirim ke tangki penyimpanan air melalui instalasi pipa condensate uap panas, temperatur air condensate uap panas ketika sampai di tangki sebesar 75oC. Kemudian air condensate uap panas ini digunakan kembali sebagai bahan untuk pembakaran di ketel uap. -9-

2.3. PEMELIHARAAN SISTEM PLUMBING 2.3.1. Pengendalian Kualitas Air Air didalam tangki penyimpan air panas biasanya dijaga pada temperatur 55 C sampai 60 C. Jelaslah, bahwa pada waktu pemeriksaan, perlu perhatian khusus untuk diketahui apakah ada gejala berkarat pada bahan tangki dan pipa air panas. Dalam tangki penyimpan air panas kecil kemungkinan adanya pencemaran oleh bakteri patogen, karena temperatur air yang cukup tinggi. Hal lain yang perlu diperiksa adalah temperatur air, ph, kekeruhan, kromatisasi, rasa, dan bau. Peralatan dan perlengkapan instalasi yang berhubungan dengan air panas dan dibuat dari timah hitam, tembaga, besi atau baja, mangan dan seng, perlu diberi perhatian khusus pada waktu pemeriksaan. Pemanas air biasanya diatur agar dapat menyediakan air panas masuk pipa pada temperatur sekitar 55 C sampai 60 C. Secara umum dapat dikatakan kalau temperatur air panas terlalu tinggi, kerugian yang timbul akibat kehilangan kalor melalui dinding pipa dan tangki akan bertambah besar. Pertimbangan inilah yang menyebabkan mengapa pengatur temperatur air panas perlu diperiksa baik-baik. 2.3.2. Pengetesan Pipa Pengetesan yang dilakukan adalah terhadap kekuatan, kebocoran, ketelitian dan kesempurnaan dalam pengelasan pipa. Yang perlu diperhatikan dalam pengetesan : 1). Mechanical equipment, yaitu pump, exchangers, turbines, compressor dan LNG loading arm 2). Control globe valve juga dipisahkan dari pengetesan pipa dengan cara menggunakan spoll sementara yaitu setelah menutup dengan blind flange pada bagian depan dan belakang dari globe valve, sehingga pengetesan akan melalui spool atau bypass sebagai penghubung aliran dari bahan untuk pengetesan. Untuk praktisnya pipa dites pada posisi terpasang, bila mungkin berikut perlengkapannya. Untuk vessel dan perlengkapannya hanya dapat dites bila sistem pipa sudah terpasang dimana pressure test untuk vessel tersebut adalah sama atau lebih besar dari pressure test untuk pipa. - 10 -

Bila pressure test untuk pipa lebih rendah dari sistem pipa, sedangkan vessel tersebut tak dapat dipisahkan dari sistem pipanya, maka pengetesan pipa dilakukan sebelum vessel terpasang. 2.4 PERPINDAHAN PANAS DAN ISOLASI Penerapan hukum Fourier tentang konduksi termal untuk menghitung aliran termal dalam sistem sederhana satu dimensi. Dalam kategori sistem satu dimensi ini termasuk berbagai bentuk fisik yang berlainan : sistem-sistem silinder dan bola adalah satu dimensi bilamana suhu benda hanya merupakan fungsi jarak radial dan tidak tergantung dari sudut azimuth atau letak pada poros. Contoh isolasi pipa dapat dilihat pada Gambar 2.3 dibawah ini. Gambar 2.3. Isolasi pipa Tugas dari isolasi adalah untuk membungkus bagian pipa atau tangkitangki yang tidak boleh mengalami perpindahan panas, baik dari dalam maupun dari luar, serta mencegah erosi/karat. 2.4.1 Konduksi Keadan Tunak - Satu Dimensi 2.4.1.1 Bidang Datar Suatu dinding datar, di mana kita akan menerapkan hukum Fourier Persamaan (2-1). Jika persamaan ini diintegrasikan, maka akan didapatkan persamaan (2-2) seperti dibawah ini : δt q = ka (2.1) δx ka q = ( T 2 T 1) (2-2) x Bilamana konduktivitas termal = k (thermal conductivity) dianggap tetap,. - 11 -

Tebal dinding adalah x, sedang T 1 dan T 2 adalah suhu muka dinding,sedangkan A adalah luasan permukaan. Jika dalam sistem itu terdapat lebih dari satu macam bahan, seperti dalam hal ini dinding lapis rangkap pada Gambar 2.4 a dibawah ini : profil suhu q q q A B C R A R B R C 1 2 3 4 T 1 T 2 T 3 T 4 (a) Gambar 2.4. Perpindahan kalor satu-dimensi melalui dinding komposit dan analogi listriknya. Jika gradien suhu (temperature gradient) pada ketiga bahan ialah seperti tergambar itu, aliran kalor dapat dituliskan sebagai berikut : T 2 T q = kaa xa 1 T 3 T = kba xb 2 (b) T 4 T = kca xc Aliran kalor pada setiap bagian itu mesti sama.jika ketiga persamaan ini dipecahkan serentak, maka aliran kalor itu dapat dituliskan sebagai berikut : T 1 T 4 q = xa + xb + xc kaa kba kca 3 (2.3) Laju perpindahan kalor dapat dipandang sebagai aliran; sedang gabungan dari konduktivitas termal, tebal bahan, dan luas merupakan tahanan terhadap aliran ini. Suhu merupakan fungsi potensial, atau pendorong, aliran itu; dan persamaan Fourier dapat dituliskan sebagai berikut : Aliran kalor = beda potensial tahanan termal T q = (2.4) Hubungan di atas sangat serupa dengan hukum Ohm dalam rangkaian listrik. Dalam persamaan (2-2), tahanan termal (thermal resistance) ialah x/ka, dan dalam persamaan (2-3) tahanannya ialah jumlah ketiga suku dalam pembagi Rth - 12 -

(denominator). Hal ini memang sesuai dengan yang diharapkan dari persamaan (2-3), karena ketiga dinding berjejer itu bertindak sebagai tahanan dalam susunan seri. Rangkaian listrik yang sebanding seperti terlihat pada Gambar 2.4 b. 2.4.1.2 Sistem Radial - Silinder Silinder panjang dengan jari-jari dalam r t, jari-jari luar r o, dan panjang L, seperti pada Gambar 2.5. Silinder ini mengalami beda suhu T i T o, Untuk silinder yang panjangnya sangat besar dibandingkan dengan diameternya, dapat kita andaikan bahwa aliran kalor berlangsung menurut arah radial, sehingga koordinat ruang yang kita perlukan untuk menentukan sistem itu hanyalah r. Hukum Fourier digunakan lagi dengan menyisipkan rumus luas yang sesuai. Luas bidang aliran kalor dalam sistem silinder ini ialah ; sehingga hukum Fourier menjadi : atau dengan kondisi batas Ar = 2 πrl (2.5) dt qr = kar (2.6) dr dt qr = 2πkrL (2.7) dr T = T i pada r = r i (2.8) T = T o pada r = r o (2.9) Penyelesaian persamaan (2-6) adalah: 2 kl( Ti To) q = π (2.10) ln( ro ) ri dan tahanan thermal dalam hal ini adalah : ln( ro ) Rth = ri (2.11) 2πkL - 13 -

q r dr Ti To r o r i L q R th (a) (b) Gambar 2.5. Aliran karor satu-dimensi melalui silinder bolong dan analogi listriknya. Konsep tahanan termal dapat juga digunakan untuk dinding lapis rangkap berbentuk silinder, seperti halnya dengan dinding datar. Untuk sistem tiga lapis seperti pada Gambar 2.6 dibawah ini : q q T 4 r 4 T 3 r 3 T 2 T 1 r 2 T 1 T 2 T 3 T 4 A r 1 R A R B Rc B C (a) Gambar 2.6. Aliran kalor satu-dimensi melalui penampang silinder dan analogi listriknya (b) Maka penyelesaiannya adalah : 2πL( T 1 T 4) q = ln( r 2 / r1) / ka + ln( r3 / r 2) / kb + ln( r 4 / r3) / kc (2.12) Untaian atau rangkaian termalnya (thermal circuit) diberikan pada Gambar 2.5b. - 14 -

Sistem berbentuk bola dapat kita tangani sebagai satu dimensi apabila suhu merupakan fungsi jari-jari saja. Aliran kalornya menjadi : 2.4.2 Isolasi 4 k( Ti To) q = π (2.13) l / ri l / ro Isolasi di dalam suatu pengilangan dikenal tiga macam isolasi yaitu : 1). Isolasi panas (hot isolation) 2). Isolasi dingin (cold isolation) 3). Isolasi pelindung manusia (personal protection) Perhitungan perencanaan isolasi adalah perhitungan perubahan panas (heat- transfer). Pemakaian atau penggunaan, volume materialnya tergantung dari macam isolasi dan tinggi rendahnya perubahan temperatur. Dalam mengelompokkan keampuhan bahan isolasi, dalam industri bangunan ada kebiasaan menggunakan nilai R, yang didefinisikan sebagai berikut: luas. R = T (2.14) q A Satuan R adalah W/m o C. Dalam hal ini digunakan aliran kalor per satuan Bahan bahan isolasi dikelompokkan menurut penerapan dan jangkauan suhu penggunaannya, pengelompokan ini dapat dilihat pada Lampiran 1. - 15 -