Penggunaan Thermal Energy Storage sebagai Penyejuk Udara Ruangan dan Pemanas Air pada Residential Air Conditioning Hibrida

dokumen-dokumen yang mirip
BAB I PENDAHULUAN. 1.1 Latar Belakang Penelitian. Air Conditioning (AC) adalah suatu mesin pendingin sebagai sistem pengkondisi

Gambar 5. Skematik Resindential Air Conditioning Hibrida dengan Thermal Energy Storage

BAB 2. TINJAUAN PUSTAKA

BAB 2. TINJAUAN PUSTAKA

PERFORMANSI SISTEM REFRIGERASI HIBRIDA PERANGKAT PENGKONDISIAN UDARA MENGGUNAKAN REFRIGERAN HIDROKARBON SUBSITUSI R-22

PENGGUNAAN ENCAPSULATED ICE THERMAL ENERGY STORAGE

PENGGUNAAN ENCAPSULATED ICE THERMAL ENERGY STORAGE

PERFORMANSI RESIDENTIAL AIR CONDITIONING HIBRIDA DENGAN STANDBY MODE MENGGUNAKAN REFRIGERAN HCR-22 UNTUK PENDINGIN DAN PEMANAS RUANGAN

LAPORAN PENELITIAN. Oleh : Azridjal Aziz, ST. MT. NIP Ir. Herisiswanto, MT. NIP

Azridjal Aziz (1) Hanif (2) ABSTRAK

Azridjal Aziz (1), Hanif (2) ABSTRACT

TEMPERATUR SISTEM RESIDENTIAL AIR CONDITIONING HIBRIDA PADA PROSES CHARGING DAN DISCHARGING DENGAN THERMAL ENERGY STORAGE

PENGARUH PENAMBAHAN KONDENSOR DUMMY (TIPE HELICAL COIL, TROMBONE COIL DAN MULTI HELICAL COIL) TERHADAP TEMPERATUR RUANGAN DAN TEMPERATUR AIR PANAS

BAB II TINJAUAN PUSTAKA

BAB 6. RENCANA TAHAPAN BERIKUTNYA

Azridjal Aziz, ST. MT. NIP

Kampus Bina Widya Km 12,5 Simpang Baru Panam, Pekanbaru 28293, Indonesia 2 Jurusan Teknik Mesin, Fakultas Teknik, Universitas Bengkulu,

Penerapan Evaporative Cooling Untuk Peningkatan Kinerja Mesin Pengkondisian Udara Tipe Terpisah (AC Split)

LAPORAN PENELITIAN. Oleh :

Pemakaian Thermal Storage pada Sistem Pengkondisi Udara

PENGARUH BEBAN PENDINGIN TERHADAP TEMPERATUR SISTEM PENDINGIN SIKLUS KOMPRESI UAP DENGAN PENAMBAHAN KONDENSOR DUMMY

PENGARUH PENGGUNAAN KATUP EKSPANSI JENIS KAPILER DAN TERMOSTATIK TERHADAP TEKANAN DAN TEMPERATUR PADA MESIN PENDINGIN SIKLUS KOMPRESI UAP HIBRIDA

BAB IV METODE PENELITIAN

ANALISIS KINERJA AIR CONDITIONING SEKALIGUS SEBAGAI WATER HEATER (ACWH)

KINERJA AIR CONDITONING HIBRIDA PADA LAJU ALIRAN AIR BERBEDA DENGAN KONDENSOR DUMMY TIPE HELICAL COIL (1/4", 6,7 m) SEBAGAI WATER HEATER

Recovery Energi pada Residential Air Conditioning Hibrida sebagai Pemanas Air dan Penyejuk Udara yang Ramah Lingkungan

BAB II TEORI DASAR. 2.1 Pengertian Sistem Tata Udara

Pengaruh Laju Aliran Air terhadap Performansi Mesin Pengkondisian Udara Hibrida dengan Kondensor Dummy Tipe Multi Helical Coil sebagai Water Heater

POTENSI PEMANFAATAN ENERGI PANAS TERBUANG PADA KONDENSOR AC SENTRAL UNTUK PEMANAS AIR HEMAT ENERGI

BAB II DASAR TEORI. 2.1 Pengertian Sistem Heat pump

BAB IV PEMBAHASAN. 4.1 Rangkaian Alat Uji Dan Cara Kerja Sistem Refrigerasi Tanpa CES (Full Sistem) Heri Kiswanto / Page 39

PERFORMANSI MODULAR CHILLER KAPASITAS 120 TR

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini

KAJI EKSPERIMENTAL KARAKTERISTIK PIPA KAPILER DAN KATUP EKSPANSI TERMOSTATIK PADA SISTEM PENDINGIN WATER-CHILLER

BAB 6. RENCANA TAHAPAN BERIKUTNYA

LAPORAN PENELITIAN. Oleh : Azridjal Aziz, ST. MT. NIP Ir. Herisiswanto, MT. NIP Dibiayai oleh :

UNJUK KERJA MESIN PENDINGIN KOMPRESI UAP PADA BEBERAPA VARIASI SUPERHEATING DAN SUBCOOLING

APLIKASI MODUL EVAPORATIVE COOLING AKTIF PADA AC SPLIT 1 PK

Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik padasistem Water Chiller dengan Penerapan Metode Cooled Energy Storage

BAB II DASAR TEORI BAB II DASAR TEORI

Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik padasistem Water Chiller dengan Penerapan Metode Cooled Energy Storage

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara

Komparasi Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Temperatur dan Tekanan Mesin Pendingin

BAB II LANDASAN TEORI

Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin. Galuh Renggani Wilis, ST.,MT

BAB II DASAR TEORI Prinsip Kerja Mesin Refrigerasi Kompresi Uap

PENGARUH MEDIA PENDINGIN AIR PADA KONDENSOR TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN

BAB II TINJAUAN PUSTAKA

PEMANFAATAN PANAS DI PIPA TEKANAN TINGGI PADA MESIN PENDINGIN (AC)

KAJI EKSPERIMENTAL KARAKTERISTIK TERMODINAMIKA DARI PEMANASAN REFRIGERANT 12 TERHADAP PENGARUH PENDINGINAN

BAB III METODE PENELITIAN (BAHAN DAN METODE)

HUBUNGAN TEGANGAN INPUT KOMPRESOR DAN TEKANAN REFRIGERAN TERHADAP COP MESIN PENDINGIN RUANGAN

MUSICOOL HYDROCARBON REFRIGERANT OVERVIEW

BAB III TINJAUAN PUSTAKA

EFESIENSI MUSICOOL-22 DENGAN PROSES RETROFIT PADA AC MEREK DAIKIN 3 PK DI UNIT REKTORAT UNIMUS

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iii. DAFTAR GAMBAR... viii. DAFTAR TABEL... x. DAFTAR NOTASI... xi Rumusan Masalah...

PENENTUAN EFISIENSI DAN KOEFISIEN PRESTASI MESIN PENDINGIN MERK PANASONIC CU-PC05NKJ ½ PK

BAB II TINJAUAN PUSTAKA

Pengaruh Penggunaan Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Efisiensi Mesin Pendingin Siklus Kompresi Uap

ANALISA PERBANDINGAN PERFORMANSI MESIN PENDINGIN KOMPRESI UAP MENGGUNAKAN R22 DAN R134a DENGAN KAPASITAS KOMPRESOR 1 PK

LAPORAN AKHIR PERAWATAN & PERBAIKAN CHILLER WATER COOLER DI MANADO QUALITY HOTEL. Oleh : RIVALDI KEINTJEM

Gambar 2.21 Ducting AC Sumber : Anonymous 2 : 2013

LAJU PENDINGINAN AIR DENGAN ICE ON COIL PADA MESIN PENDINGIN TYPE CHILLER UNTUK COLD STORAGE

LAPORAN TAHUNAN. Penelitian Unggulan Perguruan Tinggi. Tahun ke 1 dari rencana 2 tahun. Oleh :

Potensi Air Kondensat Sebagai Media Pendingin Untuk Aplikasi Modul Evaporative Cooling Terhadap Performansi AC Split 1 PK

LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC NPM : NPM :

PENGARUH LAJU ALIRAN AIR SISTEM EVAPORATIVE COOLING

ANALISIS PERFORMANSI MINI FREEZER YANG DILENGKAPI DENGAN FLUIDA PENYIMPAN DINGIN (THERMAL STORAGE)

Ahmad Farid* dan Moh. Edi.S. Iman Program Studi Teknik Mesin, Universitas Pancasakti Tegal Jl. Halmahera km 1, Tegal *

BAB II DASAR TEORI. 2.1 Cooling Tunnel

ANALISA KINERJA MESIN REFRIGERASI RUMAH TANGGA DENGAN VARIASI REFRIGERAN

STUDI EKSPERIMEN PENGGUNAAN LPG SEBAGAI FLUIDA PENDINGIN PENGGANTI REFRIGERANT R22 PADA MESIN PENGKONDISIAN UDARA

Pengujian Model Water Chiller System dengan Hidrokarbon sebagai Refrigeran Primer

ROTASI Volume 7 Nomor 3 Juli

Pengaruh Pipa Kapiler yang Dililitkan pada Suction Line terhadap Kinerja Mesin Pendingin

STUDI SPESIFIKASI TEKNIK WATER CHILLER VAC IEBE

Performansi Mesin Pendingin Tipe Chiller untuk Cold Storage dan Indoor Menggunakan Ethylene Glycol Coolant

BAB I PENDAHULUAN I.1. Latar Belakang

ANALISA AUDIT KONSUMSI ENERGI SISTEM HVAC (HEATING, VENTILASI, AIR CONDITIONING) DI TERMINAL 1A, 1B, DAN 1C BANDARA SOEKARNO-HATTA

BAB I PENDAHULUAN. Penggunaan sistem pengkondisian udara pada saat ini bukan lagi. merupakan suatu kemewahan, namun telah menjadi kebutuhan yang harus

ANALISA WAKTU SIMPAN AIR PADA TABUNG WATER HEATER TERHADAP KINERJA AC SPLIT 1 PK

Jurnal Pembuatan Dan Pengujian Alat Uji Prestasi Sistem Pengkondisian Udara (Air Conditioning)Jenis Split

BAB II DASAR TEORI BAB II DASAR TEORI

PENGARUH DEBIT ALIRAN AIR TERHADAP PROSES PENDINGINAN PADA MINI CHILLER

Pengaruh Debit Udara Kondenser terhadap Kinerja Mesin Tata Udara dengan Refrigeran R410a

MESIN PENGERING PAKAIAN ENERGI LISTRIK DENGAN MEMPERGUNAKAN SIKLUS KOMPRESI UAP

BAB II DASAR TEORI 2012

ANALISIS BEBAN PENDINGINAN DAN KALOR UNIT PENGKONDISIAN UDARA DAIHATSU XENIA

HIDROKARBON SEBAGAI PENGGANTI REFRIGERAN FREON DALAM KULKAS YANG RAMAH LINGKUNGAN

BAB II DASAR TEORI 0,93 1,28 78,09 75,53 20,95 23,14. Tabel 2.2 Kandungan uap air jenuh di udara berdasarkan temperatur per g/m 3

MULTIREFRIGERASI SISTEM. Oleh: Ega T. Berman, S.Pd., M,Eng

BAGIAN II : UTILITAS TERMAL REFRIGERASI, VENTILASI DAN AIR CONDITIONING (RVAC)

SISTEM PENGKONDISIAN UDARA (AC)

PENDAHULUAN TINJAUAN PUSTAKA

V. HASIL DAN PEMBAHASAN

Seminar Nasional Mesin dan Industri (SNMI4) 2008 ANALISIS PERBANDINGAN UNJUK KERJA REFRIGERATOR KAPASITAS 2 PK DENGAN REFRIGERAN R-12 DAN MC 12

BAB II LANDASAN TEORI

TUGAS TEKNIK DAN MANAJEMEN PERAWATAN SISTEM PEMELIHARAAN AC CENTRAL

PEMAHAMAN TENTANG SISTEM REFRIGERASI

Disusun oleh : Nama : Linggar G. C. M. A. Semester Genap SMK NEGERI 1 CIMAHI

Transkripsi:

Banjarmasin, 7-8 Oktober 2 Penggunaan Thermal Energy Storage sebagai Penyejuk Udara Ruangan dan Pemanas Air pada Residential Air Conditioning Hibrida Azridjal Aziz,a *, Herisiswanto2,b, Rahmat Iman Mainil3,c, Eko Prasetyo4,d,2,3,4 Jurusan Teknik Mesin, Fakultas Teknik, Universitas Riau Jl. Subrantas km,5, Pekanbaru, 28293, Indonesia a azridjal@yahoo.com, bheri_ft_unri@yahoo.ac.id, crahmat.iman@gmail.com, d eko_prasetyour@yahoo.com Abstrak Penggunaan Thermal Energy Storage (TES) pada Residential Air Conditioning (RAC) di instalasi chiller dan pemanfaatan panas buang di kondensor untuk pemanasan air akan mempengaruhi kinerja mesin pengkondisian udara. Berbeda dengan sistem konvensional, brine (cairan pendingin sekunder) akan didinginkan di chiller dan kemudian disirkulasikan sebagian menuju TES, sebelum digunakan (proses charging), selanjutnya brine di TES akan disirkulasikan ke koil pendingin di ruangan yang dikondisikan (proses discharging). Penelitian ini bertujuan mengetahui pengaruh penggunaan TES hibrida sebagai penyejuk udara ruangan dan pemanas air terhadap kinerja mesin pengkondisian udara. Hasil penelitian menunjukkan, terjadi penghematan energi pada penggunaan TES sebagai penyejuk udara ruangan (discharging) dibanding proses konvensional, sekaligus pemanfaatan panas buang kondensor untuk kebutuhan air panas selama proses charging. Penerapan sistem TES dan pemanas air pada mesin pengkondisian udara memungkinkan untuk dilakukan, namun terjadi biaya awal investasi yang lebih besar dibanding sistem AC konvensional (standar). Kata kunci : Thermal Energy Storage, Residential Air Conditioning, discharging, chille Air Conditioning (AC) adalah suatu mesin pendingin sebagai sistem pengkondisi udara yang digunakan dengan tujuan untuk memberikan rasa nyaman bagi penghuni yang berada dalam suatu ruangan/gedung. AC tidak hanya berfungsi untuk memberikan perasaan dingin tetapi yang lebih penting adalah memberikan rasa kenyamanan (comfort air conditioning) yaitu suatu proses perlakuan termodinamik terhadap udara untuk mengatur suhu, kelembaban, kebersihan, dan pendistribusiannya secara serentak guna mencapai kondisi nyaman yang dibutuhkan oleh penghuni yang berada di dalamnya []. menggunakan cairan sebagai media pendingin (umumnya air) pada sistem sekunder dimana evaporator pada sistem primer mendinginkan cairan (chilled water) pada siklus sekunder yang akan digunakan untuk mendinginkan ruangan melalui AHU (Air Handling Unit). Pada sistem chiller terjadi proses pengeluaran dan penyerapan panas. Air yang masuk ke chiller akan didinginkan, dan disirkulasi oleh pompa menuju AHU. Di unit ini terjadi proses pertukaran kalor antara udara dengan air dingin. Udara dingin yang keluar dari unit ini akan disirkulasi oleh fan menuju ruangan yang dikondisikan, chiller harus tetap hidup selama unit pengolah udara dijalankan. Pada umumnya sistem pengkondisi udara sentral menggunakan sistem chiller. Sistem chiller adalah suatu sistem pendingin yang Penggunaan energi listrik untuk sistem AC pada bangunan gedung berkisar 45% 66% Pendahuluan KE-

Banjarmasin, 7-8 Oktober 2 Salah satu refrigeran alternatif pengganti refrigeran halokarbon R-22 adalah refrigeran hidrokarbon (hydrocarbon referigerant). Beberapa kelebihan yang dimiliki refrigeran hidrokarbon subsitusi R-22 yaitu dapat digunakan sebagai pengganti langsung (drop in substitute) tanpa penggantian komponen, ramah lingkungan (tidak merusak lapisan ozon), pemakaian refrigeran lebih sedikit, hemat energi, dan memenuhi standar internasional [5]. Chiller lebih umum digunakan pada bangunan gedung, pusat perkantoran dan pusat perbelanjaan. Penggunaan chiller di bangunan rumah (residential) masih sangat sedikit dilakukan, umumnya rumah menggunakan beberapa AC split untuk beberapa ruangan rumah yang perlu disejukkan. Penggunaan chiller berbasis mesin pendingin kompresi uap menggunakan hydrocarbon refrigerant yang ramah lingkungan yang dikombinasikan dengan penggunaan Encapsulated Ice Thermal Energy Storage di bangunan rumah yang menggunakan lebih dari AC split dapat menghemat penggunaan energi listrik (Energy Efficient) [6-]. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh penggunaan TES hibrida sebagai penyejuk udara ruangan dan pemanas air terhadap kinerja mesin pengkondisian udara residential (Residential Air Conditioning) hibrida. energi listrik. Jelas bahwa biaya pemakaian energi listrik sangat tinggi, sesuai dengan kenaikan beban pendinginannya. Penggunaan thermal energy storage pada sistem chiller akan membantu penghematan pemakaian energi listrik untuk keperluan AC rumah. Berbeda dengan sistem chiller pada umumnya, brine (cairan pendingin sekunder) yang mengalir ke sistem chiller akan didinginkan dan kemudian disirkulasikan sebagian menuju AHU dan sebagian lainnya ke thermal energy storage. Pada thermal energy storage terjadi pertukaran kalor antara brine dengan air atau cairan dalam kemasan plastik (encapsuled ice), dan diharapkan semua air atau cairan dalam kemasan plastik (encapsuled ice) di dalam storage berubah fasa menjadi es. Kemudian siklus sirkulasi brine berubah dari thermal energy storage menuju unit pengolah udara sedangkan chiller dalam kondisi mati. Pemakaian listrik pada saat itu hanya untuk menghidupkan pompa saja. Oleh karena itu waktu kerja Chiller perlu disesuaikan dengan waktu kerja thermal energy storage sehingga diharapkan pemakaian listrik dapat seminimal mungkin (Energy Efficient). Idealnya pada jam jam puncak (on peak) chiller tidak dinyalakan dan beban pendinginan diatasi oleh thermal energy storage, akibatnya pemakaian listrik pada jam puncak berkurang [2]. Metode Penelitian Untuk mengoperasikan mesin refrigerasi dibutuhkan refrigeran sebagai fluida kerja. Refrigeran yang paling banyak digunakan adalah refrigeran halokarbon (halogenated refrigerant) salah satunya adalah jenis HCFC22 (Hydrochlorofluorocarbon) atau R-22 [3]. Refrigeran halokarbon R-22 menunjukkan sifat yang berdampak buruk terhadap lingkungan dapat merusak lapisan ozon dan berpotensi pemanasan global, sehingga penggunaan refrigeran tersebut dicanangkan untuk dihapuskan pembuatan dan pemakaiannya [4]. Penelitian ini dilakukan dalam beberapa tahapan yaitu tahap persiapan penelitian berupa studi literatur terhadap konsep sistem pendingin kompresi uap yang menggunakan refrigeran hidrokarbon subsitusi R-22, dan kombinasi dengan konsep encapsulated ice thermal energy storage untuk sistem pengkondisian udara (AC) rumah. Selanjutnya tahap rancangan prototipe sistem, tahap pembuatan prototipe sistem, tahap kaji eksperimental dan pengumpulan data, tahap analisis data, kemudian terakhir adalah KE-

Banjarmasin, 7-8 Oktober 2 pernyataan hasil yang dapat disimpulkan dari penelitian ini. Penggunaan refrigeran HCR-22 massa refrigeran lebih hemat 5,2 persen dari massa refrigeran R-22 [8]. Pada gambar 2 terlihat bahwa massa refrigeran optimum HCR-22 sebesar 44 gram pada COP 2,22. Setelah penambahan massa refrigeran COP cenderung turun, hal ini disebabkan massa refrigeran yang bertambah mengakibatkan daya kompresor meningkat. Hal ini menyebabkan COP mesin menurun karena adanya pengaruh peningkatan daya kompresor. COP merupakan perbandingan atau rasio antara daya pendinginan di evaporator dibandingkan terhadap daya kompresor yang menggerakkan mesin pendingin. Instalasi Alat Uji Gambar. Instalasi Alat Uji Mesin Refrigerasi Kompresi Uap Hibrida dengan sistem Thermal Energy Storage menggunakan Encapsulated Ice Pack Proses Charging Pada gambar 3 dapat dilihat dampak pendinginan rata-rata dari HCR-22 adalah, kw, dampak pemanasan rata-rata 7,52 kw dengan daya kompresor rata-rata,754 kw. COP rata-rata dari mesin pada proses Charging adalah,528, PF rata-rata adalah 9,945 dan Tp rata-rata adalah,473. Instalasi ini merupakan instalasi mesin pendingin kompresi uap hibrida yang berfungsi sebagai mesin pendingin pada lemari pendingin dan pompa kalor pada lemari pengering. Untuk instalasi siklus primer ( siklus refrigeran), kompressor, sight glass, filter drier, katup ekspansi, kondensor dan evaporator ditempatkan di atas meja dudukan. Sedangkan koil pendingin, koil pemanas, pompa air sirkulasi, ditempatkan di bagian bawah meja dudukan alat. Tampak di sini bahwa pola kecendrungan Gambar 3 dan Gambar 4 memiliki kecendrungan yang sama, hal ini karena COP, PF maupun TP merupakan rasio daya pada evaporator atau panas yang dimanfaatkan di kompresor terhadap kerja kompresor secara keseluruhan. Hasil dan Pembahasan Massa Optimum Refrigeran HCR-22 Hidrokarbon Pendinginan Pemanasan Kerja Kompresor. 8. KW Daya Evaporator - Massa Refrigeran 6. 4. 2. 2. 9 3 4 8 7 6 5 4 3 2..5 Daya Evaporator 2.5 Dampak Pendinginan, Dampak Pemanasan dan Kerja Kompresor..5 Gambar 3. Dampak pendinginan, dampak pemanasan dan kerja kompresor. 28 32 36 4 44 48 Massa Refrigeran (gram) 52 Gambar 2. Grafik massa refrigeran HCR-22 optimum dan daya evaporator KE-

Banjarmasin, 7-8 Oktober 2 Pada Gambar 6. dapat dilihat rata-rata temperatur air panas adalah 49,7 oc dengan temperatur ruang pengering/pemanas pada temperatur 4,7 oc. Temperatur ini diperoleh pada tekanan kondensor rata-rata 245 psi. Selisih antara temperatur air panas dan temperatur ruangan berkisar oc, selisih ini terjadi karena adanya rugi-rugi kalor/panas saat terjadinya proses pertukaran kalor dan distribusi air panas di koil pemanas di ruang pemanas/pengering. 6. 4... 8. 6. 4. 2.. COP PF 8 9 3 4 5 6 7 3 4 TP 2 Satuan COP, PF dan TP Gambar 4. COP, PF dan TP mesin refrigerasi hibrida dengan Thermal Energy Storage (Ice Storage) Temperatur temperatur air dingin rata-rata di evaporator adalah -5,8 oc dengan temperatur terendah pada -7,5 oc, sedangkan temperatur air dingin di Ice Storage rata-rata 2,6 oc dengan temperatur terendah -4,9 oc (Gambar 7). Temperatur tersebut didapatkan pada tekanan rata-rata evaporator 38 Psi. Tekanan Evaporator Tekanan Kondensor dan Evaporator Tekanan Kondensor 3 25 Psi 2 5 2 3 4 5 6 7 8 9 3 4 Temperatur Air Dingin Evaporator dan Temperatur Ice Strorage (TES) Gambar 5. Tekanan kondensor dan evaporator Tekanan kerja pada kondensor dan evaporator seperti tampak pada Gambar 5 adalah tekanan rata-rata kondensor 245 psi dengan tekanan evaporator rata-rata 38 psi. Tekanan kerja evaporator cenderung turun dari tekanan standarnya yaitu 7 psi, hal ini terjadi karena temperatur di tangki evaporator /water chiller berada pada temperatur rata-rata -6 oc, sedangkan tekanan standar pada sistem refrigerasi berada temperatur rata-rata oc. Proses DisCharging Pada Gambar 8 kondisi temperatur yang diperoleh pada proses discharging, temperatur terendah pada ice storage perlahan-lahan naik seiring terjadinya pertukaran kalor antara air dingin di koil pendingin di ruang pendingin dengan temperatur di ruang pendingin. Proses pendinginan pada saat discharging berlangsung selama 7 menit, dimana proses pendinginan di evaporator saat Charging berlangsung selama menit, sehingga terdapat penghematan penggunaan pendinginan selama 2 menit, atau penghematan daya kompresor dikurangi daya T Drying Room 5. oc 4. 3. 2.. 4 3 9 8 7 6 5 4 3 2. Water Chiller Gambar 7. Temperatur air dingin di evaporator dan temperatur Ice Storage 6. Temperatur Ice Storage Temperatur Air Panas Kondensor dan Ruang Pengering/Pemanas T Hot Water 2... -. -2. -3. -4. -5. -6. -7. -8. -9. 2 3 4 5 6 7 8 9 3 4 Gambar 6. Temperatur ruang pengering/pemanas dan temperatur air panas di tangki kondensor KE-

Banjarmasin, 7-8 Oktober 2 pompa sebesar,6 kw. Penggunaan refrigeran hidrokarbon HCR-22 juga dapat menghemat daya kompresor sekitar 25% 3%, sehingga terjadi penghematan energi yang cukup berarti pada sistem Ice Storage. COP, PF dan TP 25. Satuan 2. COP. PF. TP 5.. 2 3 4 5 6 7 8 9 3 4 6 7 8 Gambar. COP, PF dan TP mesin refrigerasi proses konvensional T Cold Room T Ice Storage T Surrd T Cold Rooml IN Tekanan kerja pada kondensor dan evaporator seperti tampak pada Gambar adalah tekanan rata-rata kondensor 245 psi dengan tekanan evaporator rata-rata 39 psi. Tekanan kerja evaporator cenderung turun dari tekanan standarnya yaitu 7 psi, hal ini terjadi karena temperatur di tangki evaporator /water chiller berada pada temperatur ratarata -3 oc, sedangkan tekanan standar pada sistem refrigerasi berada temperatur rata-rata oc. 8 9 3 4 6 7 6 7 4 5 T Cold Room OUT 2 3 36 33 3 27 24 2 8 9 6 3-3 -6-9 Temperatur Ruang pendingin dan Temperatur Ice Strorage (TES) Gambar 8. Temperatur ruang pendingin dan temperatur Ice Storage Proses Konvensional/Evaporator Chiller Pada gambar 9 dapat dilihat dampak pendinginan rata-rata dari HCR-22 adalah 3,383 kw, dampak pemanasan rata-rata 8,847 kw dengan daya kompresor rata-rata,748 kw. Dampak Pendinginan, Dampak Pemanasan dan Kerja Kompresor Tekanan Evaporator Pendinginan Tekanan Kondensor dan Evaporator Tekanan Kondensor Pemanasan Kerja Kompresor. 3 25. 2 9 3 4 6 7 8 7 8 2 3 4 6 7 8 8 9 7 5 6 4 5. 2 3 2. 5 6 4. 3 4 Psi 6. KW 8. Gambar 9. Dampak pendinginan, dampak pemanasan dan kerja kompresor Gambar. Tekanan kondensor dan evaporator COP rata-rata dari mesin pada proses Charging adalah 4,544, PF rata-rata adalah,3 dan Tp rata-rata adalah,859. Tampak di sini bahwa pola kecendrungan gambar 9 dan gambar memiliki kecendrungan yang sama, hal ini karena COP, PF maupun TP merupakan rasio daya pada evaporator atau panas yang dimanfaatkan di kompresor terhadap kerja kompresor secara keseluruhan. Pada Gambar dapat dilihat rata-rata temperatur air panas adalah 49,3 oc dengan temperatur ruang pengering/pemanas pada temperatur 4,7 oc. Temperatur ini diperoleh pada tekanan kondensor rata-rata 245 Psi. Selisih antara temperatur air panas dan temperatur ruangan berkisar oc, selisih ini terjadi karena adanya rugi-rugi kalor/panas saat terjadinya proses pertukaran kalor dan KE-

Banjarmasin, 7-8 Oktober 2 distribusi air panas di koil pemanas di ruang pemanas/pengering. Berdasarkan hasil kajian dapat diambil kesimpulan bahwa massa refrigeran hidrokarbon HCR-22 yang digunakan pada sistem adalah sebesar 44 gram pada COP 2,22 dengan daya kompresor,526 kw. Temperatur Air Panas Kondensor dan Ruang Pengering/Pemanas T Hot Water T Drying Room 6 5 Terjadi penghematan waktu pendinginan selama 2 menit antara proses Charging dan proses DisCharging, dengan penghematan daya listrik untuk operasional sistem,6 kw. Pada proses Charging terjadi pemanfaatan panas buang kondensor untuk keperluan pemanasan (energy efficient). Terjadi pemanfaatan panas buang untuk keperluan pemanasan (energy efficient), pada proses konvensional selama proses pendinginan berlangsung. 4 3 2 7 3 9 7 5 3 Gambar. Temperatur ruang pengering/pemanas dan temperatur air panas di tangki kondensor Temperatur 3 2 - -2-3 -4-5 -6-7 -8-9 - - - -3 Water Chiller Penambahan koil pemanas dummy menjaga kestabilan kerja sistem pada pemanfaatan panas buang untuk keperluan pemanasan. Penerapan sistem ice storage untuk keperluan pendinginan di rumah tangga memungkinkan untuk dilakukan, namun terjadi biaya awal investasi yang lebih besar dibanding sistem AC Split standar. 2 3 4 5 6 7 8 9 3 4 6 7 8 oc Temperatur Air Dingin Evaporator Gambar 3. Temperatur air dingin di evaporator pada proses konvensional Referensi Temperatur temperatur air dingin rata-rata di evaporator adalah -3,4 oc dengan temperatur terendah pada -,7 oc, seperti dapat dilihat pada Gambar 3. Sedangkan temperatur ruang dingin rata-rata adalah 26,6 o C seperti dapat dilihat pada Gambar 4. 36 33 3 27 24 2 8 9 6 3 T Cold Room T Surrd T Cold Rooml IN 8 9 3 4 6 6 7 4 5 T Cold Room OUT 2 3 Temperatur Ruang pendingin pada proses konvesional Gambar 4. Temperatur ruang pendingin pada proses konvensional Kesimpulan KE- [] W.F. Stoecker, dan J.W. Jones, Refrigerasi dan Pengkondisian Udara, Erlangga994, Jakarta. [2] Soejono Tjitro dan Herry Sunandar,, Pemakaian Thermal Storage pada Sistem Pengkondisi Udara, Jurnal Teknik Mesin, (999) 9-23. [3] Agarwal, Radhey S., Retrofitting of Domestic and Small Capacity Commercial Refrigeration Appliances Using Hydrocarbon Blends, Proceedings Seminar on ODS PhaseOut: Solutions for the Refrigeration Sector, Kuta, 997. [4] Pasek, A.D.,Tandian, N.P., Adriansyah W., Training of Trainer Refrigeration Servicing Sector, Training Manual, ITB, Bandung, 24 [5] A.D. Pasek dan N.P. Tandian,, Short Course on the Applications of Hydrocarbon Refrigerants, International Conference on

Banjarmasin, 7-8 Oktober 2 Fluid and Thermal Energy Conversion 2, Bandung, 2. [6] Hauer, Andreas, Innovative Thermal Energy Storage Systems for Residential Use, Bavarian Center for Applied Energy Research, ZAE Bayern, 28. [7] Azridjal Aziz dan Afdhal Kurniawan Mainil, Penggunaan Encapsulated Ice Thermal Energy Storage Pada Residential Air Conditioning Menggunakan Refrigeran Hidrokarbon Substitusi R-22 Yang Ramah Lingkungan, Jurnal Teknik Mesin, 7 (2) 92-98. [8] Azridjal Aziz, Kinerja Perangkat Pengkondisian Udara Siklus Kompresi Uap Hibrida pada Massa Refrigeran Hidrokarbon HCR22 Optimum, Jurnal Sains dan Teknologi, 6 (26) -. [9] Komang Metty Trisna Negara, Hendra Wijaksana, Nengah Suarnadwipa, dan Made Sucipta, Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik pada Sistem Water Chiller dengan Penerapan Metode Cooled Energy Storage, Jurnal Ilmiah Teknik Mesin Cakra, 4 (2) 43-5. [] Shaowei Wang, Zhenyan Liu, Yuan Li, Keke Zhao, dan Zhigang Wang, Experimental study on split air conditioner with new hybrid equipment of energy storage and water heater all year round, Energy Conversion and Management, 46 (25) 347 359. KE-