Pengantar Kecerdasan Buatan (AK045218) Logika Fuzzy



dokumen-dokumen yang mirip
LOGIKA FUZZY. Kelompok Rhio Bagus P Ishak Yusuf Martinus N Cendra Rossa Rahmat Adhi Chipty Zaimima

BAB II TINJAUAN PUSTAKA

BAB 2 LANDASAN TEORI

MATERI KULIAH (PERTEMUAN 12,13) Lecturer : M. Miftakul Amin, M. Eng. Logika Fuzzy. Politeknik Negeri Sriwijaya Palembang

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI

Erwien Tjipta Wijaya, ST.,M.Kom

LOGIKA FUZZY FUNGSI KEANGGOTAAN

FUZZY LOGIC CONTROL 1. LOGIKA FUZZY

Himpunan Fuzzy. Sistem Pakar Program Studi : S1 sistem Informasi

BAB II TEORI PENUNJANG

ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA

KECERDASAN BUATAN LOGIKA FUZZY

KOTAK HITAM. Pemetaan input-output pada masalah produksi Diberikan data persediaan barang, berapa jumlah barang yang harus diproduksi?

KECERDASAN BUATAN (Artificial Intelligence) Materi 8. Entin Martiana

BAB IV METODOLOGI. Gambar 4.1 Model keseimbangan air pada waduk (Sumber : Noor jannah,2004)

KECERDASAN BUATAN (Artificial Intelligence) Materi 8. Entin Martiana

MENENTUKAN HARGA MOBIL BEKAS TOYOTA AVANZA MENGGUNAKAN METODE TSUKAMOTO

BAB II LANDASAN TEORI. Dalam kondisi yang nyata, beberapa aspek dalam dunia nyata selalu atau biasanya

BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Sistem Definisi Sistem

BAB II LANDASAN TEORI. papernya yang monumental Fuzzy Set (Nasution, 2012). Dengan

BAB 2 LANDASAN TEORI

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA

BAB 2 LANDASAN TEORI

BAB 2 TINJAUAN PUSTAKA

Penerapan Logika Fuzzy


BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas

BAB II: TINJAUAN PUSTAKA

LOGIKA FUZZY. By: Intan Cahyanti K, ST

Logika fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh melalui tulisannya pada tahun 1965 tentang teori himpunan fuzzy.

BAB VII LOGIKA FUZZY

PEMODELAN SISTEM FUZZY DENGAN MENGGUNAKAN MATLAB

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 2 LANDASAN TEORI

Aplikasi Prediksi Harga Bekas Sepeda Motor Yamaha. Menggunakan Fuzzy Logic

VII. LOGIKA FUZZY. Antara input dan output terdapat suatu kotak hitam yang harus memetakan input ke output yang sesuai. Misal : Ruang Input

Bab 2 LANDASAN TEORI

ANALISIS KEPUASAN KONSUMEN BERDASARKAN TINGKAT PELAYANAN DAN HARGA KAMAR MENGGUNAKAN APLIKASI FUZZY DENGAN MATLAB 3.5.

DENIA FADILA RUSMAN

SPK PENENTUAN TINGKAT KEPUASAN KONSUMEN PADA RESTORAN XYZ

FUZZY MULTI-CRITERIA DECISION MAKING

BAB II LANDASAN TEORI. Pada bab ini berisi tentang teori mengenai permasalahan yang akan dibahas

Penerapan FuzzyTsukamotodalam Menentukan Jumlah Produksi

SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN BEASISWA BIDIK MISI DI POLITEKNIK NEGERI JEMBER MENGGUNAKAN LOGIKA FUZZY

SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN JURUSAN DI SMU DENGAN LOGIKA FUZZY

BAB 2 2. LANDASAN TEORI

BAB II. KAJIAN PUSTAKA. A. Kinerja Pegawai di Universitas Muhammadiyah Purwokerto

BAB 2 LANDASAN TEORI

BAB II LANDASAN TEORI

Definisi LOGIKA FUZZY. Himpunan Fuzzy. Himpunan Fuzzy(contd) 3/13/2012. Budi Rudianto

1.1. Latar Belakang Masalah

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

RANCANG BANGUN SISTEM PENGUNDIAN SEPAKBOLA MENGGUNAKAN LOGIKA FUZZY

PENENTUAN JUMLAH PRODUKSI TELEVISI MERK X MENGGUNAKAN METODE FUZZY MAMDANI

ke dalam suatu ruang output. Orang yang belum pernah mengenal logika fuzzy pasti

SISTEM INFERENSI FUZZY (METODE TSUKAMOTO) UNTUK PENENTUAN KEBUTUHAN KALORI HARIAN OLEH

NURAIDA, IRYANTO, DJAKARIA SEBAYANG

ANALISIS & DESAIN SISTEM FUZZY. Menggunakan TOOLBOX MATLAB

BAB 2 LANDASAN TEORI

BAB II KAJIAN PUSTAKA

Kata kunci: Sistem pendukung keputusan metode Sugeno, tingkat kepribadian siswa

IMPLEMENTASI LOGIKA FUZZY MAMDANI UNTUK MENENTUKAN HARGA GABAH

Himpunan Tegas (Crisp)

PENALARAN FUZZY SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2012

PENENTUAN JUMLAH PRODUKSI DENGAN APLIKASI METODE FUZZY MAMDANI

BAB 2 TINJAUAN PUSTAKA

BAB 2 LANDASAN TEORI

LOGIKA FUZZY (Lanjutan)

BAB II KAJIAN PUSTAKA. mengikuti sertifikasi, baik pendidikan gelar (S-1, S-2, atau S-3) maupun nongelar (D-

LOGIKA SAMAR (FUZZY LOGIC)

Mengukur Tingkat Kepuasan Mahasiswa Terhadap Kinerja Dosen Menggunakan Metode Fuzzy Mamdani

PENGEMBANGAN SISTEM PAKAR FUZZY

STUDY TENTANG APLIKASI FUZZY LOGIC MAMDANI DALAM PENENTUAN PRESTASI BELAJAR SISWA (STUDY KASUS: SMP PEMBANGUNAN NASIONAL PAGAR MERBAU)

Bab III TEORI DAN PENGONTOR BERBASIS LOGIKA FUZZI

BAB III METODE FUZZY MAMDANI

BAB 2 TINJAUAN PUSTAKA

Contoh Kasus. Bagus Ilhami HIdayat

LOGIKA FUZZY PADA PROSES PELET PAKAN IKAN

FUZZY MAMDANI DALAM MENENTUKAN TINGKAT KEBERHASILAN DOSEN MENGAJAR

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai teori-teori yang akan digunakan untuk menunjang dalam proses pembuatan tugas akhir ini.

adalahkelompok profesi terbesar dan berperan vital dalam sistem tersebut yang menyebabkan ABSTRAK

Sistem Inferensi Fuzzy

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN HANDPHONE BERDASARKAN KEBUTUHAN KONSUMEN MENGGUNAKAN LOGIKA FUZZY. Abstraksi

BAB 2 TINJAUAN PUSTAKA

Jurnal Informatika SIMANTIK Vol. 2 No. 2 September 2017 ISSN:

BAB II LANDASAN TEORI. 2.1 Penelusuran Minat dan Kemampuan (PMDK) diselenggarakan oleh suatu perguruan tinggi secara mandiri.

Penggunaan Mamdani Fuzzy Expert System untuk Mengevaluasi Kinerja Dosen

BAB 2 LANDASAN TEORI

dan kesatuan nyata yang dapat digunakan dalam pengambilan keputusan. [JOG99]

Institut Teknologi Sepuluh Nopember Surabaya

BAB II TINJAUAN TEORITIS

Penentuan Jumlah Produksi Kue Bolu pada Nella Cake Padang dengan Sistem Inferensi Fuzzy Metode Sugeno

: Sistem Pendukung Keputusan, Siswa berprestasi, Tsukamoto

BAB II KAJIAN PUSTAKA. 1. Pengertian Penyakit Jantung Koroner (Coronary Heart Disease) jaringan pembuluh lebih kecil yang efisien (Iman, 2001:13).

Transkripsi:

Logika Fuzzy Pendahuluan Alasan digunakannya Logika Fuzzy Aplikasi Himpunan Fuzzy Fungsi keanggotaan Operator Dasar Zadeh Penalaran Monoton Fungsi Impilkasi Sistem Inferensi Fuzzy Basis Data Fuzzy Referensi Sri Kusumadewi bab 7 Logika Fuzzy 1/28

Pendahuluan Logika fuzzy adalah suatu cara yang tepat untuk memetakan suatu ruang input ke dalam suatu ruang output. Contoh: 1. Manajer pergudangan mengatakan pada manajer produksi seberapa banyak persediaan barang pada akhir minggu ini, kemudian manajer produksi akan menetapkan jumlah barang yang harus diproduksi esok hari Logika Fuzzy 2/28

2. Pelayan restoran memberikan pelayanan terhadap tamu, kemudian tamu akan memberikan tip yang sesuai atas baik tidaknya pelayanan yang diberikan 3. Penumpang taksi berkata pada sopir taksi seberapa cepat laju kendaraan yang diinginkan, sopir taksi akan mengatur pijakan gas taksinya Logika Fuzzy 3/28

Salah satu contoh pemetaan suatu input-output dalam bentuk grafis seperti terlihat dibawah ini : Ruang Input (semua total persediaan barang yang mungkin) Ruang utput (semua jumlah produksi barang yang mungkin) Persediaan Persediaan barang barang akhir akhir Kotak Hitam Persediaan Persediaan barang barang esok esok Pemetaan Input-output pada masalah produksi Diberikan data persediaan barang, berapa jumlah barang yang harus diproduksi? Logika Fuzzy 4/28

Alasan Digunakannya Logika Fuzzy 1. Konsep logika fuzzy mudah dimengerti. Konsep matematis yang mendasari penalaran fuzzy sangat sederhana dan mudah dimengerti 2. Logika fuzzy sangat fleksibel 3. Logika fuzzy memiliki toleransi terhadap data-data yang tidak tepat Logika Fuzzy 5/28

4. Logika fuzzy mampu memodelkan fungsi-fungsi nonlinear yang sangat kompleks 5. Logika fuzzy dapat membangun dan mengaplikasikan pengalaman-pengalaman para pakar secara langsung tanpa harus melalui proses pelatihan 6. Logika fuzzy dapat bekerjasama dengan teknik-teknik kendali secara konvensional. 7. Logika fuzzy didasarkan pada bahasa alami Logika Fuzzy 6/28

APLIKASI 1. Pada tahun 1990 pertama kali dibuat mesin cuci dengan logika fuzzy di Jepang (Matsushita Electric Industrial Company). Sistem fuzzy digunakan untuk menentukan putaran yang tepat secara otomatis berdasarkan jenis dan banyaknya kotoran serta jumlah yang akan dicuci. 2. Transmisi otomatis pada mobil. Logika Fuzzy 7/28

3. Kereta bawah tanah Sendai mengontrol pemberhentian otomatis pada area tertentu 4. Ilmu kedokteran dan biologi, seperti sistem diagnosis yang didasarkan pada logika fuzzy 5. Manajemen dan pengambilan keputusan, seperti manajemen basisdata, tata letak pabrik, pembuatan games yang didasarkan pada logika fuzzy 6. Ekonomi, pemodelan fuzzy pada sistem pemasaran yang kompleks Logika Fuzzy 8/28

Himpunan Fuzzy Pada himpunan tegas (crisp), nilai keanggotan suatu item x dalam suatu himpunan A yang sering ditulis dengan µa[x], memiliki 2 kemungkinan yaitu : Satu (1), yang berarti bahwa suatu item menjadi anggota dalam suatu himpunan, atau Nol (0), yang berarti bahwa suatu item tidak menjadi anggota dalam suatu himpunan Logika Fuzzy 9/28

Contoh 1: Jika diketahui : S = [1, 2, 3, 4, 5, 6] adalah semesta pembicaraan A = [1, 2, 3] B = [3, 4, 5] Maka dapat dikatakan : Nilai keanggotaan 2 pada himpunan A, µa[2] = 1, karena 2 є A Nilai keanggotaan 4 pada himpunan A, µa[4] = 0, karena 4 Contoh 2 : Misalkan variabel umur dibagi 3 kategori, yaitu : Logika Fuzzy 10/28

MUDA umur < 35 tahun PAROBAYA 35 umur 55 thn TUA umur > 55 tahun Maka dengan himpunan crisp disimpulkan: Apabila seseorang tidak berusia 34 tahun, maka ia dikatakan MUDA (µmuda [34] = 1) Apabila seseorang berusia 35 tahun, maka ia dikatakan TIDAK MUDA (µmuda [35] = 0) Jika pada himpunan crisp, nilai keanggotaan hanya ada 2 kemungkinan yaitu 0 dan 1, maka pada himpunan fuzzy nilai keanggotaan terletak pada rentang 0 sampai 1 Logika Fuzzy 11/28

Himpunan fuzzy memiliki 2 atribut : a. Linguistik, yaitu penamaan suatu grup yang mewakili suatu keadaan atau kondisi tertentu dengan menggunakan bahasa alami, seperti : MUDA, PAROBAYA, TUA b. Numeris, yaitu suatu nilai (angka) yang menunjukan ukuran dari suatu variabel seperti : 40, 25, 35 Logika Fuzzy 12/28

Hal-hal yang terdapat pada sistem fuzzy : a. Variabel Fuzzy, merupakan variabel yang hendak dibahas dalam suatu sistem fuzzy, seperti umur, temperatur, dsb b. Himpunan Fuzzy, merupakan suatu grup yang mewakili suatu kondisi atau keadaan tertentu dalam suatu variabel fuzzy c. Semesta Pembicaraan, adalah keseluruhan nilai yang diperbolehkan untuk dioperasikan dalam suatu variabel fuzzy d. Domain, adalah keseluruhan nilai yang diijinkan dalam semesta pembicaraan dan boleh dioperasikan dalam suatu himpunan fuzzy. Logika Fuzzy 13/28

FUNGSI KEANGGOTAAN Fungsi keanggotaan adalah suatu kurva yang menunjukan pemetaan titik-titik input data ke dalam nilai keanggotaannya (derajat keanggotaan) yang memiliki interval antara 0 sampai 1 Ada beberapa fungsi yang bisa digunakan : Logika Fuzzy 14/28

a. Representasi Linear Ada 2 kemungkinan himpunan fuzzy linear yaitu 1. Kenaikan himpunan dimulai pada nilai domain yang memiliki derajat keanggotaan nol [0] bergerak ke kanan menuju nilai domain yang memiliki derajat keanggotaan lebih tinggi 1 Derajat Kenggotaan µ[x] 0 a domain b Representasi Linear Naik Fungsi Keanggotaan : 0; x a µ[x] = (x-a)/(b a) ; a x b 1; x b Logika Fuzzy 15/28

2. Garis lurus dimulai dari nilai domain dengan derajat keanggotaan tertinggi pada sisi kiri, kemudian bergerak menurun ke nilai domain yang memiliki derajat keanggotaan lebih rendah 1 Derajat Kenggotaan µ[x] 0 a domain b Representasi Linear Turun Fungsi Keanggotaan : (x-a)/(b a) ; a x b µ[x] = 0; x b Logika Fuzzy 16/28

b. Representasi Kurva Segitiga c. Representasi Kurva Trapesium d. Representasi Kurva bentuk Bahu e. Representasi Kurva-S f. Representasi Kurva Bentuk Lonceng, ada 3 jenis, Kurva PI, Kurva Beta dan Kurva GAUSS g. Koordinat Keanggotaan Niliai keanggotaan : Skalar(i)/Derajat(i) Skalar : nilai yang digambar dari domain himpunan Derajat : derajat keanggotaan himpunan fuzzynya Logika Fuzzy 17/28

Operator Dasar Zadeh Operator AND Operator ini berhubungan dengan operasi interseksi pada himpunan. α-predikat sebagai hasil operasi dengan operator AND diperoleh dengan mengambil nilai keanggotaan terkecil antar elemen pada himpunan-himpunan yang bersangkutan µa B = min(µa[x], µb[y]) Operator OR Operator ini berhubungan dengan perasi union pada himpunan. Logika Fuzzy 18/28

α-predikat sebagai hasil operasi dengan operator AND diperoleh dengan mengambil nilai keanggotaan terkecil antar elemen pada himpunan-himpunan yang bersangkutan µaub = max(µa[x], µb[y]) Operator NOT Operator ini berhubungan dengan operasi komplemen himpunan. α-predikat sebagai hasil operasi dengan operator AND diperoleh dengan mengambil nilai keanggotaan terkecil antar elemen pada himpunan-himpunan yang bersangkutan µa = 1-µA[x] Logika Fuzzy 19/28

PENALARAN MONOTON Metode ini digunakan sebagai dasar untuk teknik implikasi fuzzy. Jika 2 daerah fuzzy direalisasikan dengan implikasi sederhana sebagai berikut : IF x is A THEN y is B transfer fungsi : Y = f ((x, A), B) maka sistem fuzzy dapat berjalan tanpa harus melalui komposisi dan dekomposisi fuzzy. Nilai output dapat di estimasi secara langsung dari nilai keanggotaan yang berhubungan dengan antesedennya. Logika Fuzzy 20/28

FUNGSI IMPLIKASI Bentuk umum aturan yang digunakan dalam fungsi implikasi : IF x is A THEN y is B dengan x dan y adalah skalar, A dan B adalah himpunan fuzzy. Proposisi yang mengikuti IF disebut anteseden, sedangkan proposisi yang mengikuti THEN disebut konsekuen. Secara umum, ada dua fungsi implikasi, yaitu : 1. Min (minimum), fungsi ini akan memotong output himpunan fuzzy 2. Dot (product), fungsi ini akan menskala output himpunan fuzzy Logika Fuzzy 21/28

SISTEM INFERENSI FUZZY Metode Tsukamoto Setiap konsekuen pada aturan yang berbentu IF-THEN harus direpresentasikan dengan suatu himpunan fuzzy dengan fungsi keanggotaan yang monoton. Sebagai hasilnya, output hasil inferensi dari tiap-tiap aturan diberikan secara tegas berdasarkan α-predikat. Hasil akhirnya diperoleh dengan menggunakan rata-rata terbobot Logika Fuzzy 22/28

Metode Mamdani Sering dikenal dengan nama Metode Max-Min. Metode ini diperkenalkan oleh Ebrahim Mamdani pada tahun 1975. Untuk mendapatkan output diperlukan 4 tahapan : 1. Pembentukan himpunan fuzzy Variabel input maupun output dibagi menjadi satu atau lebih himpunan 2. Aplikasi fungsi implikasi Fungsi implikasi yang digunakan adalah Min Logika Fuzzy 23/28

3. Komposisi aturan Ada tiga metode yang digunakan dalam melakukan inferensi sisten fuzzy : a. Metode Max b. Metode Additive (SUM) c. Metode Probabilistik OR 4. Penegasan (defuzzy) Input dari defuzzifikasi adalah suatu himpunan yang diperoleh dari komposisi aturan-aturan fuzzy, sedangkan output yang dihasilkan merupakan suatu bilangan pada domain himpunan fuzzy tersebut. Logika Fuzzy 24/28

Beberapa metode defuzzifikasi aturan MAMDANI : a. Metode Centroid (Composite Moment) b. Metode Bisektor c. Metode Mean of Maximun (MOM) d. Metode Largest of Maximum (LOM) e. Metode Smallest of Maximum (SOM) Logika Fuzzy 25/28

Metode Sugeno Penalaran ini hampir sama dengan penalaran Mamdani, hanya saja output (konsekuen) sistem tidak berupa himpunan fuzzy, melainkan berupa konstanta atau persamaan linear. a. Model Fuzzy Sugeno Orde-Nol Bentuk Umum : IF (X 1 is A 1 ) (X 2 is A 2 ) (X 3 is A 3 ). (X N is A N ) THEN z = k dengan Ai adalah himpunan fuzzy ke-i sebagai anteseden, dan k adalah konstanta (tegas) sebagai konsekuen Logika Fuzzy 26/28

b. Model Fuzzy Sugeno Orde- Satu Bentuk Umum : IF (X 1 is A 1 ). (X N is A N ) THEN z = p 1 * x 1 + + p N * X N + q dengan Ai adalah himpunan fuzzy ke-i sebagai anteseden, dan pi adalah suatu konstanta ke-i dan q merupakan konstanta dalam konsekuen Logika Fuzzy 27/28

BASIS DATA Sebagian besar basis data standar diklasifikasikan berdasarkan bagaimana data tersebut dipandang oleh user dan menggunakan query untuk mencari data yang diinginkan. Namun terkadang dibutuhkan suatu data yang bersifat ambiguous, maka digunakan basis data fuzzy. Salah satu diantaranya adalah model Tahani. Basisdata fuzzy model Tahani masih tetap menggunakan relasi standar, hanya saja model ini menggunakan teori himpunan fuzzy untuk mendapatkan informasi pada query-nya. Logika Fuzzy 28/28