BAB IV HASIL PENELITIAN DAN ANALISIS

dokumen-dokumen yang mirip
BAB III PERANCANGAN DAN METODE PENELITIAN

BAB I PENDAHULUAN 1.2. Latar Belakang Permasalahan

BAB I PENDAHULUAN. vital yang tidak dapat dilepaskan dari keperluan sehari-hari. Manusia hampir tidak

BAB IV HASIL DAN ANALISA PENGUJIAN THERMOELECTRIC GENERATOR

BAB IV PENGUJIAN DAN ANALISIS

PENGUKURAN DAN ANALISIS KARAKTERISTIK THERMOELECTRIC GENERATOR DALAM PEMANFAATAN ENERGI PANAS YANG TERBUANG

Rangkaian Listrik. 4. Ebtanas Kuat arus yang ditunjukkan amperemeter mendekati.. a. 3,5 ma b. 35 ma c. 3,5 A d. 35 A e. 45 A

LISTRIK DINAMIS B A B B A B

BAB I PENDAHULUAN A. Latar Belakang Wida Lidiawati, 2014

Hubungan Antara Tegangan dan RPM Pada Motor Listrik

BAB IV PENGUJIAN DAN ANALISIS

EXHAUST SYSTEM GENERATOR: KNALPOT PENGHASIL LISTRIK DENGAN PRINSIP TERMOELEKTRIK

Bab III ENERGI LISTRIK

Kunci jawaban Posttest

BAB III PERANCANGAN SISTEM

SMP kelas 9 - FISIKA BAB 2. RANGKAIAN LISTRIK DAN SUMBER ENERGI LISTRIKLatihan Soal 2.5

BAB X ENERGI DAN DAYA LISTRIK

Perancangan Alas Setrika Sebagai Pengisi Baterai (Battery Charger) dengan Memanfaatkan Energi Panas Terbuang pada Saat Jeda Menyetrika

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN. Energi listrik adalah energi yang mudah dikonversikan ke dalam bentuk

LISTRIK DINAMIS Listrik mengalir

KETERKAITAN ANTARA KERJA ALAT LISTRIK (W) DENGAN MUATAN LISTRIK (Q) YANG DIPINDAHKAN

YAYASAN PENDIDIKAN JAMBI SEKOLAH MENENGAH ATAS TITIAN TERAS UJIAN SEMESTER GENAP TAHUN PELAJARAN 2007/2008. Selamat Bekerja

5 HASIL DAN PEMBAHASAN

BAB II LANDASAN TEORI

BAB IV HASIL DAN PEMBAHASAN

Resistor. Gambar Resistor

Assalamuaalaikum Wr. Wb

Contoh soal dan pembahasan ulangan harian energi dan daya listrik, fisika SMA kelas X semester 2. Perhatikan dan pelajari contoh-contoh berikut!

BAB IV HASIL DAN ANALISIS Perancangan Sistem Pembangkit Listrik Sepeda Hybrid Berbasis Tenaga Pedal dan Tenaga Surya

BAB IV PENGUJIAN, ANALISA DAN PEMBAHASAN

BAB 4 ANALISIS DAN BAHASAN

b. Jika pernyataan benar, alasan benar, dan keduanya tidak menunjukkan hubungan sebab akibat

Pemanfaatan Energi Panas Sebagai Pembangkit Listrik Alternatif Berskala Kecil Dengan Menggunakan Termoelektrik

Uji kemampuan pertemuan 1 No Soal Jawaban 1 Tuliskan fungsi alat ukur amperemeter dan voltmeter!

KARTU SOAL BENTUK PILIHAN GANDA

BAB I PENDAHULUAN. masyarakat terhadap alat-alat yang dapat bekerja secara otomatis dan aman

BAB IV PENGUJIAN SISTEM INSTALASI LISTRIK MENGGUNAKAN TRAFO ISOLASI

Pilih satu jawaban yang paling benar dari dengan cara memberikan tanda silang (X) pada huruf di depan pilihan jawaban tersebut.

BAB IV PERHITUNGAN DAN PENGUJIAN PANEL SURYA

BAB III KARAKTERISTIK SENSOR LDR

BAB 1 PENDAHULUAN 1-1. Universitas Kristen Maranatha

Listrik dinamis( pilih satu jawaban yang tepat)

SEMIKONDUKTOR. Komponen Semikonduktor I. DIODE

Daerah Operasi Transistor

Theory Indonesian (Indonesia) Dinamika Nonlinear dalam Rangkaian Listrik (10 poin)

BAB IV DATA DAN ANALISA

Heat Energy Harvesting untuk Sumber Listrik DC Skala Kecil

PENGARUH SERAPAN SINAR MATAHARI OLEH KACA FILM TERHADAP DAYA KELUARAN PLAT SEL SURYA

BAB 4 PENGUJIAN, DATA DAN ANALISIS

Grafik tegangan (chanel 1) terhadap suhu

BAB III PERANCANGAN ALAT

BAB I PENDAHULUAN. Pertumbuhan jumlah penduduk dan teknologi yang pesat, menjadikan

1 BAB I PENDAHULUAN. listrik. Di Indonesia sejauh ini, sebagian besar kebutuhan energi listrik masih disuplai

Pengantar Elektronika RESISTOR ( TAHANAN) STIMIK AKBA 2011

Input ADC Output ADC IN

PROPOSAL PENELITIAN. Penghemat BBM Sepeda Motor Berbasis Termoelektrik. Disusun oleh : 1. Yuasti Hasna Fauziyah (37764)

Gambar 11 Sistem kalibrasi dengan satu sensor.

RANGKAIAN SERI-PARALEL

BAB IV PENGUJIAN DAN ANALISA

ANALISIS RANGKAIAN RLC

Lampiran 5 POKOK BAHASAN HUKUM OHM UNTUK KELAS X 5 KELAS PRAKTIKUM REAL LEMBAR KERJA SISWA

POKOK BAHASAN HUKUM OHM UNTUK KELAS X 4 KELAS PRAKTIKUM VIRTUAL LEMBAR KERJA SISWA

5 HASIL. kecepatan. dan 6 Sudu. dengan 6 sudu WIB, yaitu 15,9. rata-rata yang. sebesar 3,0. dihasilkan. ampere.

Jurnal Ilmiah TEKNIKA ISSN: STUDI PENGARUH PENGGUNAAN BATERAI PADA KARAKTERISTIK PEMBANGKITAN DAYA SOLAR CELL 50 WP

I. Tujuan Praktikum. Mampu menganalisa rangkaian sederhana transistor bipolar.

Antiremed Kelas 9 Fisika

TUGAS AKHIR RANCANG BANGUN COOL BOX BERBASIS HYBRID TERMOELEKTRIK

KISI-KISI SOAL FISIKA SMA KELAS X LISTRIK DINAMIS. a. Seri b. Paralel.

STUDI EKSPERIMENTAL TERMOELEKTRIK GENERATOR TIPE SP SA DAN TEC DENGAN VARIASI SERI DAN PARALEL PADA SUPRA X 125 CC

PENGARUH POSISI SIKAT TERHADAP WAKTU PENGEREMAN PADA MOTOR ARUS SEARAH PENGUATAN SHUNT DENGAN METODE DINAMIS

3. Memahami konsep kelistrikan dan penerapannya dalam kehidupan sehari-hari

BAB IV ANALISIS DAN HASIL DESAIN ALAT. Analisis desain Tas Elektronik membahas mengenai pengujian Tas

BAB 17 LISTRIK DINAMIS

LISTRIK DINAMIS (RANGKAIAN SERI DAN PARALEL) PERTEMUAN 10 HARLINDA SYOFYAN, S.Si., M.Pd PENDIDIKAN GURU SEKOLAH DASAR FAKULTAS KEGURUAN DAN ILMU

BAB III PENGUJIAN ALAT THERMOELECTRIC GENERATOR

Tujuan Instruksional

RANGKUMAN MATERI LISTRIK DINAMIS

SMP kelas 9 - FISIKA BAB 8. SUHU DAN PEMUAIANLATIHAN SOAL BAB 8. Berdasarkan gambar di atas skala termometer Fahrenheit akan menunjukkan angka...

SOAL BABAK PENYISIHAN OLIMPIADE FISIKA UNIVERSITAS NEGERI SEMARANG

BAB I PENDAHULUAN. masyarakat dewasa ini dalam menunjang kemajuan masyarakat. Mudah

GLOSSARY STANDAR KOMPETENSI TENAGA TEKNIK KETENAGALISTRIKAN BIDANG PEMBANGKITAN ENERGI BARU DAN TERBARUKAN

BAB III METODOLOGI PENELITIAN. Studi Pustaka. Persiapan Dan Pengesetan Mesin. Kondisi Baik. Persiapan Pengujian. Pemasangan Alat Ukur

Pilih satu jawaban yang paling benar dari dengan cara memberikan tanda silang (X) pada huruf di depan pilihan jawaban tersebut.

Evaluasi Belajar Tahap Akhir F I S I K A Tahun 2005

BAB 4 ANALISIS DATA DAN PEMBAHASAN

BAB IV PENGUJIAN DAN ANALISIS

TEORI RANGKAIAN. Program Studi S1 Informatika Sekolah Tinggi Teknologi Telematika Telkom 2016

Kurikulum 2013 Kelas 12 SMA Fisika

Gambar 3.1 Diagram alir metodologi pengujian

[Listrik Dinamis] Lembar Kerja Siswa (LKS) Fisika Kelas X Semester 2 Waktu : 48 x 45 menit UNIVERSITAS NEGERI JAKARTA NAMA ANGGOTA :

LAMPIRAN A TAMPILAN PERANGKAT LUNAK

BAB V PENGUJIAN SISTEM DAN ANALISIS HASIL

BAB 1 PENDAHULUAN 1.1. Latar Belakang

Diode) Blastica PAR LED. Par. tetapi bisa. hingga 3W per. jalan, tataa. High. dan White. Jauh lebih. kuat. Red. White. Blue. Yellow. Green.

1 BAB I PENDAHULUAN. energi alternatif yang dapat menghasilkan energi listrik. Telah diketahui bahwa saat

JURUSAN TEKNIK SISTEM PERKAPALAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER

Mesin uji yang digunakan dalam penelitian ini adalah sepeda motor 4-

Gerak Gaya Listrik (GGL) Electromotive Force (EMF)

BAB I PENDAHULUAN. maka semakin maju suatu negara, semakin besar energi listrik yang dibutuhkan.

Transkripsi:

BAB IV HASIL PENELITIAN DAN ANALISIS Pengujian yang telah dilakukan memperoleh data data seperti waktu, arus keluaran, tegangan keluaran, daya keluaran, temperatur pada sisi panas thermoelectric generator dan temperatur pada sisi dingin thermoelectric generator. Data data tersebut masih berupa angka kemudian diubah dalam bentuk grafik sehingga lebih mudah dipahami, dibandingkan, dan dianalisis. Ada beberapa macam pengujian yaitu menggunakan sumber panas buatan, memanfaatkan panas dari sinar matahari, memanfaatkan panas dari knalpot sepeda motor, dan memanfaatkan panas dari setrika listrik. 4. 1. Pengujian Menggunakan Sumber Panas Buatan Pengujian menggunakan sumber panas yang dihasilkan dari transistor. Dengan mengatur besarnya tegangan sumber pada transistor dapat diperoleh temperatur yang berbeda. Berdasarkan percobaan yang dilakukan ketika V CC = 4 V diperoleh beda temperatur sebesar 5 C. Saat V CC = 5 V dihasilkan beda temperatur sebesar 15 C. Sedangkan ketika V CC = 6 V akan terjadi beda temperatur sebesar 25 C dan saat V CC = 7 V akan terjadi beda temperatur sebesar 5 C. Selain variasi beda temperatur juga dilakukan variasi terhadap hambatan beban. Hal ini dimaksudkan untuk mengetahui karakteristik TEG127 4B antara lain mengenai tegangan keluaran, arus keluaran, dan daya keluaran. Hasil percobaan tentang tegangan, arus, dan daya yang dihasilkan dapat dilihat mulai Gambar 4.1 hingga Gambar 4.3. 25

.25.2 Tegangan (V).15.1.5 Beda Temperatur 5 15 25 5..39.5 1 3.3 4.7 1 15 (Ω) Gambar 4.1. Grafik tegangan keluaran terhadap beban TEG127 4B..12.1 Arus (A).8.6.4.2 Beda Temperatur 5 15 25 5..39.5 1 3.3 4.7 1 15 (Ω) Gambar 4.2. Grafik arus keluaran TEG127 4B. 26

Daya (W).9.8.7.6.5.4.3.2.1. Beda Temperatur 5 15 25 5.39.5 1 3.3 4.7 1 15 (Ω) Gambar 4.3. Grafik daya keluaran TEG127 4B. Gambar 4.1 menjelaskan tentang tegangan keluaran dengan beda temperatur yang berbeda ketika dipasang hambatan beban yang bervariasi. Semakin besar beda temperatur dan hambatan beban maka semakin besar juga tegangan yang dihasilkan. Hal ini karena antara tegangan dengan beda temperatur adalah sebanding sesuai dengan konsep thermoelectric. Tegangan sebanding juga dengan hambatan beban yang sesuai dengan hukum ohm. Sementara pada Gambar 4.2 mengenai arus keluaran. Arus yang dihasilkan semakin besar bila beda temperatur semakin besar. Sedangkan arus berbanding terbalik dengan hambatan beban sehingga semakin kecil hambatan beban akan membuat arus bertambah besar. Daya keluaran terlihat pada Gambar 4.3 Dengan meningkatnya tegangan dan arus ketika beda temperatur bertambah maka akan membuat daya yang dihasilkan juga meningkat. Namun, daya yang dihasilkan semakin lama semakin besar dan akan mencapai nilai maksimal pada nilai hambatan beban tertentu. Apabila hambatan beban diperbesar maka daya yang dihasilkan justru akan menurun. 27

Tabel 4.1. Data karakteristik TEG127 4A. [4] (Ω) Beda Temperatur ( C) Daya (Watt) Tegangan (V) Arus (A) 4,75 1,75 1,2 77 2,34 1,8 1,3 122 4,42 2,6 1,7 38,4 1,4 2,5 73 1,8 2,25,8 125 4,21 3,6 1,17 Namun, hasil percobaan yang diperoleh tidak dapat dibandingkan dengan data karakteristik yang telah tersedia. Hal itu dikarenakan tipe thermoelectric generator yang digunakan berbeda. Pada percobaan kali ini memakai tipe TEG127 4B sedangkan data karakteristik yang telah tersedia memakai tipe TEG127 4A. Data karakteristik untuk tipe TEG127 4A dapat dilihat pada Tabel 4.1. Dari data karakteristik tersebut dapat diketahui bahwa peningkatan beda temperatur akan membuat tegangan semakin besar maka arus juga semakin besar dengan hambatan beban yang sama. Namun, untuk daya optimal tidak dapat diketahui sebab variasi hambatan beban masih kurang sehingga data yang dibutuhkan tidak lengkap. 4. 2. Pengujian Memanfaatkan Sumber Panas Sinar Matahari Pengujian dilakukan pada siang hari dengan tujuan diperoleh panas yang maksimal dari sinar matahari. Variasi pengujian antara lain meliputi hambatan beban dan susunan thermoelectric generator secara seri serta paralel. Dari pengujian ini diperoleh data data tentang temperatur, tegangan keluaran, arus keluaran, dan daya keluaran. 4. 2. 1. Analisis Perbedaan Temperatur Melalui percobaan dengan berbagai macam variasi diperoleh grafik perbedaan temperatur antara sisi panas dan sisi dingin thermoelectric generator seperti terlihat pada Gambar 4.4 sampai Gambar 4.9. 28

Perbedaan Temperatur ( C) 18 16 14 12 1 8 6 4 2,39,5 1 3,3 9 18 27 36 54 63 72 81 9 9 99 Gambar 4.. Grafik beda temperatur satu TEG127 4B terhadap beban,39 Ω,,5 Ω, 1 Ω, dan 3,3 Ω. Perbedaan Temperatur ( C) 18 16 14 12 1 8 6 4 2 9 18 27 36 54 63 72 81 9 9 99 4,7 1 15 Gambar 4.5. Grafik beda temperatur satu TEG127 4B terhadap beban 4,7 Ω, 1 Ω, dan 15 Ω. 29

Perbedaan Temperatur ( C) 2 18 16 14 12 1 8 6 4 2,39,5,68 1 9 18 27 36 54 63 72 81 9 9 99 Gambar 4.6. Grafik beda temperatur empat TEG127 4B disusun paralel terhadap beban,39 Ω,,5 Ω,,68 Ω, dan 1 Ω. Perbedaan Temperatur ( C) 2 18 16 14 12 1 8 6 4 2 9 18 27 36 54 63 72 81 9 9 99 3,3 4,7 1 Gambar 4.7. Grafik beda temperatur empat TEG127 4B disusun paralel terhadap beban 3,3 Ω, 4,7 Ω, dan 1 Ω. 3

Perbedaan Temperatur ( C) 18 16 14 12 1 8 6 4 2,39 1 3,3 1 9 18 27 36 54 63 72 81 9 9 99 Gambar 4.8. Grafik beda temperatur empat TEG127 4B disusun seri terhadap beban,39 Ω, 1 Ω, 3,3 Ω, dan 1 Ω. 25 Perbedaan Temperatur ( C) 2 15 1 5 15 22 33 9 18 27 36 54 63 72 81 9 9 99 Gambar 4.9. Grafik beda temperatur empat TEG127 4B disusun seri terhadap beban 15 Ω, 22 Ω, dan 33 Ω. Dari grafik tersebut dapat dilihat bahwa beda temperatur yang diperoleh tidak stabil. Tidak dapat diketahui kapan temperatur akan meningkat dan kapan temperatur akan menurun. Hal ini disebabkan percobaan yang dilakukan bergantung pada cuaca. Selain itu, karena temperatur yang dihasilkan kecil 31

menjadi mudah terpengaruh lingkungan sekitar seperti hembusan angin. Kondisi yang sama juga terjadi ketika hambatan beban yang dipasang diubah dan jumlah thermoelectric generator ditambah yang disusun secara seri serta paralel. 4. 2. 2. Analisis Tegangan Keluaran dan Arus Keluaran Hubungan antara tegangan keluaran dan arus keluaran digunakan untuk mengetahui nilai hambatan dalam TEG127 4B. Berdasarkan percobaan diperoleh grafik seperti pada Gambar 4.1 hingga Gambar 4.12. T e g a n g a n ( V ).14.12.1.8.6.4.2 y = -1.11x +.17 R² =.543.1.2.3.4.5.6.7.8.9 Arus (A) Gambar 4.1. Grafik hambatan dalam satu TEG127 4B. 32

Tegangan (V).14.12.1.8.6.4.2 y = -.169x +.85 R² =.137.2.4.6.8.1.12.14.16.18 Arus (A) Gambar 4.11. Grafik hambatan dalam empat TEG127 4B disusun paralel. T e g a n g a n ( V ).6.5.4.3.2.1 y = -9.32x +.496 R² =.697.1.2.3.4.5.6 Arus (A) Gambar 4.12. Grafik hambatan dalam empat TEG127 4B disusun seri. Melalui percobaan didapatkan nilai tegangan keluaran. Untuk memperoleh nilai arus keluaran dilakukan dengan perhitungan. Sesuai dengan rumus hukum Ohm didapatlah nilai arus keluaran. Hambatan dalam ditentukan dari hubungan linear antara tegangan dan arus tersebut. Satu TEG127 4B memiliki hambatan dalam seperti pada Gambar 4.1 yaitu sebesar 1,11 Ω. Ketika jumlah thermoelectric generator menjadi empat dan disusun paralel 33

didapat hambatan dalam seperti Gambar 4.11 yaitu sebesar,169 Ω dimana yang seharusnya mengecil empat kali. Sedangkan saat disusun seri terlihat pada Gambar 4.12 yaitu sebesar 9,32 Ω yang seharusnya membesar empat kali. Terdapat perbedaan hasil yang disebabkan ketidakstabilan temperatur. Temperatur mempengaruhi hasil tegangan yang diperoleh dari pengukuran. Faktor lain yaitu hasil yang didapat dari grafik berupa pendekatan linear karena data pengukuran tidak benar benar linear. Hal itu dapat dilihat dari nilai R 2 pada grafik yang jauh kurang dari 1. 4. 2. 3. Analisis Daya Keluaran Daya keluaran didapatkan dari perhitungan. Rumus daya yang dipergunakan yaitu P = V 2 /R. Untuk mendapatkan daya keluaran yang optimal maka hambatan beban harus diatur sama dengan hambatan dalam TEG127 4B. Oleh karena itu, nilai hambatan dalam hasil pembahasan sebelumnya dapat digunakan sebagai acuan untuk menentukan nilai hambatan beban yang akan dipasang. Dari percobaan didapatkan bahwa nilai hambatan beban yang dipasang agar daya keluaran yang optimal sebesar 1 Ω untuk satu TEG127 4B,,68 Ω untuk empat TEG127 4B disusun secara paralel, dan 1 Ω untuk empat TEG127 4B disusun secara seri. Gambar 4.13 sampai Gambar 4.15 menunjukkan nilai daya keluaran TEG127 4B pada variasi temperatur..25.2 Daya (W).15.1.5. 2 4 6 8 1 12 14 16 18 Beda Temperatur ( C) Gambar 4.13. Grafik daya keluaran satu TEG127 4B. 34

.7.6.5 Daya (W).4.3.2.1. 2 4 6 8 1 12 14 16 Beda Temperatur ( C) Gambar 4.14. Grafik daya keluaran empat TEG127 4B disusun paralel. Daya (W).9.8.7.6.5.4.3.2.1. 2 4 6 8 1 12 14 16 18 Beda Temperatur ( C) Gambar 4.15. Grafik daya keluaran empat TEG127 4B disusun seri. Dari ketiga grafik terdapat beberapa nilai daya keluaran untuk satu nilai beda temperatur. Hal ini dikarenakan tegangan keluaran yang dihasilkan thermoelectric generator merupakan fungsi nonlinear dari temperatur. Maka dari itu nilai yang diperoleh bukan nilai yang tetap melainkan jangkauan nilai. Saat tiba tiba tidak mendapatkan panas dari sinar matahari maka daya 35

keluaran akan langsung turun sedangkan temperatur relatif tetap. Hal ini menyebabkan ada nilai daya yang memiliki jangkauan nilai yang besar. 4. 3. Pengujian Memanfaatkan Sumber Panas Knalpot Sepeda Motor Pengujian dilakukan pada satu TEG127 4B dan empat TEG127 4B yang disusun secara seri dan paralel dengan memasang beberapa macam hambatan beban secara bergantian. Didapatkan data berupa temperatur sisi panas dan sisi dingin thermoelectric generator, tegangan keluaran, arus keluaran, dan daya keluaran. 4. 3. 1. Analisis Perbedaan Temperatur Berdasarkan percobaan didapatkan grafik hasil pengukuran perbedaan temperatur untuk satu TEG127 4B, empat TEG127 4B disusun paralel, dan empat TEG127 4B disusun seri pada Gambar 4.16 sampai Gambar 4.21. Perbedaan Temperatur ( C) 9 8 7 6 5 4 3 2 1 Mesin motor dimatikan 9 18 27 36 54 63 72 81 9 9 99,39,5 1 3,3 Gambar 4.16. Grafik beda temperatur satu TEG127 4B terhadap beban,39 Ω,,5 Ω, 1 Ω, dan 3,3 Ω. 36

Perbedaan Temperatur ( C) 8 7 6 5 4 3 2 1 Mesin motor dimatikan 4,7 1 15 9 18 27 36 54 63 72 81 9 9 99 Gambar 4.17. Grafik beda temperatur satu TEG127 4B terhadap beban 4,7 Ω, 1 Ω, dan 15 Ω. 9 8 Mesin motor dimatikan 7 6 5 4 3 2 1 9 18 27 36 54 63 72 81 9 9 99 Perbedaan Temperatur ( C),39,5,68 1 Gambar 4.18. Grafik beda temperatur empat TEG127 4B disusun paralel terhadap beban,39 Ω,,5 Ω,,68 Ω, dan 1 Ω. 37

Perbedaan Temperatur ( C) 9 8 7 6 5 4 3 2 1 Mesin motor dimatikan 3,3 4.7 1 9 18 27 36 54 63 72 81 9 9 99 Gambar 4.19. Grafik beda temperatur empat TEG127 4B disusun paralel terhadap beban 3,3 Ω, 4,7 Ω, dan 1 Ω. Perbedaan Temperatur ( C) 9 8 7 6 5 4 3 2 1 9 18 27 36 54 63 72 81 9 9 99 Mesin motor dimatikan,39 1 3,3 1 Gambar 4.2. Grafik beda temperatur empat TEG127 4B disusun seri terhadap beban,39 Ω, 1 Ω, 3,3 Ω, dan 1 Ω. 38

Perbedaan Temperatur ( C) 9 8 7 6 5 4 3 2 1 Mesin motor dimatikan 15 22 33 9 18 27 36 54 63 72 81 9 9 99 Gambar 4.21. Grafik beda temperatur empat TEG127 4B disusun seri terhadap beban 15 Ω, 22 Ω, Dan 33 Ω. Dari grafik terlihat bahwa beda temperatur yang dihasilkan stabil. Ketika sepeda motor mulai dinyalakan terjadi penambahan beda temperatur secara bertahap hingga mencapai nilai yang konstan. Setelah sepeda motor dimatikan maka beda temperatur akan mulai menurun secara bertahap pula. Walaupun percobaan ini dilakukan di luar ruangan seperti halnya percobaan yang memanfaatkan sinar matahari, beda temperatur tidak begitu terpengaruh lingkungan sekitar. Hal ini disebabkan beda temperatur yang dihasilkan ketika memanfaatkan sumber panas knalpot cukup besar. 4. 3. 2. Analisis Tegangan Keluaran dan Arus Keluaran Seperti halnya pada pembahasan yang sebelumnya, nilai tegangan keluaran dan arus keluaran dipergunakan untuk mencari nilai hambatan dalam TEG127 4B. Hasilnya dapat dilihat pada Gambar 4.22 sampai Gambar 4.24. 39

.6.5 Tegangan (V).4.3.2.1 y = -2.518x +.555 R² =.849.5.1.15.2.25 Arus (A) Gambar 4.22. Grafik hambatan dalam satu TEG127 4B..6.5 Tegangan (V).4.3.2 y = -.494x +.527 R² =.984.1.1.2.3.4.5.6.7 Arus (A) Gambar 4.23. Grafik hambatan dalam empat TEG127 4B disusun paralel. 4

Tegangan (V) 1.8 1.6 1.4 1.2 1.8.6.4.2 y = -7.47x + 1.934 R² =.993.5.1.15.2.25.3 Arus (A) Gambar 4.24. Grafik hambatan dalam empat TEG127 4B disusun seri. Seperti pada percobaan sebelumnya, nilai tegangan keluaran diperoleh dari pengukuran dan nilai arus keluaran dihitung menggunakan rumus. Perkiraan nilai hambatan dalam TEG127 4B didapat dari hubungan linear antara tegangan keluaran dan arus keluaran. Hambatan dalam satu TEG127 4B seperti pada Gambar 4.22 sebesar 2,518 Ω. Sedangkan ketika empat TEG127 4B disusun paralel maka hambatan dalam akan mengecil menjadi,494 Ω dan saat empat TEG127 4B disusun seri maka hambatan dalam akan membesar menjadi 7,47 Ω. Hal tersebut dapat dilihat pada Gambar 4.23 dan Gambar 4.24. Hasil ini hampir linear sebab nilai R 2 dari grafik mendekati 1. 4. 3. 3. Analisis Daya Keluaran Besarnya daya keluaran diperoleh melalui perhitungan sama seperti pada pembahasan sebelumnya. Setelah percobaan, untuk memperoleh daya optimal dipilih hambatan beban sebesar 1 Ω,,68 Ω, dan 1 Ω berturut turut saat satu TEG127 4B, empat TEG127 4B tersusun paralel, dan empat TEG127 4B tersusun seri. Hasilnya dapat dilihat pada Gambar 4.25 sampai Gambar 4.27. 41

.25.2 Daya (W).15.1.5. 1 2 3 4 5 6 7 8 Beda Temperatur ( C) Gambar 4.25. Grafik daya keluaran satu TEG127 4B..16.14.12 Daya (W).1.8.6.4.2. 1 2 3 4 5 6 7 8 9 Beda Temperatur ( C) Gambar 4.26. Grafik daya keluaran empat TEG127 4B disusun paralel. 42

.14.12.1 Daya (W).8.6.4.2. 1 2 3 4 5 6 7 8 9 Beda Temperatur ( C) Gambar 4.27. Grafik daya keluaran empat TEG127 4B disusun seri. Sama seperti pada percobaan yang memanfaatkan sinar matahari, pada percobaan ini ditemukan nilai daya keluaran lebih dari satu macam untuk satu nilai beda temperatur meskipun beda temperatur lebih stabil. Pada percobaan ini jangkuan nilai daya yang dihasilkan tidak terlalu besar sebab beda temperatur antara sisi panas dan sisi dingin themoelectic generator lebih stabil. 4. 4. Pengujian Memanfaatkan Sumber Panas Setrika Listrik Hasil pengujian meliputi perbedaan temperatur, tegangan keluaran dan arus keluaran, serta daya keluaran. Variasi percobaan sama seperti kedua percobaan sebelumnya yaitu jumlah dan susunan thermoelectric generator serta hambatan beban. Pengujian kali ini dilakukan di dalam ruangan. 4. 4. 1. Analisis Perbedaan Temperatur Grafik perbedaan temperatur antara sisi panas dan sisi dingin thermoelectric generator dapat dilihat pada Gambar 4.28 hingga Gambar 4.33. 43

Perbedaan Temperatur ( C) 14 12 1 8 6 4 2 Setrika dimatikan,39,5 1 3,3 9 18 27 36 54 63 72 81 9 9 99 Gambar 4.28. Grafik beda temperatur satu TEG127 4B terhadap beban,39 Ω,,5 Ω, 1 Ω, dan 3,3 Ω. Perbedaan Temperatur ( C) 1 9 8 7 6 5 4 3 2 1 9 18 27 36 54 63 72 81 9 9 99 Setrika dimatikan 4,7 1 15 Gambar 4.29. Grafik beda temperatur satu TEG127 4B terhadap beban 4,7 Ω, 1 Ω, dan 15 Ω. 44

Perbedaan Temperatur ( C) 12 1 8 6 4 2 Setrika dimatikan,39,5,68 1 9 18 27 36 54 63 72 81 9 9 99 Gambar 4.3. Grafik beda temperatur empat TEG127 4B disusun paralel terhadap beban,39 Ω,,5 Ω,,68 Ω, dan 1 Ω. Perbedaan Temperatur ( C) 12 1 8 6 4 2 9 18 27 36 54 63 72 81 9 9 99 Setrika dimatikan 3,3 4,7 1 Gambar 4.31. Grafik beda temperatur empat TEG127 4B disusun paralel terhadap beban 3,3 Ω, 4,7 Ω, dan 1 Ω.

Perbedaan Temperatur ( C) 14 12 1 8 6 4 2 Setrika dimatikan,39 1 3,3 1 9 18 27 36 54 63 72 81 9 9 99 Gambar 4.32. Grafik beda temperatur empat TEG127 4B disusun seri terhadap beban,39 Ω, 1 Ω, 3,3 Ω, dan 1 Ω. Perbedaan Temperatur ( C) 12 1 8 6 4 2 Setrika dimatikan 9 18 27 36 54 63 72 81 9 9 99 15 22 33 Gambar 4.33. Grafik beda temperatur empat TEG127 4B disusun seri terhadap beban 15 Ω, 22 Ω, dan 33 Ω. Melalui grafik dapat dilihat beda temperatur yang dihasilkan relatif stabil. Terjadi penambahan beda temperatur secara bertahap saat setrika mulai dinyalakan dan pengurangan beda temperatur ketika setrika dimatikan. Pada setrika terdapat sistem on off secara otomatis yang mulai berfungsi saat 46

temperatur mencapai batas nilai temperatur tertentu. Oleh karena itu, tidak dapat ditemukan beda temperatur yang konstan untuk selang waktu tertentu. Dalam grafik juga terdapat beberapa hasil beda temperatur yang tidak beraturan karena terjadi eror pada alat ukur pada saat pengukuran dilakukan. Faktor lain yang menyebabkan kesalahan pengukuran yaitu bagian alas setrika memiliki temperatur yang berbeda beda. 4. 4. 2. Analisis Tegangan Keluaran dan Arus Keluaran Grafik hasil pengukuran untuk tegangan keluaran dan arus keluaran dari thermoelectric generator dapat dilihat pada Gambar 4.34 hingga Gambar 4.36. Tegangan (V) 2 1.8 1.6 1.4 1.2 1.8.6.4.2 y = -1.3x + 1.819 R² =.97.2.4.6.8 1 1.2 Arus (A) Gambar 4.34. Grafik hambatan dalam satu TEG127 4B. 47

Tegangan (V) 1.8 1.6 1.4 1.2 1.8.6.4.2 y = -.524x + 1.6 R² =.981.2.4.6.8 1 1.2 1.4 1.6 1.8 2 Arus (A) Gambar 4.35. Grafik hambatan dalam empat TEG127 4B disusun paralel. T e g a n g a n ( V ) 6 5 4 3 2 1 y = -9.649x + 6.479 R² =.968.1.2.3.4.5.6.7 Arus (A) Gambar 4.36. Grafik hambatan dalam empat TEG127 4B disusun seri. Tegangan keluaran diperoleh melalui pengukuran secara langsung sedangkan arus keluaran dihitung berdasarkan rumus hukum Ohm. Hubungan linear antara tegangan keluaran dan arus keluaran dapat digunakan untuk mengetahui besarnya nilai hambatan dalam thermoelectric generator. Hambatan dalam satu TEG127 4B, empat TEG127 4B yang tersusun paralel, dan empat TEG127 4B yang tersusun seri berturut turut dapat 48

dilihat pada Gambar 4.34 sebesar 1,3 Ω, Gambar 4.35 sebesar,524 Ω, dan Gambar 4.36 sebesar 9,649 Ω. Hambatan dalam akan mengecil saat thermoelectric generator disusun secara paralel dan akan membesar ketika disusun secara seri. Hasil untuk sebuah TEG127 4B dan empat TEG127 4B yang disusun paralel hampir mendekati linear. Begitu pula untuk empat TEG127 4B yang disusun seri juga mendekati linear. Hal tersebut terlihat dari nilai R 2 pada grafik. 4. 4. 3. Analisis Daya Keluaran Grafik daya keluaran yang dihasilkan thermoelectric generator terlihat pada Gambar 4.37, Gambar 4.38, dan Gambar 4.39. Hambatan beban yang dipasang berturut turut yaitu 1 Ω untuk satu TEG127 4B,,68 Ω untuk empat TEG127 4B tersusun paralel, dan 1 Ω untuk empat TEG127 4B tersusun seri..6.5.4 Daya (W).3.2.1. 1 2 3 4 5 6 Beda Temperatur ( C) Gambar 4.37. Grafik daya keluaran satu TEG127 4B. 49

1.4 1.2 1. Daya (W).8.6.4.2. 1 2 3 4 5 6 7 8 9 Beda Temperatur ( C) Gambar 4.38. Grafik daya keluaran empat TEG127 4B disusun paralel. 1.6 1.4 1.2 Daya (W) 1..8.6.4.2. 1 2 3 4 5 6 7 8 9 1 Beda Temperatur ( C) Gambar 4.39. Grafik daya keluaran empat TEG127 4B disusun seri. Hal yang serupa dari kedua percobaan sebelumnya terjadi pula pada percobaan yang memanfaatkan setrika. Setelah setrika mencapai temperatur maksimal maka secara otomatis setrika akan mati dan beberapa saat kemudian akan menyala kembali. Ketika setrika tersebut mati maka daya keluaran akan langsung turun sedangkan beda temperatur masih tetap. Saat setrika mulai menyala kembali maka daya keluaran akan mulai naik kembali sementara beda 5

temperatur akan bertambah. Oleh karena itu, pada grafik diperoleh nilai jangkauan daya yang cukup besar untuk beda temperatur yang sama. 51