ADLN Perpustakaan Universitas Airlangga BAB II TINJAUAN PUSTAKA. Kata korosi berasal dari bahasa latin Corrodere yang artinya perusakan

dokumen-dokumen yang mirip
BAB IV HASIL DAN PEMBAHASAN

BAB I PEDAHULUAN. 1.1 Latar Belakang. Pipa merupakan salah satu kebutuhan yang di gunakan untuk

Sudaryatno Sudirham ing Utari. Mengenal. Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1)

Bab II Tinjauan Pustaka

BAB I PENDAHULUAN. juga menjadi bisnis yang cukup bersaing dalam perusahaan perbajaan.

ELEKTROKIMIA DAN KOROSI (Continued) Ramadoni Syahputra

Redoks dan Elektrokimia Tim Kimia FTP

Sel Volta KIM 2 A. PENDAHULUAN B. SEL VOLTA ELEKTROKIMIA. materi78.co.nr

Elektrokimia. Tim Kimia FTP

TUGAS KOROSI FAKTOR FAKTOR YANG MEMPENGARUHI LAJU KOROSI

TES AWAL II KIMIA DASAR II (KI-112)

BAB I PENDAHULUAN. terjadinya perubahan metalurgi yaitu pada struktur mikro, sehingga. ketahanan terhadap laju korosi dari hasil pengelasan tersebut.

BAB II KOROSI dan MICHAELIS MENTEN

BAB IV HASIL DAN PEMBAHASAN

I. PENDAHULUAN. Indonesia memiliki lahan tambang yang cukup luas di beberapa wilayahnya.

BAB IV HASIL DAN PEMBAHASAN. 4.1 Korosi Baja Karbon dalam Lingkungan Elektrolit Jenuh Udara

Elektrokimia. Sel Volta

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

Pertemuan <<22>> <<PENCEGAHAN KOROSI>>

Moch. Novian Dermantoro NRP Dosen Pembimbing Ir. Muchtar Karokaro, M.Sc. NIP

Review I. 1. Berikut ini adalah data titik didih beberapa larutan:

BAB II LANDASAN TEORI. Gas HHO merupakan hasil dari pemecahan air murni ( H 2 O (l) ) dengan proses

Perlindungan Lambung Kapal Laut Terhadap Korosi Dengan Sacrificial Anode. Oleh : Fahmi Endariyadi

Fe Fe e - (5.1) 2H + + 2e - H 2 (5.2) BAB V PEMBAHASAN

BAB 1 PENDAHULUAN Latar Belakang

Mengubah energi kimia menjadi energi listrik Mengubah energi listrik menjadi energi kimia Katoda sebagi kutub positif, anoda sebagai kutub negatif

BAB II DASAR TEORI. Gambar 2.1 Klasifikasi Baja [7]

Handout. Bahan Ajar Korosi

BAB IV PEMBAHASAN. -X52 sedangkan laju -X52. korosi tertinggi dimiliki oleh jaringan pipa 16 OD-Y 5

BAB II KAJIAN PUSTAKA. yang tersusun dalam prosentase yang sangat kecil. Dan unsur-unsur tersebut

Sulistyani, M.Si.

PENGHAMBATAN KOROSI BAJA BETON DALAM LARUTAN GARAM DAN ASAM DENGAN MENGGUNAKAN CAMPURAN SENYAWA BUTILAMINA DAN OKTILAMINA

BAB II TINJAUAN PUSTAKA. (C), serta unsur-unsur lain, seperti : Mn, Si, Ni, Cr, V dan lain sebagainya yang

Penyisihan Besi (Fe) Dalam Air Dengan Proses Elektrokoagulasi. Satriananda *) ABSTRAK

Sel Volta (Bagian I) dan elektroda Cu yang dicelupkan ke dalam larutan CuSO 4

BAB II TINJAUAN PUSTAKA. sehingga dapat menghasilkan data yang akurat.

BAB 1 PENDAHULUAN. dibandingkan jenis martensitik, dan feritik, di beberapa lingkungan korosif seperti air

BAB II TINJAUAN PUSTAKA. Hidrogen (bahasa Latin: hidrogenium, dari bahasa Yunani: hydro: air, genes:

STUDI KINERJA BEBERAPA RUST REMOVER

LAPORAN RESMI PRAKTIKUM KIMIA BEDA POTENSIAL SEL VOLTA

LAPORAN PENELITIAN PROSES PENYEPUHAN EMAS

Jurnal Foundry Vol. 3 No. 1 April 2013 ISSN :

BAB I PENDAHULUAN. ragam, oleh sebab itu manusia dituntut untuk semakin kreatif dan produktif dalam

No. BAK/TBB/SBG201 Revisi : 00 Tgl. 01 Mei 2008 Hal 1 dari 8 Semester I BAB I Prodi PT Boga BAB I MATERI

BAB 4 HASIL DAN ANALISA

Pengaruh Polutan Terhadap Karakteristik dan Laju Korosi Baja AISI 1045 dan Stainless Steel 304 di Lingkungan Muara Sungai

Hasil Penelitian dan Pembahasan

PEMANFAATAN OBAT SAKIT KEPALA SEBAGAI INHIBITOR KOROSI PADA BAJA API 5L GRADE B DALAM MEDIA 3,5% NaCl DAN 0,1M HCl

Bab IV Hasil dan Pembahasan

Sidang TUGAS AKHIR. Dosen Pembimbing : Prof. Dr.Ir.Sulistijono,DEA

ANALISA PERBANDINGAN LAJU KOROSI MATERIAL STAINLESS STEEL SS 316 DENGAN CARBON STEEL A 516 TERHADAP PENGARUH AMONIAK

KIMIA ELEKTROLISIS

BAB 2 TINJAUAN KEPUSTAKAAN

SEMINAR TUGAS AKHIR. Aisha Mei Andarini. Oleh : Dosen Pembimbing : Dr.rer.nat.Triwikantoro, M.Sc. Surabaya, 21 juli 2010

I. PENDAHULUAN. hidupnya. Salah satu contoh diantaranya penggunaan pelat baja lunak yang biasa

3. ELEKTROKIMIA. Contoh elektrolisis: a. Elektrolisis larutan HCl dengan elektroda Pt, reaksinya: 2HCl (aq)

UH : ELEKTROLISIS & KOROSI KODE SOAL : A

BAB I PENDAHULUAN 1.1 Latar belakang

APLIKASI REAKSI REDOKS DALAM KEHIDUPAN SEHARI HARI Oleh : Wiwik Suhartiningsih Kelas : X-4

LAPORAN PRAKTIKUM ILMU LOGAM DAN KOROSI

Korosi adalah kerusakan atau degradasi logam akibat reaksi redoks antara suatu. yang tidak dikehendaki. Dalam bahasa sehari-hari, korosi disebut

II. TINJAUAN PUSTAKA

BAB II LANDASAN TEORI

Contoh Soal & Pembahasan Sel Volta Bag. I

TINGKAT PERGURUAN TINGGI 2017 (ONMIPA-PT) SUB KIMIA FISIK. 16 Mei Waktu : 120menit

PENGARUH KEHADIRAN TEMBAGA TERHADAP LAJU KOROSI BESI TUANG KELABU

BAHAN BAKAR KIMIA. Ramadoni Syahputra

METODA GRAVIMETRI. Imam Santosa, MT.

BAB 8. ELEKTROKIMIA 8.1 REAKSI REDUKSI OKSIDASI 8.2 SEL ELEKTROKIMIA 8.3 POTENSIAL SEL, ENERGI BEBAS, DAN KESETIMBANGAN 8.4 PERSAMAAN NERNST 8

BAB II PEMBAHASAN. II.1. Electrorefining

BAB II TINJAUAN PUSTAKA. mencuci pakaian, untuk tempat pembuangan kotoran (tinja), sehingga badan air

Gambar 2.1. Proses pengelasan Plug weld (Martin, 2007)

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang

ANALISIS LAJU KOROSI MATERIAL PENUKAR PANAS MESIN KAPAL DALAM LINGKUNGAN AIR LAUT SINTETIK DAN AIR TAWAR

BAB I PENDAHULUAN. Korosi merupakan fenomena kimia yang dapat menurunkan kualitas suatu

KINERJA INHIBITOR Na 2 CrO 4 DALAM LARUTAN Nacl UNTUK MELINDUNGI BAJA TAHAN KARAT AUSTENITIK TERSENSITISASI DARI SERANGAN SCC Ishak `*) ABSTRAK

Soal-soal Redoks dan elektrokimia

MATERI DAN PERUBAHANNYA. Kimia Kesehatan Kelas X semester 1

Penghambatan Korosi Baja Beton dalam Larutan Garam dan Asam dengan Menggunakan Campuran Senyawa Butilamina dan Oktilamina

PRODUKSI GAS HIDROGEN MELALUI PROSES ELEKTROLISIS SEBAGAI SUMBER ENERGI

KIMIA. Sesi KIMIA UNSUR (BAGIAN IV) A. UNSUR-UNSUR PERIODE KETIGA. a. Sifat Umum

PENGARUH VARIASI ph DAN ASAM ASETAT TERHADAP KARAKTERISTIK KOROSI CO 2 BAJA BS 970

1. Tragedi Minamata di Jepang disebabkan pencemaran logam berat... A. Hg B. Ag C. Pb Kunci : A. D. Cu E. Zn

I.1.1 Latar Belakang Pencemaran lingkungan merupakan salah satu faktor rusaknya lingkungan yang akan berdampak pada makhluk hidup di sekitarnya.

PENGARUH LAJU KOROSI PELAT BAJA LUNAK PADA LINGKUNGAN AIR LAUT TERHADAP PERUBAHAN BERAT.

PEMANFAATAN SUPLEMEN VITAMIN C SEBAGAI INHIBITOR KOROSI PADA BAJA API 5L GRADE B DALAM MEDIA 3.5% NaCl DAN 0.1 M HCl

BAB IV DATA DAN HASIL PENELITIAN

EKSTRAK DAUN GAMBIR SEBAGAI INHIBITOR KOROSI Oleh: Dr. Ahmad Fadli, Ir.Rozanna Sri Irianty, M.Si, Komalasari, ST., MT. Abstralc

Bab IV Hasil dan Pembahasan

II. TINJAUAN PUSTAKA

ANALISA PENGARUH INHIBITOR EKSTRAK RIMPANG JAHE TERHADAP LAJU KOROSI INTERNAL PIPA BAJA ST-41 PADA AIR TANAH

BAB II DASAR TEORI. 2.1 Korosi

PAKET UJIAN NASIONAL 7 Pelajaran : KIMIA Waktu : 120 Menit

REDOKS DAN ELEKTROKIMIA

BAB IV ANALISIS DAN PEMBAHASAN 4.2 DATA HASIL ARANG TEMPURUNG KELAPA SETELAH DILAKUKAN AKTIVASI

BAB IV HASIL DAN PEMBAHASAN. A. Hasil Penelitian

BAB IV HASIL DAN PEMBAHASAN. A. Hasil Penelitian. 1. Pengembangan Tanah (Swelling) Lempung Ekspansif tanpa Metode Elektrokinetik

Pembahasan Soal-soal Try Out Neutron, Sabtu tanggal 16 Oktober 2010

BAB I PENDAHULUAN. 1.1 Latar Belakang. Proses akhir logam (metal finishing) merupakan bidang yang sangat luas,

Transkripsi:

BAB II TINJAUAN PUSTAKA 2.1 Teori Dasar Korosi Kata korosi berasal dari bahasa latin Corrodere yang artinya perusakan logam atau berkarat. Korosi adalah terjadinya perusakan material (khususnya logam) akibat lingkungannya. Pada logam terjadinya akibat reaksi kimia yaitu pada temperatur yang tinggi antara logam dan gas atau terjadi korosi elektrokimia dalam lingkungan air atau udara basah (Supardi, 1997). Reaksi langsung disebut juga korosi kering dan reaksi penggantian disebut korosi basah. Reaksi langsung (korosi kering) termasuk oksidasi di udara, rekasi dengan uap belerang, hidrogen sulfida dan kandungan udara kering lainnya, juga rekasi dengan logam cair lainnya misalnya natrium. Reaksi ini nyata dan umum terjadi pada suhu relatif tinggi. Pada dasarnya reaksi korosi logam berlangsung secara elektrokimia (Trethewey, 1991), yang terjadi pada daerah katoda dan anoda dengan membentuk rangkaian arus tertutup. Reaksi korosi berlangsung di daerah permukaan katoda dan anoda. Korosi elektrokimia dapat dijelaskan dengan suatu sistem yang disebut sel korosi basah sederhana dengan anoda dan katoda tunggal (Gambar 2.1).

Gambar 2.1 Sel Korosi basah sederhana (Trethewey, 1991) Dari Gambar 2.1 diketahui bahwa katoda bertanda positif dan anoda bertanda negatif. Tanda tersebut menunjukkan kecenderungan potensial reduksi elektroda yang bersangkutan. Arus listrik mengalir dari elektroda dengan potensial rendah (anoda). Sedangkan arus elektron mengalir dari elektroda dengan potensial rendah (anoda) menuju elektroda dengan potensial tinggi (katoda). Ion-ion positif (kation) dalam elektrolit berdifusi menuju permukaan katoda untuk mengalami reaksi reduksi (Fontana, 1983). Pada permukaan anoda atom-atom yang ditinggalkan oleh elektron valensinya akan lepas menuju elektrolit untuk selanjutnya bereaksi dengan anion-anion elektrolit tersebut. Faktor yang berpengaruh terhadap korosi dapat dibedakan menjadi dua, yaitu yang berasal dari bahan itu sendiri dan dari lingkungan. Faktor dari bahan meliputi kemurnian bahan, struktur bahan, bentuk kristal, unsur-unsur kelumit yang ada dalam bahan, teknik pencampuran bahan dan sebagainya. Faktor dari

lingkungan meliputi tingkat pencemaran udara, suhu, kelembaban, keberadaan zat-zat kimia yang bersifat korosif dan sebagainya. Bahan-bahan korosif (yang dapat menyebabkan korosi) terdiri atas asam, basa serta garam, baik dalam bentuk senyawa an-organik maupun organik. Mekanisme korosi tidak terlepas dari reaksi elektrokimia. Reaksi elektrokimia melibatkan perpindahan elektron-elektron. Perpindahan elektron merupakan hasil reaksi redoks (reduksi-oksidasi). Mekanisme korosi melalui reaksi elektrokimia melibatkan reaksi anodik di daerah anodik. Reaksi anodik yang terjadi pada proses korosi logam yaitu : M Mn + + ne ( 2.1 ) Proses korosi dari logam M adalah proses oksidasi logam menjadi satu ion (n + ) dalam pelepasan n elektron. Harga dari n bergantung dari sifat logam sebagai contoh besi : Fe Fe 2+ + 2e ( 2.2 ) Reaksi katodik juga berlangsung di proses korosi. Reaksi katodik diindikasikan melalui penurunan nilai valensi atau konsumsi elektron-elektron yang dihasilkan dari reaksi anodik. Reaksi katodik terletak di daerah katoda. Beberapa jenis reaksi katodik yang terjadi selama proses korosi logam yaitu : Pelepasan gas hydrogen : 2H - + 2e H 2 ( 2.3 ) Reduksi oksigen : O 2 + H 2 O 4 4OH - ( 2.4 )

Reduksi ion logam : Fe 3+ + e Fe 2+ ( 2.5 ) Pengendapan logam : 3Na + + 3e 3 Na ( 2.6 ) Reaksi katodik dimana oksigen dari udara akan larut dalam larutan terbuka. Reaksi korosi tersebut sebagai berikut : 2 Fe + O 2 Fe 2 O 3 ( 2.7 ) Gambar 2.2 Korosi baja pada larutan NaCL (Hartono dan Kaneko, 1992) Pada reaksi korosi yang terpenting sebenarnya ialah laju reaksinya/laju korosi (faktor kinetik) walau dapat/tidaknya terjadi reaksi adalah persoalan termodinamik pula. Laju korosi ditentukan terutama oleh perilaku polarisasi sel. Seperti yang ditunjukkan pada Gambar 2.3

Gambar 2.3 Laju Korosi pada Reaksi Korosi (Hartono dan Kaneko, 1992) Polarisasi cenderung memperkecil daya gerak, sesuai dengan rapat arusnya. Saat kedua garis berpotongan menentukan laju korosi maksimum yang mungkin terjadi. Berbagai faktor menghambat tercapainya maksimum teoritik, misalnya tahanan elektrolit. Bila besar (garis A), banyak beda potensialnya dipakai untuk mengatasi tahanan, dan arus korosinya kecil. Bila tahanan elektrolit kecil (garis B) laju korosi besar sesuai rapat arus di B. Polarisasi pada anoda tak selalu sama efektif dengan yang ada pada katoda. Bila katoda luas dan anoda sempit, kebanyakan polarisasi terjadi pada anoda dan kurva polarisasi katodiknnya akan agak datar.

2.2 Jenis-jenis Korosi Jenis-jenis korosi dapat dikelompokkan sebagai berikut, korosi merata, korosi sumuran, korosi celah, korosi antar butir, korosi galvanik, korosi selektif, korosi tegang dan korosi erosi. Korosi merata (Uniform Corrosion) adalah bentuk umum dari korosi. Pada korosi ini, logam mengalami kerusakan dengan laju yang sama (hampir sama) di seluruh permukaan. Salah satu penyebab dari korosi merata adalah disebabkan oleh atmosfir. Kerusakan yang diakibatkan korosi merata cukup besar (ditinjau dari segi jumlah atau berat logam yang terkorosi), maka korosi jenis ini harus diwaspadai. Korosi sumuran (Pitting Corrosion) terjadi karena suatu serangan yang intensif secara setempat, membentuk suatu sumuran. Umumnya diameter sumuran ini relatif kecil dan tumbuh mengikuti arah gravitasi, dengan diameternya lebih kecil daripada kedalamannya. Proses korosi sumuran terjadi karena adanya perbedaan struktur logam sehingga terbentuk daerah anodik dan katodik. Korosi sumuran termasuk jenis korosi yang paling berbahaya. Ciri-cirinya adalah korosi lokal berbentuk titik-titik atau lubang-lubang kecil dengan batas-batas yang nyata tersebar pada permukaan logam. Korosi celah (Crevice Corrosion) adalah korosi yang terjadi pada daerah celahan atau daerah-daerah yang tersembunyi pada permukaan logam yang berada dalam lingkungan korosif. Korosi ini terjadi karena adanya perbedaan konsentrasi oksigen antara daerah celah dan sekitarnya.

Korosi antar butir (Intergranular Corrosion) sering terjadi pada baja tahan karat sebagai akibat perlakuan panas atau pengelasan. Dalam keadaan tertentu bidang antar muka butiran menjadi sangat reaktif dan menyebabkan korosi antar butir, yaitu korosi lokal di sekitar butiran yang menyebabkan penurunan kekuatan bahan. Korosi galvanik terjadi bila dua logam atau lebih yang berbeda berada dalam suatu lingkungan dan saling berhubungan. Pada kondisi ini akan timbul suatu tegangan listrik sedemikian sehingga logam yang lebih anodik (logam yang pada kondisi tidak terhubungkan mempunyai potensial yang lebih negatif) akan bertindak sebagai anoda, sedangkan logam lainnya menjadi katoda. Pada daerah anoda akan terjadi pelarutan logam karena terjadi oksidasi. Korosi erosi adalah gejala percepatan korosi atau peningkatan laju kerusakan logam karena adanya aliran fluida yang bersifat korosif pada permukaan logam. Biasanya aliran ini sangat cepat seperti aliran fluida dalam pipa, sehingga dapat menimbulkan keausan atau abrasi. Logam yang tererosi terlepas secara mekanik.

2.3 Penentuan Laju Korosi dengan Metode Berat Hilang Metode yang digunakan untuk menghitung laju korosi adalah metode berat hilang. Metode ini melibatkan proses pembersihan dan penimbangan sebelum korosi dan pembersihan serta penimbangan setelah korosi. Untuk menghitung laju korosi, digunakan rumus MPY, mils per year (mili per tahun) (Callister, 1990) : = ( 2.8 ) dimana W adalah berat yang hilang selama korosi (mg), ρ adalah massa jenis bahan uji (g/cm 3 ), A adalah luas penampang (inchi 2 ) dan t adalah waktu uji korosi (jam). Suatu bahan dapat dikatakan tahan terhadap laju korosi bila laju korosinya lebih kecil dari 50 mpy. Pengelompokan sifat bahan bila ditinjau dari laju korosinya (dalam mpy) seperti terangkum pada Tabel 2.1 sebagai berikut : Tabel 2.1 Pengelompokan sifat bahan ditinjau dari laju korosinya No Ketahanan Korosi Relatif Mpy 1. Istimewa < 1 2. Sangat baik 2-5 3. Baik 5-20 4. Cukup 20-50 5. Jelek 50-200 2.4 Pengendalian Korosi

Pengendalian korosi memegang peranan penting dalam setiap tahapannya. Ada beberapa cara yang dapat dilakukan untuk menghambat / mencegah terjadinya proses korosi antara lain : memisahkan logam dari lingkungan, mempertinggi ketahanan logam, membalikkan arah arus korosi dan membuat lingkungan menjadi tidak korosif. Memisahkan logam ialah cara yang sangat popular dan banyak dilakukan. Cara ini meliputi pelapisan dengan lapisan pelindung organic atau anorganik. Teknik perlindungan ini dapat dilakukan dengan pengecatan, semprot, dan sebagainya ( Trethewey, 1991 ). Membuat logam tahan terhadap korosi, dimaksudkan untuk memperoleh ketahanan korosi dari lingkungan tertentu. Ketahanan korosi dari logam dapat diperoleh dengan cara menjadikan permukaan logam tertutup oleh lapisan yang protektif ( Trethewey, 1991 ). Membalikkan arah arus korosi dikenal sebagai proes katodik, dimana proses korosi dicegah dengan cara memperlakukan logam dilindungi sebagian katoda. Cara ini biasanya digunakan untuk pencegahan korosi pipa pipa baja, rel kereta api ( Trethewey, 1991 ). Membuat lingkungan tidak korosif dengan cara mengunakan zat zat kimia yang ditambahkan ke dalam lingkungan elektrolit. Zat yang ditambahkan dan mempengaruhi reaksi di anoda, katoda, dan keduanya, sehingga proses korosi diperlambat. Zat yang ditambahkan disebut inhibitor ( Trethewey, 1991 ).

2.5 Logam Stainless Steel 316 Baja tahan karat (Stainless Steel ) adalah segala bentuk paduan Fe (Fe alloy) yang mengandung lebih dari 11 % Chromium (Cr) (Chandler, 1987 : 108). Pada Baja SS-316 terdiri dari kandungan karbon rendah dan mengandung campuran nikel kromium baja tahan karat austenitik yang tinggi dengan penambahan molybdenum yang memberikan peningkatan ketahanan terhadap korosi, hal ini terutama terlihat untuk korosi sumuran (pitting corrosion) dan korosi celah dalam lingkungan klorida. Unsur logam nikel dan krom yang terkandung dalam SS-316 membuatnya bersifat menentang karat. Kandungan nikel yang tinggi juga dapat mencegah terjadinya korosi tegang. Kandungan molybdenum dan tembaga dalam logam SS- 316 ditingkatkan untuk mencegah terjadinya korosi sumur dan celah serta korosi umum lainnya. Kandungan karbon yang rendah dapat mencegah terjadinya korosi antar butir. Logam SS-316 banyak digunakan dalam pembuatan bahan kimia dan peralatan petrokimia, bangku dan peralatan laburatorium, lambung kapal, mur dan baut, dan medis implan. (Shreir, 1994) Tabel 2.2 Komposisi kimia Baja Tahan Karat 316L C Mn Si P S Cr Mo Ni N 0.8 2.0 0.75 0.045 0.03 16-18 2-3 10-14 0.1

2.6 Keseragaman Komposisi Kimia dan Tekstur Permukaan Apabila suatu logam terendam dalam larutan yang bersifat elektrolit, akan terdapat perbedaan potensial efektif lokal pada permukaannya (Uhlig, 1971). Akibat yang timbul adalah terjadinya korosi pada bagian permukaan yang anodik. Perbedaan potensial ini dapat diakibatkan oleh adanya komposisi kimia yang tidak sama pada masing-masing butir kristal atau perbedaan fase pada permukaan logam yang kontak dengan elektrolit. Tekstur permukaan yang lebih kasar akan menyebabkan luas permukaan yang kontak dengan larutan menjadi lebih luas, sehingga reaksi reduksi maupun oksidasi yang terjadi semakin banyak. 2.7 Potensial Elektroda Logam Kecenderungan logam terkorosi dalam larutan diukur dengan elektroda potensial efektif antara permukaan logam dengan ion-ionnya yang terdapat dalam larutan. Artinya, potensial logam pada larutan yang mengandung satu gram berat atom (1 mole) ion-ionnya dihitung pada temperatur konstan (Trethewey, 1991). Hasilnya adalah standar elektroda potensial baku tiap logam, diperlihatkan pada Tabel 2.3. Elektroda hidrogen dipakai sebagai potensial acuan yaitu sebesar nol volt. Semakin negatif potensial reduksi maka semakin reaktif logam tersebut. Dalam suatu sel korosi, elektroda dengan potensial reduksi lebih negatif akan mengalami oksidasi (anoda) dan elektroda dengan potensial reduksi lebih positif akan mengalami reaksi reduksi (katoda).

Tabel 2.3 Potensial Reduksi Baku (Trethewey, 1991) Reaksi Elektroda E 0 (volt) Au + + e = Au +1,68 Pt 2+ + 2e = Pt +1,20 Hg 2+ + 2e = Hg +0,85 Ag + + e = Ag +0,8 Cu 2+ + 2e = Cu +0,34 2H + + 2e = H 2 0,00 Pb 2+ + 2e = Pb -0,13 Sn 2+ + 2e = Sn -0,14 Ni 2+ + 2e = Ni -0,25 Cd 2+ + 2e = Cd -0,40 Fe 2+ + 2e = Fe -0,44 Cr 3+ + 3e = Cr -0,71 2.8 Kemampuan Logam Membentuk Lapisan Pelindung (Pasiva) Beberapa logam atau paduan menjadi tak aktif (pasif) pada suatu kondisi tertentu, sebagai contoh SS 18Cr-8Ni mampu membentuk selaput oksida yang pasif pada permukaannya (Uhlig, 1971). Selaput oksida tersebut mampu menghalangi kontak antara larutan dan logam, hal ini karena oksida yang terjadi sangat rapat.

2.9 Inhibitor Salah satu pengendalian korosi logam yang sering dilakukan dalam larutan elektrolit adalah dengan menggunakan inhibitor korosi. Suatu inhibitor kimia adalah suatu zat kimia yang dapat menghambat atau memperlambat suatu reaksi kimia. Secara khusus, inhibitor korosi merupakan suatu zat kimia yang bila ditambahkan kedalam suatu lingkungan tertentu dapat menurunkan laju penyerangan lingkungan itu terhadap suatu logam (Surya, 2004). Pada prakteknya, jumlah yang ditambahkan adalah sedikit, baik secara kontinu maupun periodik menurut suatu selang waktu tertentu. Adapun mekanisme kerjanya dapat dibedakan sebagai berikut (Surya, 2004): 1) Inhibitor teradsorpsi pada permukaan logam, dan membentuk suatu lapisan tipis dengan ketebalan beberapa molekul inhibitor. Lapisan ini tidak dapat dilihat oleh mata biasa, namun dapat menghambat penyerangan lingkungan terhadap logamnya. 2) Melalui pengaruh lingkungan (missal ph) menyebabkan inhibitor dapat mengendap dan selanjutnya teradsorpsi pada permukaan logam serta melindunginya terhadap korosi. Endapan yang terjadi cukup banyak, sehingga lapisan yang terjadi dapat teramati oleh mata. 3) Inhibitor lebih dulu mengkorosi logamnya, dan menghasilkan suatu zat kimia yang kemudian melalui peristiwa adsorpsi dari produk korosi tersebut membentuk suatu lapisan pasif pada permukaan logam.

4) Inhibitor menghilangkan konstituen yang agresif dari lingkungannya. Berdasarkan sifat korosi logam secara elektrokimia, inhibitor dapat mempengaruhi polarisasi anodik dan katodik. Bila suatu sel korosi dapat dianggap terdiri dari empat komponen yaitu: anoda, katoda, elektrolit dan penghantar elektronik, maka inhibitor korosi memberikan kemungkinan menaikkan polarisasi anodik, atau menaikkan polarisasi katodik atau menaikkan tahanan listrik dari rangkaian melalui pembentukan endapan tipis pada permukaan logam. Mekanisme ini dapat diamati melalui suatu kurva polarisasi yang diperoleh secara eksperimental. Secara kualitatif inhibitor dapat dimasukkan dalam tiga kelompok besar yaitu: inhibitor anodik, inhibitor katodik, inhibitor adsorpsi. 2.9.1 Inhibitor Adsorpsi Inhibitor ini terdiri dari molekul-molekul organik panjang dengan rantai samping yang teradsorpsi ke permukaan logam. Molekul-molekul berukuran besar ini dapat membatasi difusi oksigen maupun ion hidrogen atau menjebak ion-ion logam di permukaan logam tersebut dan memantapkan lapisan ganda. Mekanisme perlindungan inhibitor organik dalam pengendalian korosi logam terhadap larutan NaCl melalui pembentukan suatu lapisan teradsorpsi pada seluruh permukaan logam yang diproteksi dengan ketebalan tidak lebih dari satu nanolayer (Clifton D, 1965). Lapisan film teradsorpsiyang terbentuk secara merata pada seluruh permukaan logam menutupi daerah katoda dan anoda, sehingga dapat menghambat secara simultan reaksi elektron dengan oksigen dan hidrogen, serta menghambat pelarut ion logam.

Quinoline dengan formula C 9 H 7 N merupakan jenis bahan kimia organik yang termasuk dalam golongan aromatik (benzena). Quinoline dan isoquinoline terdapat dalam banyak bahan alam, contohnya adalah Quinina dan Papaverina. Quinina terdapat dalam pohon kina dan digunakan untuk mengobati malaria. Papaverina terdapat dalam opium dan digunakan sebagai relaksasi otot (Hart, 2003). Inhibitor Quinoline diperkirakan dapat membentuk lapisan yang lebih rapat karena mempunyai ukuran molekul yang besar dan rumus bangun sebagai berikut: Gambar 2.4 Rumus bangun molekul Quinoline (Hildebrand, 2001) Quinoline merupakan cairan yang higroskopis dengan massa molekul relatif sebesar 129,15. Setiap satu mol Quinoline mengandung 83,69% C, 5,46% H, dan 10,85% N. Titik didih dari senyawa ini adalah 237,7 0 C sedangkan titik lelehnya -15 0 C (Windholz, 1976).

2.10 Temperatur Operasi Dengan meningkatnya temperatur, kemampuan melarutkan kerak oksida akan semakin meningkat. Peningkatan tersebut diakibatkan adanya laju korosi yang lebih besar terjadi pada material induk. Penggunaan temperatur yang tinggi dihindari karena akan memberikan efek sebagai berikut: - Peningkatan temperatur akan meningkatkan serangan korosi pada permukaan benda kerja - Larutan NaCl akan menjadi semakin buruk dan umur penggunaannya menjadi semakin singkat. - Umur dari tempat larutan menjadi lebih pendek. 2.11 Oksida Stainless Steel Karakteristik oksida dari Stainless Steel 316L dan metal lainnya memiliki kesamaan yaitu kemampuan untuk menghasilkan lapisan pasif. Ketahanan korosi tergantung pada kestabilan lapisan oksida.. Daya tahan Stainless Steel terhadap oksidasi yang tinggi di udara dalam suhu lingkungan biasanya dicapai karena adanya tambahan minimal 13% (dari berat) Krom. Krom membentuk sebuah lapisan tidak aktif, Kromium(III) Oksida (Cr2O3) ketika bertemu Oksigen. Lapisan ini terlalu tipis untuk dilihat, sehingga logamnya akan tetap berkilau. Logam ini menjadi tahan air dan udara, melindungi logam yang ada di bawah lapisan tersebut.

Hal ini dapat dilihat dari perbandingan angka Pilling-Bedworth yang tidak berbeda jauh dan sama-sama masuk dalam kategori protective oxide seperti tampak pada tabel 2.4 di bawah ini. Tabel 2.4 Pilling-Bedworth Number dari beberapa metal (Shreir,1993) Protective Nonprotective Ce 1.16 K 0.45 Al 1.28 Li 0.57 Pb 1.4 Na 0.57 Ni 1.52 Cd 1.21 Be 1.59 Ag 1.59 Pd 1.6 Ti 1.95 Cu 1.68 Ta 2.33 Fe 1.77 Sb 2.35 Mn 1.79 Nb 2.61 Co 1.99 U 3.05 Cr 1.99 Mo 3.4 Si 2.27 W 3.4 Pembentukan oksida pada temperatur tinggi memungkinkan oksida kekurangan daya ikat pada logam begitupun pada saat logam logam begitupun pada saat logam didinginkan pada Temperatur rendah. Akibat proses ini lapisan oksida akan menjadi nonprotective ketika logam dipanaskan kembali.