RANCANG BANGUN ALAT PENGUMPUL PANAS ENERGI MATAHARI DENGAN SISTEM TERMOSIFON [DESIGN OF SOLAR THERMAL COLLECTOR TOOL WITH THERMOSIFON SYSTEM]

dokumen-dokumen yang mirip
III. METODELOGI PENELITIAN. Penelitian dilaksanakan pada Mei hingga Juli 2012, dan Maret 2013 di

PEMBUATAN KOLEKTOR PELAT DATAR SEBAGAI PEMANAS AIR ENERGI SURYA DENGAN JUMLAH PENUTUP SATU LAPIS DAN DUA LAPIS

BAB III METODE PENELITIAN (BAHAN DAN METODE) keperluan. Prinsip kerja kolektor pemanas udara yaitu : pelat absorber menyerap

SISTEM PEMANFAATAN ENERGI SURYA UNTUK PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNGAN. Fatmawati, Maksi Ginting, Walfred Tambunan

Laporan Tugas Akhir BAB I PENDAHULUAN

PENGUJIAN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR LAUT DENGAN MEMBANDINGKAN PERFORMANSI KACA SATU DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI

BAB I PENDAHULUAN 1.1. Latar Belakang

II. TINJAUAN PUSTAKA. Energi surya merupakan energi yang didapat dengan mengkonversi energi radiasi

Studi Eksperimental Efektivitas Penambahan Annular Fins Pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

TEKNOLOGI PEMANAS AIR MENGGUNAKAN KOLEKTOR TIPE TRAPEZOIDAL BERPENUTUP DUA LAPIS

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di Bengkel Pertanian Jurusan Teknik Pertanian

BAB I PENDAHULUAN. khatulistiwa, maka wilayah Indonesia akan selalu disinari matahari selama jam

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE

BAB IV HASIL DAN PEMBAHASAN. 1. Temperatur udara masuk kolektor (T in ). T in = 30 O C. 2. Temperatur udara keluar kolektor (T out ). T out = 70 O C.

Analisa Performa Kolektor Surya Pelat Datar Bersirip dengan Aliran di Atas Pelat Penyerap

BAB IV HASIL DAN PEMBAHASAN. 4.1 Deskripsi Alat Pengering Yang Digunakan Deskripsi alat pengering yang digunakan dalam penelitian ini adalah :

III. METODELOGI PENELITIAN. Penelitian ini berlangsung dalam 2 (dua) tahap pelaksanaan. Tahap pertama

SUDUT PASANG SOLAR WATER HEATER DALAM OPTIMALISASI PENYERAPAN RADIASI MATAHARI DI DAERAH CILEGON

BAB I PENDAHULUAN. menjadi sumber energi pengganti yang sangat berpontensi. Kebutuhan energi di

Karakteristik Pengering Surya (Solar Dryer) Menggunakan Rak Bertingkat Jenis Pemanasan Langsung dengan Penyimpan Panas dan Tanpa Penyimpan Panas

Gambar 2. Profil suhu dan radiasi pada percobaan 1

Pengaruh Sudut Kemiringan Kolektor Surya Pelat Datar terhadap Efisiensi Termal dengan Penambahan Eksternal Annular Fin pada Pipa

PENGARUH KECEPATAN ANGIN DAN WARNA PELAT KOLEKTOR SURYA BERLUBANG TERHADAP EFISIENSI DI DALAM SEBUAH WIND TUNNEL

Tugas akhir BAB III METODE PENELETIAN. alat destilasi tersebut banyak atau sedikit, maka diujilah dengan penyerap

EFEKTIFITAS KOLEKTOR ENERGI SURYA PADA KONFIGURASI PARALEL- SERPENTINE

ANALISA KARAKTERISTIK ALAT PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNG PARABOLA

RANCANG BANGUN KONVERSI ENERGI SURYA MENJADI ENERGI LISTRIK DENGAN MODEL ELEVATED SOLAR TOWER

Preparasi pengukuran suhu kolektor surya dan fluida kerja dengan Datapaq Easytrack2 System

RANCANG BANGUN KOLEKTOR SURYA PLAT DATAR UNTUK PEMANAS AIR DENGAN KACA BERLAPIS KETEBALAN 5MM SKRIPSI

BAB III METODOLOGI PENELITIAN

Perbandingan Konfigurasi Pipa Paralel dan Unjuk Kerja Kolektor Surya Plat Datar

BAB I PENDAHULUAN 1.1 Latar Belakang Jenis Energi Unit Total Exist

PENENTUAN EFISIENSI DARI ALAT PENGERING SURYA TIPE KABINET BERPENUTUP KACA

PEMANFAATAN ENERGI SURYA UNTUK MEMANASKAN AIR MENGGUNAKAN KOLEKTOR PARABOLA MEMAKAI CERMIN SEBAGAI REFLEKTOR

PENENTUAN EFISIENSI KOLEKTOR PELAT DATAR DENGAN PENUTUP KACA PADA SISTEM PEMANAS AIR SURYA

3. BAHAN DAN METODE Kegiatan penelitian ini terdiri dari tiga proses, yaitu perancangan,

ANALISIS THERMAL KOLEKTOR SURYA PEMANAS AIR JENIS PLAT DATAR DENGAN PIPA SEJAJAR

PRESTASI SISTEM DESALINASI TENAGA SURYA MENGGUNAKAN BERBAGAI TIPE KACA PENUTUP MIRING

JURNAL IPTEKS TERAPAN Research of Applied Science and Education V9.i1 (1-10)

BAB IV. HASIL PENGUJIAN dan PENGOLAHAN DATA

Performansi Kolektor Surya Tubular Terkonsentrasi Dengan Pipa Penyerap Dibentuk Anulus Dengan Variasi Posisi Pipa Penyerap

PENGARUH BAHAN INSULASI TERHADAP PERPINDAHAN KALOR PADA TANGKI PENYIMPANAN AIR UNTUK SISTEM PEMANAS AIR BERBASIS SURYA

Pengaruh Tebal Plat Dan Jarak Antar Pipa Terhadap Performansi Kolektor Surya Plat Datar

BAB I PENDAHULUAN. Energi merupakan kebutuhan pokok bagi kegiatan sehari-hari,

PENGARUH BESAR LAJU ALIRAN AIR TERHADAP SUHU YANG DIHASILKAN PADA PEMANAS AIR TENAGA SURYA DENGAN PIPA TEMBAGA MELINGKAR

PEMBUATAN ALAT PENGERING SURYA UNTUK HASIL PERTANIAN MENGGUNAKAN KOLEKTOR BERPENUTUP PRISMA SEGITIGA

Radiasi ekstraterestrial pada bidang horizontal untuk periode 1 jam

MODIFIKASI MESIN PEMBANGKIT UAP UNTUK SUMBER ENERGI PENGUKUSAN DAN PENGERINGAN PRODUK PANGAN

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan

ALAT PENGERING HASIL - HASIL PERTANIAN UNTUK DAERAH PEDESAAN DI SUMATERA BARAT

HASIL DAN PEMBAHASAN

Rancang Bangun Kolekor Surya Tipe Parabolic Trough untuk Menguapkan Air Laut berbahan Stainless dan Tembaga dengan Luas Tangkapan Cahaya 1 M 2

POTENSI PENGGUNAAN KOMPOR ENERGI SURYA UNTUK KEBUTUHAN RUMAH TANGGA

Pengaruh jumlah haluan pipa paralel pada kolektor surya plat datar absorber batu kerikil terhadap laju perpindahan panas

STUDI PERFORMANSI ALAT PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR SURYA PLAT DATAR STUDY OF WATER HEATER PERFORMANCE USING FLAT PLAT SOLAR COLLECTOR

A. HASIL PELAKSANAAN KEGIATAN

Naskah ini diterima pada 12 Agustus 2014; revisi pada 25 Agustus 2014; disetujui untuk dipublikasikan pada 3 September 2014 ABSTRACT

RANCANG BANGUN ALAT PENGERING UBI KAYU TIPE RAK DENGAN MEMANFAATKAN ENERGI SURYA

Analisis Performa Kolektor Surya Pelat Bersirip Dengan Variasi Luasan Permukaan Sirip

OPTIMALISASI PENYERAPAN RADIASI MATAHARI PADA SOLAR WATER HEATER MENGGUNAKAN VARIASI SUDUT KEMIRINGAN

PERANCANGAN SOLAR WATER HEATER JENIS PLAT DATAR TEMPERATUR MEDIUM UNTUK APLIKASI PENGHANGAT AIR MANDI

III. METODE PENELITIAN. Desember 2011 di bengkel Mekanisasi Pertanian Jurusan Teknik Pertanian

PERANCANGAN SOLAR WATER HEATER JENIS PLAT DATAR TEMPERATUR MEDIUM UNTUK APLIKASI PENGHANGAT AIR MANDI

IV. PENDEKATAN RANCANGAN

PENGARUH JARAK ANTAR PIPA PADA KOLEKTOR TERHADAP PANAS YANG DIHASILKAN SOLAR WATER HEATER (SWH)

collectors water heater menggunakan

Pengaruh variasi jenis pasir sebagai media penyimpan panas terhadap performansi kolektor suya tubular dengan pipa penyerap disusun secara seri

BAB III METOLOGI PENELITIAN

PEMANAS AIR SURYA Pembuatan, Instalasi dan Pengujian Lapangan

PEMBUATAN PENGKONVERSI SINAR SURYA MENJADI PANAS GUNA PENYEDIAAN AIR PANAS DALAM RUMAH TANGGA. Suharto. Jurusan Fisika, Universitas Gadjah Mada

PENGARUH JUMLAH PIPA TERHADAP LAJU PELEPASAN KALOR PADA KOLEKTOR SURYA ABSORBER BATU GRANIT

PENGARUH PELAT PENYERAP GANDA MODEL GELOMBANG DENGAN PENAMBAHAN REFLECTOR TERHADAP KINERJA SOLAR WATER HEATER SEDERHANA Ismail N.

BAB V ANALISIS DAN INTERPRETASI HASIL

KONFIGURASI SERPENTINE-PARALEL DAN PARALEL-SERPENTINE PADA PIPA FLUIDA PEMANAS AIR SURYA SISTEM THERMOSIPHON

PENGHITUNGAN EFISIENSI KOLEKTOR SURYA PADA PENGERING SURYA TIPE AKTIF TIDAK LANGSUNG PADA LABORATORIUM SURYA ITB

ANALISA KOMPONEN KOLEKTOR PADA MESIN PENDINGIN SIKLUS ADSORPSI TENAGA SURYA DENGAN VARIASI SUDUT KOLEKTOR 0 0 DAN 30 0

JURNAL RONA TEKNIK PERTANIAN. ISSN : ; e-issn Penggunaan Kendal Sebagai Media Penyimpan Panas pada Kolektor Surya Plat Datar

PENGARUH BENTUK DAN OPTIMASI LUASAN PERMUKAAN PELAT PENYERAP TERHADAP EFISIENSI SOLAR WATER HEATER ABSTRAK

PENGARUH KECEPATAN ANGIN TERHADAP PRODUKTIVITAS AIR KONDENSAT PADA PERALATAN DESTILASI

KONFIGURASI SERPENTINE-PARALEL DAN PARALEL-SERPENTINE PADA PIPA FLUIDA PEMANAS AIR SURYA SISTEM THERMOSIPHON

KARAKTERISTIK KOLEKTOR SURYA PLAT DATAR DENGAN VARIASI JARAK (KAJIAN PUSTAKA)

Lingga Ruhmanto Asmoro NRP Dosen Pembimbing: Dedy Zulhidayat Noor, ST. MT. Ph.D NIP

PENINGKATAN KAPASITAS PEMANAS AIR KOLEKTOR PEMANAS AIR SURYA PLAT DATAR DENGAN PENAMBAHAN BAHAN PENYIMPAN KALOR

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA

Eddy Elfiano 1, M. Natsir Darin 2, M. Nizar 3

Analisa Pengaruh Konfigurasi Pipa Pemanas Air Surya Terhadap Efisiensi

KAJI EKSPERIMENTAL ALAT PENGOLAHAN AIR LAUT MENGGUNAKAN ENERGI SURYA UNTUK MEMPRODUKSI GARAM DAN AIR TAWAR

BAB II TINJAUAN PUSTAKA. menggunakan bahasa pemograman Delphi 3 yang dijalankan dibawah System

IV. HASIL DAN PEMBAHASAN

RANCANG BANGUN PROTOTIPE ALAT PEMANAS AIR TENAGA SURYA SISTEM PIPA PANAS

SISTEM DISTILASI AIR LAUT TENAGA SURYA MENGGUNAKAN KOLEKTOR PLAT DATAR DENGAN TIPE KACA PENUTUP MIRING

III. METODOLOGI PENELITIAN. pengeringan tetap dapat dilakukan menggunakan udara panas dari radiator. Pada

KAJI EKSPERIMENTAL SISTEM PEMANAS AIR SURYA MENGGUNAKAN KOLEKTOR YANG DILENGKAPI MATERIAL PENYIMPAN PANAS

METODOLOGI PENELITIAN

RANCANG BANGUN PEMANAS AIR TENAGA SURYA ABSORBER GELOMBANG TIPE SINUSOIDAL DENGAN PENAMBAHAN HONEYCOMB OLEH : YANUAR RIZAL EKA SB

SIMPULAN UMUM 7.1. OPTIMISASI BIAYA KONSTRUKSI PENGERING ERK

PENGOLAHAN AIR LAUT MENJADI AIR BERSIH DAN GARAM DENGAN DESTILASI TENAGA SURYA

BAB IV HASIL DAN PEMBAHASAN

ANALISIS PERBANDINGAN UNJUK KERJA PEMANAS AIR TENAGA SURYA TIPE PLAT DATAR DENGAN SISTEM SINGLE DAN DOUBLE CUTOFF

Transkripsi:

Jurnal Teknik Pertanian Lampung Vol. 2, No. 2: 95-14 RANCANG BANGUN ALAT PENGUMPUL PANAS ENERGI MATAHARI DENGAN SISTEM TERMOSIFON [DESIGN OF SOLAR THERMAL COLLECTOR TOOL WITH THERMOSIFON SYSTEM] Oleh : Mulia Rahman 1, Budianto Lanya 2, Tamrin 2 1) Mahasiswa S1 Jurusan Teknik Pertanian, Fakultas Pertanian, Universitas Lampung 2,3,4) Staf Pengajar Jurusan Teknik Pertanian, Fakultas Pertanian, Universitas Lampung komunikasi penulis, email : rendiutama23@yahoo.co.id Naskah ini diterima pada 18 April 213; revisi pada 3 Oktober 213; disetujui untuk dipublikasikan pada 9 Oktober 213 ABSTRACT Limited availability of fossil energy requires us to find for alternative energy to meet our needs. Solar thermal collector with thermosifon system is one of environmentally friendly alternative energy. The thermosifon system is a natural pump which work based on density difference between cool water and hot water, so that no electric pump is needed. The purpose of this research was to create a mean of collecting solar thermal energy with thermosifon system. The research steps consist of designing, manufacturing, and testing. Thermal collector was made with dimension of 1,5 m long, 1, m wide and 1, m high, with storage tank capacity of 2 lt. Collector testing was conducted by putting the equipment at an open space from a clock 8: 16:. It was found that the highest efficiency of solar collector (11,2 %) occurred on July 11, 212 with an average solar intensity of 756 W/m 2, where as the lowest efficiency (8,8 %) occurred on July 7, 212, with the average solar intensity 479 W/m 2. The highest average temperature of the storage tank was 44,7 ºC on July 13, 212 while the lowest average temperature was 35,3 ºC on July 12, 212. Keywords: Solar Collector, Thermosifon, Radiaton Intensity, Thermal Efficiency ABSTRAK Ketersediaan energi fosil yang terbatas menuntut kita untuk mencari energi alternatif guna memenuhi kebutuhan kita. Kolektor surya dengan sistem termosifon adalah salah satu alternatif energi yang ramah lingkungan, hemat, dan mudah didapatkan. Sistem termosifon merupakan pompa alamiah yang bekerja berdasarkan perbedaan masa jenis antara air dingin dan air panas, sehingga tidak memerlukan pompa listrik dalam penggunaannya. Tujuan penelitian adalah membuat alat pengumpul panas energi matahari atau kolektor surya dengan sistem termosifon dan mengujinya. Metode penelitian terdiri dari perancangan, pembuatan, dan pengujian alat. Pengumpul panas dengan dimensi panjang 1,5 m, lebar 1 m, dan tinggi 1 m, dengan kapasitas tangki penyimpan 2 lt. Percobaan dilakukan pada ruang terbuka mulai pukul 8: 16:. Hasil pengujian didapat efisiensi tertinggi kolektor surya 11,9 % dengan intensitas matahari rata-rata 756 W/m 2 terjadi pada 11 Juli 212 dan efisiensi terendah 9,4 % dengan intensitas matahari rata-rata 479 W/m 2 terjadi pada 7 Juli 212. Suhu rata-rata tertinggi tangki penyimpan 44,7 ºC pada 13 Juli 212 sedangkan suhu rata-rata terendah 35,3 ºC pada 12 Juli 212. Kata Kunci: Kolektor Surya, Termosifon, Intensitas Radiasi, Efisiensi Termal. 95

Rancang Bangun Alat Pengumpul Panas... (Mulia R, Budianto Lanya, dan Tamrin) I. PENDAHULUAN Saat ini ketersediaan energi dunia terutama minyak bumi semakin menipis. Kondisi ini menuntut kita untuk mencari energi alternatif yang dapat memenuhi kebutuhan sehari-hari. Beberapa alternatif pengganti minyak bumi antara lain energi angin, air, nuklir, biomassa, dan cahaya matahari. Energi matahari adalah salah satu alternatif yang tidak polutif, dan gratis. Berdasarkan data penyinaran matahari yang dihimpun dari 18 lokasi di Indonesia, radiasi surya di Indonesia dapat diklasifikasikan berturut-turut sebagai berikut: untuk kawasan Barat dan Timur Indonesia dengan distribusi penyinaran di Kawasan Barat Indonesia sekitar 4,5 kwh/m 2 per hari dengan variasi bulanan sekitar 1% dan di Kawasan Timur Indonesia sekitar 5,1 kwh/m 2 per hari dengan variasi bulanan sekitar 9 %. Dengan demikian, potensi energi matahari rata-rata Indonesia sekitar 4,8 kwh/m 2 per hari dengan variasi bulanan sekitar 9 % (Kementrian ESDM, 211). Selama ini, pemanfaatan energi panas matahari di Indonesia masih dilakukan secara tradisional. Para petani dan nelayan di Indonesia memanfaatkan energi surya untuk mengeringkan hasil pertanian dan perikanan secara langsung saat matahari cerah. Contoh lain ialah petani garam yang memanfaatkan sinar matahari untuk membuat garam. Di daerah yang beriklim dingin, sebagian masyarakat harus merebus air untuk keperluan mandi pada pagi hari. Dari permasalahan itu diperlukan alat untuk menyimpan energi panas. Salah satu cara untuk menyerap energi panas matahari ialah dengan menggunakan sebuah pengumpul panas atau biasa disebut kolektor surya. Adapun penelitian tentang kolektor surya plat datar pernah diteliti oleh Tirtoatmodjo (1999) dengan judul Unjuk Kerja Pemanas Air Jenis Kolektor Surya Plat Datar dengan Satu dan Dua Kaca Penutup. Penelitian yang dilakukan oleh Tirtoatmodjo menghasilkan beberapa kesimpulan yaitu: Secara umum dapat dikatakan bahwa penggunaan kolektor dengan dua buah kaca penutup adalah lebih baik dari pada hanya menggunakan sebuah kaca penutup saja. Perbedaan suhu yang dicapai dengan percobaan dengan dua buah kaca penutup untuk intensitas cahaya total antara 447 hingga 711 Watt/m 2 adalah 25 C hingga 42 C sedangkan kolektor dengan sebuah kaca penutup yang menerima intensitas cahaya mulai dari 419 hingga 741 Watt/m 2 hanya memiliki perbedaan suhu antar 15 C hingga 28 C saja. Secara umum dapat dikatakan pula bahwa penggunaan kolektor dengan dua buah kaca penutup adalah lebih efektif pada intensitas cahaya yang relatif tinggi, dalam percobaan ini jika di atas 6 Watt/m 2. Penelitian yang dilakukan oleh Wirawan dan Sutanto (211) menghasilkan beberapa kesimpulan yaitu: Pertama, kalor yang diserap oleh air pada kolektor surya absorber plat aluminium lebih besar dibandingkan dengan kolektor surya absorber pasir. Kedua, semakin besar debit aliran air yang mengalir dalam kolektor maka kalor yang diserap oleh air semakin besar karena meningkatnya laju aliran massa air. Ketiga, kerugian kalor yang dialami oleh kolektor surya absorber plat aluminium lebih tinggi dibandingkan dengan kolektor surya absorber pasir. Penelitian yang dilakukan oleh Sudia (21) menghasilkan beberapa kesimpulan yaitu: Pertama, penggunaan konsentrator dua cermin datar dapat meningkatkan fluks kalor yang diserap absorber. Fluks kalor yang diserap absorber menggunakan cermin (S ratarata) = 556,5 Watt, sedangkan tanpa cermin S rata-rata = 425,52 Watt. Kedua, penggunaan konsentrator dua cermin datar dapat meningkatkan energi berguna (qu) kolektor, untuk kolektor yang menggunakan cermin qu rata-rata = 495,4 Watt, kolektor tanpa cermin qu rata-rata = 29,4 Watt. Ketiga, penggunaan konsentrator dua cermin datar dapat meningkatkan efisiensi kolektor, untuk kolektor yang menggunakan cermin η d = 51,8 %, sedangkan kolektor tanpa cermin η d = 29,7 %. Tujuan dari penelitian ini adalah sebagai berikut: 96

Jurnal Teknik Pertanian Lampung Vol. 2, No. 2: 95-14 1. Membuat alat solar thermal colector atau pengumpul panas matahari dengan sistem termosifon. 2. Menguji alat pengumpul panas matahari. II. BAHAN DAN METODE Penelitian dilaksanakan pada Mei hingga Juni 212 di Laboratorium dan Perbengkelan Teknik Pertanian, Fakultas Pertanian, Universitas Lampung. Alat dan bahan-bahan yang diperlukan terdiri dari: mesin pemotong, mesin gerinda, mesin bor, meteran, dan las listrik, termometer batang, stopwatch, termokopel, solarimeter/ luxmeter, besi siku batang, kaca dengan ketebalan 3 mm, sambungan T, sterofoam, papan dengan lebar 25 cm dengan tebal ½ inchi, elektroda las 1 batang, paku 1 inchi, dan plat alumunium. 2.1. Metode perancangan 2.1.1. Kriteria rancangan Kriteria rancangan yang menjadi acuan dalam pembuatan kolektor surya tipe plat datar dengan sistem termosifon adalah minimal sudah bekerja sesuai prinsip termosifon. Adapun luas kolektor yang akan dibuat adalah 1, m x,5 m atau,5 m 2. Bagian kolektor surya dirancang membentuk sudut 15º. Volume tangki penyimpan air panas yang akan dibuat adalah 2 lt dengan dimensi tinggi,4 m diameter,3 m. Tipe ini dirancang untuk mencapai temperatur (6-7) ºC. Jarak plat penyerap dengan kaca transparan 3 cm, karena nilai perbedaan temperatur inputoutput tertinggi pada jarak 3 cm (Burhanuddin, 25). Penggunaan tebal kaca adalah 5 mm dan jarak absorber ke kaca penutup 3 mm, karena efisiensi tertinggi didapat pada ukuran tersebut (M. Burhan, dkk, 212). 2.1.2. Rancangan struktural Rancangan struktural kolektor surya tipe plat datar dengan sistem termosifon (Gambar 1) terdiri dari beberapa komponen yaitu, absorber atau penyerap panas, isolator, penutup transparan, tangki penyimpan dan kerangka. Absorber terbuat dari plat alumunium dan pipa tembaga yang dicat hitam. Pada bagian samping atas kotak kolektor dibuat lubang untuk menyambungkan selang penyalur air panas dengan tangki penyimpan dan pada bagian a c e b Keterangan: a. Tangki penyimpan d. Isolator dari papan b. Penutup dari kaca e. Selang penyalur air dingin c. Selang penyalur air panas f. Rangka kolektor dan tangki penyimpan Gambar 1. Rancangan struktural kolektor surya tipe plat datar dengan sistem termosifon. f d 97

Rancang Bangun Alat Pengumpul Panas... (Mulia R, Budianto Lanya, dan Tamrin) samping bawah kotak kolektor dibuat lubang untuk menyambungkan selang penyalur air dingin dengan tangki penyimpan. Bagian isolator terbuat dari papan kayu yang terletak di bagian samping kanan, kiri, depan, belakang, dan bagian bawah. Sedangkan pada bagian atas ditutupi dengan penutup transparan dari kaca. Tangki penyimpan energi panas terbuat dari ember plastik yang telah dibersihkan yang dilapisi dengan sterofoam pada bagian luarnya. Dudukan/kerangka dirancang untuk meletakan kolektor pada bagian bawah dan tangki penyimpan pada bagian atasnya. 2.1.3. Rancangan fungsional Pembuatan kolektor surya tipe plat datar dengan sistem termosifon terdiri dari beberapa bagian utama yaitu, kolektor surya yang berfungsi sebagai alat untuk mengumpulkan panas dari matahari agar diserap oleh absorber. Bagian absorber dicat hitam pada bagian atasnya, dalam termodinamika menunjukkan bahwa penyerap yang ideal adalah benda hitam (Tipler, 1998). Bagian pipa absorber berfungsi untuk memanasi air. Sedangkan bagian selang penyalur berfungsi sebagai penyalur atau pembawa air yang telah terpanaskan menuju tangki penyimpan panas. Bagian isolator terbuat dari papan berfungsi mengurangi energi panas yang terbuang. Bagian kaca berfungsi untuk memberikan efek rumah kaca agar energi panas terperangkap dalam kolektor. Bagian tangki penyimpan air berfungsi untuk menyimpan energi panas. Bagian rangka atau dudukan berfungsi sebagai penyangga kolektor dan tangki penyimpan. 2.2. Prosedur kerja Penelitian dilaksanakan mengikuti tahaptahap prosedur agar mendapatkan hasil yang baik dan lebih teratur dalam pengerjaannya. Prosedur kerja terdiri dari: 1) Tahap perancangan desain 2) Pembuatan komponen-komponen utama yang terdiri dari: a. Kotak kolektor b. Tangki penyimpan c. Kerangka kolektor 3) Tahap perakitan komponenkomponen utama kolektor 4) Tahap pengujian kolektor III. HASIL DAN PEMBAHASAN Penelitian menghasilkan alat pengumpul panas energi matahari dengan sistem termosifon dengan dimensi panjang 1,5 m, lebar 1 m, dan tinggi 1 m (Gambar 2). Dimensi kotak kolektor yaitu panjang 1 cm, lebar 5 cm, dan tebal 5 cm, memakai penutup transparan dari kaca dengan dimensi panjang 95 cm, lebar 5 cm dan tebal 3 mm. Sedangkan untuk kapasitas tangki penyimpan 2 lt. Pelaksanaan pengujian kolektor dilakukan selama delapan hari dari tanggal 6 13 Juli 212. 3.1. Intensitas radiasi Hasil pengamatan kolektor surya tanggal 6 13 Juli 212 dapat dilihat pada Tabel 1. Intensitas cahaya rata-rata harian tertinggi adalah 818 W/m 2 dengan suhu awal air dalam tangki 31 ºC dan suhu akhir 44,7 ºC terjadi pada 13 Juli 212, pada hari tersebut waktu pemanasan berlangsung cukup lama antara pukul 9:3-13:3 dengan intensitas cahaya diatas 8 W/m 2, sedangkan panas tertinggi antara pukul 1:3-13:3 diatas 1 W/m 2, untuk intensitas cahaya terendah pada hari itu terjadi pada pukul 14:3 (324 W/m 2 ) dan 16: (287 W/m 2 ). Sedangkan intensitas cahaya rata-rata harian terendah adalah 335 W/m 2 dengan suhu awal air dalam tangki 3 ºC dan suhu akhir 35,3 ºC terjadi pada 12 Juli 212. Energi terkumpul yang tertinggi sebesar 1147,24 kj dengan intensitas cahaya rata-rata sebesar 757 W/m 2 terjadi pada 11 Juli 212. Walaupun intensitas cahaya pada tanggal 13 Juli paling besar yaitu 818 W/m 2 tetapi energi yang diserap lebih kecil daripada pada tanggal 11 Juli, hal ini dikarenakan suhu awal air dalam tangki pada tanggal 13 Juli lebih besar yaitu 31 ºC daripada tanggal 11 Juli yaitu 3 ºC. Grafik intensitas cahaya dan suhu air dalam tangki penyimpan tanggal 13 Juli 212 dapat dilihat pada Gambar 3. 98

Jurnal Teknik Pertanian Lampung Vol. 2, No. 2: 95-14 Kolektor surya dengan kaca Kolektor surya tanpa kaca Gambar 2. Hasil rancangan alat pengumpul panas energi matahari dengan sistem termosifon Table 1. Hasil pengamatan kolektor surya tanggal 6 13 Juli 212. Suhu air Intensitas Suhu awal rata-rata cahaya air dalam No Tangg dalam matahari tangki al tangki, T (Watt/m 2 Av ) (ºC) (ºC) Efisiensi harian (%) Energi tersimpan (kj) 1 6 653 3 41, 11,1 921,1 2 7 479 3 36,8 9,4 571,9 3 8 87 3 43,2 1,8 112,8 4 9 759 3 43,3 11,6 1116,3 5 1 88 31 44,2 1,7 188,6 6 11 757 3 43,7 11,9 1147,2 7 12 335 3 35,3 1,5 446,3 8 13 818 31 44,7 11, 1144,7 Rata- 677 3,3 41,53 1,88 942,38 Suhu ( C) 5 45 4 35 3 25 2 15 1 5 Suhu air dalam tangki penyimpan Intensitas cahaya 12 1 8 6 4 2 Intensitas cahaya (Watt/m 2 ) Waktu (jam) Gambar 3. Grafik intensitas cahaya dan kenaikan suhu air dalam tangki penyimpan tanggal 13 Juli 212. 99

Rancang Bangun Alat Pengumpul Panas... (Mulia R, Budianto Lanya, dan Tamrin) Pada grafik intensitas cahaya dan energi tersimpan dalam tangki penyimpan tanggal 6-13 Juli 212 (Gambar 4), terlihat bahwa energi yang diserap (Q serap) sebanding dengan intensitas cahaya. didapat sebesar 479 W/m 2 dan 335 W/m 2 berturut-turut. Walaupun terdapat perbedaan intensitas cahaya sebesar 144 W/m 2 namun suhu air dalam tangki didapat sebesar 36 ºC dan 35,3 ºC. 14 9 Q serap (kj) 12 1 8 6 4 2 Q serap Intensitas cahaya 8 7 6 5 4 3 2 1 Intensitas rata-rata harian (Watt/m 2 ) 3.2. Suhu 6 7 8 9 1 11 12 13 Tanggal Gambar 4. Grafik intensitas cahaya dan energi tersimpan (Q serap) pada tangki penyimpan tanggal 6-13 Juli 212. Pada Gambar 5 terlihat bahwa suhu air dalam tangki penyimpan relatif berbanding lurus dengan intensitas cahaya. Pada tanggal 7 dan 12 Juli intensitas cahaya rata-rata Intensitas cahaya (Watt/m 2 ) 9 8 7 6 5 4 3 2 1 Intensitas cahaya Perbedaan intensitas cahaya sebesar 144 W/m 2 tidak memberikan perubahan yang berarti. Grafik intensitas cahaya harian dan suhu air rata-rata tangki penyimpan tanggal 6-13 Juli 212 dapat dilihat pada Gambar 5. Suhu air rata-rata dalam tangki penyimpan 6 7 8 9 1 11 12 13 Tanggal Gambar 5. Grafik intensitas cahaya harian dan suhu air rata-rata tangki penyimpan tanggal 6-13 Juli 212. 5 45 4 35 3 25 2 15 1 5 Suhu air ( o C) 1

Jurnal Teknik Pertanian Lampung Vol. 2, No. 2: 95-14 Penyebab suhu tidak mencapai target yang diinginkan adalah diameter pipa tembaga yang kecil yaitu 3/8 inchi, sehingga penyerapan panas kurang optimal. Hal ini telihat dari Gambar 6 yaitu suhu air yang keluar dari pipa absorber dapat mencapai 61 ºC. Bila menggunakan pipa tembaga yang lebih besar, tentu penyerapan energi panas lebih maksimal mengingat potensi panas pada kotak kolektor cukup besar seperti diperlihatkan pada Gambar 7. 7 6 5 Suhu ( o C) 4 3 2 1 Waktu (Jam) Suhu air dari pipa absorber tanggal 6 Juli 212 Suhu air dari pipa absorber tanggal 7 Juli 212 Suhu air dari pipa absorber tanggal 8 Juli 212 Suhu air dari pipa absorber tanggal 9 Juli 212 Suhu air dalam tangki penyimpan tanggal 6 Juli 212 Suhu air dalam tangki penyimpan tanggal 7 Juli 212 Suhu air dalam tangki penyimpan tanggal 8 Juli 212 Suhu air dalam tangki penyimpan tanggal 9 Juli 212 Gambar 6. Grafik suhu air yang keluar dari pipa absorberdan suhu air dalam tangki penyimpan tanggal 6-9 Juli 212. 9 8 7 6 Suhu (ºC) 5 4 3 2 1 Waktu (Jam) Suhu dalam kotak kolektor tanggal 6 Juli 212 Suhu dalam kotak kolektor tanggal 7 Juli 212 Suhu dalam kotak kolektor tanggal 8 Juli 212 Suhu dalam kotak kolektor tanggal 9 Juli 212 Suhu dalam kotak kolektor tanggal 1 Juli 212 Suhu dalam kotak kolektor tanggal 11 Juli 212 Suhu dalam kotak kolektor tanggal 12 Juli 212 Suhu dalam kotak kolektor tanggal 13 Juli 212 Gambar 7. Suhu udara dalam kotak kolektor tanggal 6 13 Juli 212 11

Rancang Bangun Alat Pengumpul Panas... (Mulia R, Budianto Lanya, dan Tamrin) 3.3. Efisiensi Pada grafik efisiensi dan intensitas cahaya rata-rata harian tanggal 6-13 Juli 212 (Gambar 8) terlihat bahwa walaupun perbedaan intensitas cahaya cukup besar seperti pada tanggal 12 (335 W/m 2 ) dan 13 (818 W/m 2 ) namun efisiensi pada tanggal tersebut tidak berbeda jauh yaitu sebesar 1,5 % dan 11 %. Hal ini menunjukan bahwa jika intensitas cahaya besar maka energi yang terbuang juga besar dan sebaliknya jika intensitas cahaya kecil maka energi yang terbuang juga kecil. Hal ini bisa disebabkan oleh kecepatan angin yang tinggi dan celah/lubang yang terdapat pada sisi-sisi kolektor. Dari tanggal 6-13 Juli didapat bahwa ketika intensitas cahaya rata-rata harian lebih besar dari 8 W/m 2, maka efisiensi berkisar antara 1,7 % hingga 11 %, seperti pada tanggal 8, 1, dan 13 Juli. Sedangkan bila intensitas cahaya rata rata harian antara 65-759 W/m 2, maka efisiensi berkisar antara 11,1 % - 11,9 % seperti pada tanggal 6, 9, dan 11 Juli. Efisiensi (%) 14 12 1 8 6 4 2 6 7 8 9 1 11 12 13 Tanggal efisiensi Intensitas cahaya Gambar 8. Grafik efisiensi dan intensitas cahaya rata-rata harian pada tanggal 6-13 Juli 212. 9 8 7 6 5 4 3 2 1 Intensitas cahaya rata-rata harian (Watt/m 2 ) 12

Jurnal Teknik Pertanian Lampung Vol. 2, No. 2: 95-14 IV. KESIMPULAN DAN SARAN 4.1. Kesimpulan 1. Suhu tertinggi rata-rata tangki penyimpan adalah 44,7 ºC sedangkan suhu rata-rata terendah adalah 35,3 ºC. 2. Efisiensi tertinggi didapat sebesar 11,9 % dengan intensitas rata-rata yaitu 757 W/m 2 terjadi pada 11 Juli 212, sedangkan efisiensi terendah sebesar 9,4 % dengan intensitas cahaya rata-rata 479 W/m 2 terjadi pada 7 Juli 212. 3. Energi tertinggi yang terkumpul sebesar 1147,238 kj dengan intensitas cahaya rata-rata harian 757 W/m 2 terjadi pada 11 Juli 212, Energi terendah yang terkumpul sebesar 446,334 kj dengan intensitas cahaya rata-rata harian 335 W/m 2 terjadi pada 12 Juli 212. 4.2. Saran Adapun saran untuk penelitian lebih lanjut guna memperbaiki kinerja alat adalah sebagai berikut: 1. Menggunakan diameter pipa tembaga yang lebih besar untuk memperluas daya serap. 2. Pengujian alat dengan membandingkan sistem termosifon dengan menggunakan pompa 13

Rancang Bangun Alat Pengumpul Panas... (Mulia R, Budianto Lanya, dan Tamrin) DAFTAR PUSTAKA Burhanuddin, A. 25. Karakteristik Kolektor Surya Plat Datar Dengan Variasi Jarak Penutup Dan Sudut Kemiringan. Jurusan Fisika FMIPA UNS. Semarang. Burhan, M., Wijaya, S. Anis, dan Karnowo. 212. Pemanfaatan Kolektor Surya Pemanas Air dengan Menggunakan Seng Bekas Sebagai Absorber untuk Mereduksi Pemakaian Bahan Bakar Minyak Rumah Tangga. http://journal.unnes.ac.id/index.php /sainteknol/article/view/323/39. Diakses tanggal 24 Mei 212. Kementrian ESDM. 211. Energi Untuk Pembangunan Berkelanjutan. http://www.esdm.go.id/berita/artik el/56-artikel/5211-energi-untuk- pembangunan-berkelanjutan- 12.html. Diakses tanggal 15 Maret 212. Sudia, B. 21. Unjuk Kerja Kolektor Surya Plat Datar Menggunakan Konsentrator Dua Cermin Datar. Jurnal Ilmiah Dinamika Teknik Mesin FT UNHALU. Vol. 1, No. 2, Mei 21. Tipler, P. A. 1998. Fisika, Untuk Sains dan Teknik, Edisi Ketiga, Jilid 1. Erlangga. Jakarta. Tirtoatmodjo, R. 1999. Unjuk Kerja Pemanas Air Jenis Kolektor Surya Plat Datar dengan Satu dan Dua Kaca Penutup. Jurnal Teknik Mesin Fakultas Industri, Universitas Kristen Petra Vol. 1, No. 2, Oktober 1999 : 115 121. Wirawan, M, dan R. Sutanto. 211. Analisa Laju Perpindahan Panas Pada Kolektor Surya Tipe Pelat Datar Dengan Absorber Pasir. Jurnal Ilmiah FT Universitas Mataram Volume 1. Nomor 2 Edisi Juli 211. ISSN : 288-88X. 14