ANALISIS TEKNIK PEAK TO AVERAGE POWER REDUCTION

dokumen-dokumen yang mirip
BAB IV HASIL SIMULASI DAN ANALISIS

BAB I PENDAHULUAN. 1.1 Latar Belakang. Bab II Landasan teori

BAB I PENDAHULUAN PENDAHULUAN

BAB I PENDAHULUAN. Gambar 1.1. Konsep global information village [2]

Simulasi MIMO-OFDM Pada Sistem Wireless LAN. Warta Qudri /

1

ANALISIS UNJUK KERJA TEKNIK MIMO STBC PADA SISTEM ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang

PERHITUNGAN BIT ERROR RATE PADA SISTEM MC-CDMA MENGGUNAKAN GABUNGAN METODE MONTE CARLO DAN MOMENT GENERATING FUNCTION.

BAB III PEMODELAN MIMO OFDM DENGAN AMC

PENGUJIAN TEKNIK FAST CHANNEL SHORTENING PADA MULTICARRIER MODULATION DENGAN METODA POLYNOMIAL WEIGHTING FUNCTIONS ABSTRAK

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

Analisa Kinerja Orthogonal Frequency Division Multiplexing (OFDM) Berbasis Perangkat Lunak

UNIVERSITAS INDONESIA REDUKSI PAPR MENGGUNAKAN HUFFMAN CODING YANG DIKOMBINASIKAN DENGAN CLIPPING DAN FILTERING UNTUK TRANSMITTER OFDM TESIS

BAB IV METODE-METODE UNTUK MENURUNKAN NILAI PAPR

SIMULASI PERBANDINGAN KINERJA MODULASI M-PSK DAN M-QAM TERHADAP LAJU KESALAHAN DATA PADA SISTEM ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM)

Kinerja Teknik Reduksi PAPR Hibrid Partial Transmit Squence (PTS) dan Clipping Filtering Pada Sinyal OFDM Ranah Waktu

ANALISIS REDUKSI PAPR MENGGUNAKAN ALGORITMA DISTORTION REDUCTION

BAB IV. PAPR pada Discrete Fourier Transform Spread-Orthogonal. Division Multiplexing

Analisis Penanggulangan Inter Carrier Interference di OFDM Menggunakan Zero Forcing Equalizer

Reduksi Peak to Average Power Ratio (PAPR) Menggunakan Teknik Clipping

BAB I PENDAHULUAN. Tuntutan kebutuhan manusia untuk dapat berkomunikasi di segala tempat,

BAB II DASAR TEORI. Bab 2 Dasar Teori Teknologi Radio Over Fiber

BAB III METODOLOGI PENELITIAN

BAB I PENDAHULUAN 1.1. Latar Balakang 1.2. Perumusan Masalah

Estimasi Doppler Spread pada Sistem Orthogonal Frequency Division Multiplexing (OFDM) dengan Metode Phase Difference

Presentasi Tugas Akhir

BAB I PENDAHULUAN. 1.1 Latar Belakang

Jurnal JARTEL (ISSN (print): ISSN (online): ) Vol: 3, Nomor: 2, November 2016

BAB IV HASIL DAN ANALISIS

KINERJA SISTEM OFDM MELALUI KANAL HIGH ALTITUDE PLATFORM STATION (HAPS) LAPORAN TUGAS AKHIR. Oleh: YUDY PUTRA AGUNG NIM :

BAB I PENDAHULUAN. Tuntutan kebutuhan manusia untuk dapat berkomunikasi di segala tempat,

PEMBUATAN MODEL HYBRID 2 TEKNIK REDUKSI PEAK-TO-AVERAGE POWER RATIO PARTIAL TRANSMIT SEQUENCE DAN CLIPPING FILTERING PADA SISTEM MIMO-OFDM

Tekno Efisiensi Jurnal Ilmiah KORPRI Kopertis Wilayah IV, Vol 1, No. 1, Mei 2016

ANALISIS PENERAPAN MODEL PROPAGASI ECC 33 PADA JARINGAN MOBILE WORLDWIDE INTEROPERABILITY FOR MICROWAVE ACCESS (WIMAX)

Implementasi dan Evaluasi Kinerja Multi Input Single Output Orthogonal Frequency Division Multiplexing (MISO OFDM) Menggunakan WARP

Analisis Penerapan Teknik AMC dan AMS untuk Peningkatan Kapasitas Kanal Sistem MIMO-SOFDMA

EVALUASI KINERJA TEKNIK ADAPTIVE MODULATION AND CODING (AMC) PADA MOBILE WiMAX MIMO-OFDM

ANALISIS KINERJA TEKNIK REDUKSI PAPR DENGAN METODA TONE RESERVATION

BAB II LANDASAN TEORI

Perancangan dan Implementasi Prosesor FFT 256 Titik-OFDM Baseband 1 Berbasis Pengkodean VHDL pada FPGA

Visualisasi dan Analisa Kinerja Kode Konvolusi Pada Sistem MC-CDMA Dengan Modulasi QAM Berbasis Perangkat Lunak

Analisis Throughput Pada Sistem MIMO dan SISO ABSTRAK

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

ABSTRAK. 2. PERENCANAAN SISTEM DAN TEORI PENUNJANG Perencanaan sistem secara sederhana dalam tugas akhir ini dibuat berdasarkan blok diagram berikut:

ANALISIS UNJUK KERJA CODED OFDM MENGGUNAKAN KODE CONVOLUTIONAL PADA KANAL AWGN DAN RAYLEIGH FADING

ANALISIS KINERJA SPHERE DECODING PADA SISTEM MULTIPLE INPUT MULTIPLE OUTPUT

ANALISIS UNJUK KERJA EKUALIZER KANAL ADAPTIF DENGAN MENGGUNAKAN ALGORITMA SATO

KINERJA SISTEM MULTIUSER DETECTION SUCCESSIVE INTERFERENCE CANCELLATION MULTICARRIER CDMA DENGAN MODULASI M-QAM

PERBANDINGAN KINERJA ANTARA OFDM DAN OFCDM PADA TEKNOLOGI WiMAX

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB II TRANSMISI OFDM DAN PAPR

Fitur Utama OFDM dan OFDMA. bagi Jaringan Komunikasi Broadband

SIMULASI PERBANDINGAN Wi-MAX DAN 3G-WCDMA DALAM MENGHADAPI MULTIPATH FADING

BAB I PENDAHULUAN 1. 1 LATAR BELAKANG

Analisa Kinerja Alamouti-STBC pada MC CDMA dengan Modulasi QPSK Berbasis Perangkat Lunak

EVALUASI KINERJA TEKNIK ESTIMASI KANAL BERDASARKAN POLA PENGATURAN SIMBOL PILOT PADA SISTEM OFDM

BAB I PENDAHULUAN. Seluruh mata rantai broadcasting saat ini mulai dari proses produksi

KINERJA TEKNIK SINKRONISASI FREKUENSI PADA SISTEM ALAMOUTI-OFDM

STUDI BIT ERROR RATE UNTUK SISTEM MC-CDMA PADA KANAL FADING NAKAGAMI-m MENGGUNAKAN EGC

Analisa Sistem DVB-T2 di Lingkungan Hujan Tropis

BAB III METODOLOGI PENELITIAN

STUDI OFDM PADA KOMUNIKASI DIGITAL PITA LEBAR

Analisis Kinerja SISO dan MIMO pada Mobile WiMAX e

Analisis Kinerja Jenis Modulasi pada Sistem SC-FDMA

BAB IV HASIL SIMULASI DAN ANALISIS

ISSN : e-proceeding of Engineering : Vol.3, No.2 Agustus 2016 Page 1654

TUGAS AKHIR UNJUK KERJA MIMO-OFDM DENGAN ADAPTIVE MODULATION AND CODING (AMC) PADA SISTEM KOMUNIKASI NIRKABEL DIAM DAN BERGERAK

Simulasi Perbandingan WiMAX dan 3G-WCDMA Dalam Menghadapi Multipath Fading

Analisa Power Spectral Density pada Sistem Orthogonal Wavelet Division Multiplexing Berbasis Wavelet Packet

BAB I PENDAHULUAN 1.1 Latar Belakang

REDUKSI EFEK INTERFERENSI COCHANNEL PADA DOWNLINK MIMO-OFDM UNTUK SISTEM MOBILE WIMAX

BAB I PENDAHULUAN. Gambar 1.1 Penggunaan Spektrum Frekuensi [1]

OFDM : Orthogonal Frequency Division Multiplexing

SIMULASI ESTIMASI FREKUENSI UNTUK QUADRATURE AMPLITUDE MODULATION MENGGUNAKAN DUA SAMPEL TERDEKAT

SIMULASI TEKNIK MODULASI OFDM QPSK DENGAN MENGGUNAKAN MATLAB

BAB III DISCRETE FOURIER TRANSFORM SPREAD OFDM

Gambar 1.1 Pertumbuhan global pelanggan mobile dan wireline [1].

TUGAS AKHIR PEMODELAN DAN SIMULASI ORTHOGONAL FREQUENCY AND CODE DIVISION MULTIPLEXING (OFCDM) PADA SISTEM KOMUNIKASI WIRELESS OLEH

ANALISIS KINERJA SISTEM MIMO-OFDM PADA KANAL RAYLEIGH DAN AWGN DENGAN MODULASI QPSK

KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO

Analisis Unjuk Kerja Convolutional Code pada Sistem MIMO MC-DSSS Melalui Kanal Rayleigh Fading

Kinerja Teknik Transmisi OFDM melalui Kanal HAPS (High Altitude Platform Station)

PENGARUH FREQUENCY SELECTIVITY PADA SINGLE CARRIER FREQUENCY DIVISION MULTIPLE ACCESS (SC-FDMA) Endah Budi Purnomowati, Rudy Yuwono, Muthia Rahma 1

DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2011

BAB II ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) (multicarrier) yang saling tegak lurus (orthogonal). Pada prinsipnya, teknik OFDM

Reduksi Peak-To-Average Power Ratio Pada Sistem STBC MIMO-OFDM dengan Metode Selected Mapping dan Partial Transmit Sequence

IEEE g Sarah Setya Andini, TE Teguh Budi Rahardjo TE Eko Nugraha TE Jurusan Teknik Elektro FT UGM, Yogyakarta

ANALISIS KINERJA SISTEM KOOPERATIF BERBASIS MC-CDMA PADA KANAL RAYLEIGH MOBILE DENGAN DELAY DAN DOPPLER SPREAD

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print)

Bab I Pendahuluan 1.1. Latar Belakang Masalah

PENGARUH FREQUENCY SELECTIVITY PADA ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM)

KINERJA AKSES JAMAK OFDM-CDMA

BAB I PENDAHULUAN. 1.2 Tujuan

BAB I PENDAHULUAN. komunikasi nirkabel mulai dari generasi 1 yaitu AMPS (Advance Mobile Phone

EVALUASI KINERJA OFDMA DENGAN MODULASI ADAPTIF PADA KANAL DOWNLINK

Analisa Kinerja Sistem MIMO-OFDM Pada Estimasi Kanal LS Untuk Modulasi m-qam

Prosiding Seminar Nasional Teknologi Elektro Terapan 2017 Vol.01 No.01, ISSN:

Analisis Estimasi Kanal Dengan Menggunakan Metode Invers Matrik Pada Sistem MIMO-OFDM

Transkripsi:

ANALISIS TEKNIK PEAK TO AVERAGE POWER REDUCTION PADA OFDM MENGGUNAKAN ACTIVE CONSTELLATION EXTENSION UNTUK SISTEM WiMAX Agus Suhendar 1, Heroe Wijanto, Budi Prasetya 3 1,,3 Jurusan Teknik Elektro IT Telkom, Bandung 1 syeras@gmail.com, hrw@stttelkom.ac.id, 3 bpy@stttelkom.ac.id Abstraksi Worldwide Interoperability for Microwave Access (WiMAX) adalah teknologi tanpa kabel yang melayani koneksi broadband dengan throughput tinggi melalui jarak jauh berdasarkan standar IEEE 80.16. Sistem ini menggunakan teknologi orthogonal frequency division multiplexing (OFDM) yang mempunyai efisiensi spektrum tinggi dan ketahanan terhadap propagasi multipath. Sinyal keluaran OFDM mempunyai perbandingan daya puncak terhadap daya rata-rata (PAPR) yang tinggi, sehingga menyebabkan efisiensi penguat daya besar (HPA) berkurang, kerusakan in-band, dan radiasi out-band ketika sinyal melewati HPA. Metoda penurunan PAPR dapat merubah atau memperkenalkan konstelasi baru untuk mengurangi puncak sinyal yang tinggi. Simbol dapat dipetakan pada himpunan titik-titik konstelasi yang tepat, sehingga mengurangi PAPR. Perkembangan dari metode tersebut adalah active constellation extension () yang memotong sinyal domain waktu diatas atau dekat dengan tingkat saturasi HPA dan memetakan simbol domain frekuensi dengan memperluas titi-titik konstelasi terluar pada kanal-kanal aktif dengan menitikberatkan penjagaan batas. Akibat dari adalah bertambahnya nilai rata-rata daya sinyal dan berkurangnya puncak daya sinyal, sehingga mampu menurunkan PAPR. diterapkan pada pengirim dan tidak membutuhkan adaptasi pada sisi penerima serta tidak mengirimkan side information yang tidak memenuhi standar. Pada tugas akhir ini dianalisa unjuk kerja metode pada OFDM untuk jenis modulasi dan subcarrier yang berbeda dan standar 56 fixed WiMAX 80.16d untuk jenis modulasi yang berbeda pada penurunan PAPR. Simulasi menurunkan PAPR antara.9450-6.3590 db, meningkatkan amplituda rata-rata antara 0.975-1.080 db, menurunkan amplituda puncak antara 1.5579 -.765 db, menurunkan Input Back Off antara 1.69-1.847 db, menurunkan Output Back Off antara 1.6956-1.8481 db, serta menaikan SNR antara 0.05 -. pada target BER 10-4. Kata kunci: WiMAX, OFDM, PAPR, HPA, Active Constellation Extension (). Abstract Worldwide Interoperability for Microwave Access (WiMAX) is wireless broadband technology thorough far distance with high throughput base on IEEE 80.16 standard. This system using orthogonal frequency division multiplexing (OFDM) technology with high spectrum efficiency and multipath propagation resistance. OFDM signal have high peak to average power ratio PAPR that causing HPA efficiency decrease, inband distortion, and out-band radiation when the signal through HPA. PAPR reduction technique tries to alter or introduce new constellations to combat large signal peaks. The symbols can be mapped to a set of constellation points, for reducing PAPR. Development of the method is Active Constellation Extension () that cutting peak of time domain signal which is up or close to HPA saturation level, and extend outer constellation points in active channel with emphasize on border surveillance. Impacts of are signal average power increase and signal peak power decrease, so PAPR can be reduced. applied on transmitter side, does not need any adaptation on receiver side and does not sending side information which is not comply with standard. This final task analyzes technique performance on OFDM for different modulation and subcarrier and performance on 56 fixed WiMAX 80.16.d for different modulation on PAPR reduction. The simulation reducing PAPR between.9450-6.3590 db, increasing mean amplitude between 0.975-1.080 db, reducing peak amplitude between 1.5579 -.765 db, reducing Input Back Off between 1.69-1.847 db, Output Back Off between 1.6956-1.8481 db, and increasing SNR between 0.05 -. to achieve BER target 10-4. Keywords: WiMAX, OFDM, PAPR, HPA, Active Constellation Extension (). 1. Pendahuluan Worldwide Interoperability for Microwave Access (WiMAX) adalah teknologi tanpa kabel yang melayani koneksi broadband dengan throughput tinggi melalui jarak jauh berdasarkan standar IEEE 80.16[8]. Berdasarkan efisiensi spektrum yang tinggi dan ketahanan propagasi multipath, Orthogonal Frequency Division Multiplexing (OFDM) digunakan pada sistem WiMAX[9]. Kekurangan dari OFDM adanya perbandingan daya puncak terhadap daya rata-rata (PAPR) yang tinggi berasal dari superposisi banyak subcarrier dengan karakteristik phasa tertentu pada OFDM. Sinyal OFDM dengan PAPR yang tinggi akan mengalami proses clipping dan/atau soft thresholding di penguat daya besar (HPA) sehingga output HPA tidak linear[1]. HPA akan merusak semua bagian sinyal yang dekat atau melebihi daya saturasi dari HPA tersebut. Perusakan ini dapat menyebabkan inter carrier interference (ICI), dan radiasi out-of-band (OoB). Ketika ICI mengganggu sinyal yang ditransmisikan dan menurunkan BER, radiasi OoB menganggu sinyal pada pita frekuensi terdekat. Selain itu, Pemakain daya oleh HPA sangat tergantung pada daya besar atau puncak daripada daya rata-rata, sehingga penanganan PAPR ini membuat efisiensi daya rendah[1]. Dengan kata lain sinyal yang masuk ke HPA haruslah tidak ada PAPR i

yang tinggi, berada dalam kawasan linear HPA, dan berada di bawah daya jenuh HPA. Metoda pengurangan PAPR dapat merubah atau memperkenalkan konstelasi baru untuk mengurangi puncak sinyal yang tinggi. Daripada menempatkan tiap simbol pada titik konstelasi tertentu, simbol tersebut dapat dipetakan pada himpunan titik-titik konstelasi yang tepat untuk semua simbol, sehingga mengurangi puncak sinyal[1]. Perkembangan dari metode trersebut adalah active constellation extension () yang memperluas titi-titik konstelasi terluar pada kanalkanal aktif, dalam menitikberatkan penjagaan batas, untuk memperkecil besarnya puncak. Pada tugas akhir ini dianalisa unjuk kerja metode pada sistem IEEE 80.16d untuk kasus jenis modulasi dan jumlah subcarrier yang berbeda.. Dasar Teori.1 WiMAX WiMAX (Worldwide Interoperability for Microwave Access), standar air interface IEEE 80.16 Wireless Metropolitan Area Network (WMAN), adalah teknologi yang dikembangkan untuk layanan Broadband Wireless Access. WiMAX menggunakan teknologi OFDM (orthogonal frequency division multiplexing) untuk mencapai coverage area yang luas dengan kecepatan tinggi. Orthogonal Frequency Division Multiplexing (OFDM) Pada OFDM, bandwidth sistem dibagi menjadi beberapa subcarrier yang saling orthogonal yang dimultiplex menggunakan frequency division multiplexing (FDM) sehingga disebut teknik transmisi multicarrier[3]. OFDM adalah sebuah skema pentransmisian paralel. Data serial rate tinggi dibagi menjadi data paralel rate rendah. Setiap data paralel dimodulasi pada single carrier yang terpisah, dengan lebar pita lebih sempit dibandingkan dengan lebar pita coherence kanal maka tiap subcarrier akan mengalami flat fading sehingga equalisasi lebih sederhana[6]. Pada OFDM, perioda setiap simbol lebih panjang dari delay spread kanal radio timedispersive. Sehingga pengaruh intersymbol interference (ISI) dapat berkurang. Dengan memilih himpunan frekuensi pembawa yang orthogonal, efisiensi spektral menjadi tinggi karena spektrum tiap subcarrier dibuat overlapping satu sama lain sedangkan mutual influence diantara subcarrier dapat dihindari[6]..3 Peak-to-Average Power Ratio (PAPR) Simbol OFDM dengan N subcarrier dinyatakan dengan: b i n = 1 1 N N m= 0 a i m e jπmn/ N (.1) Untuk N yang besar, penjumlahan variabel acak distribusi identik bebas i m menjadi berat, sehingga sample domain waktu b i n mempunyai ditribusi seperti Gaussian dengan mean nol. Akibatnya, dengan persentase kecil, sinyal domain waktu b i n akan rentan mempunyai magnitude tinggi pada ekor distribusi Gaussian. Sample dengan magnitude besar ini menyebabkan permasalahan Peak to Average Power Ratio (PAPR) pada OFDM[]. Gambar.1 Distribusi magnitude sinyal OFDM[1][][6] PAPR dinyatakan dengan: max bn 0 n N 1 (.) PAPR ( b) = E{ b }N Dimana. adalah euclidean norm suatu vektor. Ketika N sinyal dijumlahkan dengan phasa yang sama, akan menghasilkan puncak daya N kali nilai rata-rata[6], maka jumlah subcarrier yang akan mempengaruhi nilai dari puncak daya dan kemungkinannya. Selain itu, modulasi yang berperan dalam penentuan suatu phasa dari informasi tertentu, sehingga jenis modulasi yang digunakan juga akan mempengaruhi nilai dari puncak daya dan kemungkinannya. PAPR menyebabkan efisiensi HPA berkurang[], sistem membutuhkan HPA dengan linieritas tinggi[1], coverage area berkurang, distorsi sinyal, inter-symbol interference, dll..4 High Power Amplifier Hpa berperan dalam meningkatkan daya sinyal sebelum dikirim sehingga diharapkan level daya terima tetap diatas threshold. Model yang digunakan dalam Tugas akhir ini adalah Rapp s solid state power amplifier model (SSPA) dengan karakteristik input-output sebagai berikut[]: Vin V = (.3) out p ( ( ) ) 1 1+ V p in Vsat P disebut knee-factor, parameter yang menentukan kelinearan daerah penguatan, sedangkan Vsat adalah tegangan yang akan mengalami saturasi. Sinyal OFDM dengan PAPR tinggi akan menyebabkan amplifier bekerja pada kondisi saturasi, efisiensi yang rendah, dan terjadi distorsi. Akibatnya sistem akan terbebani konsumsi daya yang tinggi, terjadinya in band distortion, dan out of band radiation.

3. Hitung a ~ ~ = FFT ( b ) (.5) 4. Gunakan batasannya, yaitu kembalikan nilai awal untuk pilot, guard band atau null carrier. Proyeksikan titik-titik konstelasi pada daerah dari batasan yang diperluas seperti pada gambar berikut: Gambar. karakteristik SSPA p=.5 Active Constellation Extension[1][] Salah satu teknik untuk menurunkan PAPR adalah dengan konstelasi nonbijective yang mencoba mengubah atau memperkenalkan suatu konstelasi baru untuk memperkecil besarnya puncak sinyal, dan Active Constellation Extension menggunakan konstelasi nonbijective ini dengan mengkodekan simbol data secara tepat. Setiap simbol tidak ditentukan pada titik konstelasi tertentu, tetapi dipetakan secara tepat pada himpunan titik-titik konstelasi baru yang telah dipilih dan masih diperbolehkan. Himpunan yang dipilih merupakan modifikasi dari konstelasi asal, untuk QPSK berada pada bidang perempat terluar dari titik konstelasi asal tanpa menimbulkan penurunan unjuk kerja. Hal tersebut diilustrasikan pada gambar di bawah. Dalam OFDM, akibat perpindahan ini adalah penambahan sinyal cosinusoidal dan atau sinusoidal tambahan pada frekuensi subkanal tertentu. Jika diatur, maka kombinasi ini dapat membatalkan puncak domain waktu. Sebelum pemetaan sinyal, menerapkan algoritma pemotongan sinyal yaitu membatasi amplituda sinyal domain waktu pada batas tertentu. Pada TA ini menggunakan pendekatan yaitu Projection Onto Convex Set (-POCS)..5.1 Projection Onto Convex Set (-POCS) [1][] Semua kemungkinan akan menjadi: 1. Himpunan berisi semua vector sehingga ~ untuk A positif. Himpunan, sebuah dimensi-n subspace dari berisi vektor y dengan FFT Y memenuhi data yang bergantung batasan Adapun algoritma -POCS adalah 1. Diberikan blok masukan terdiri dari 56 sample (data, guard, dan pilot), Hitung dengan IFFT, keluarannya b.. Semua puncak yang berhubungan dengan > diamana A adalah Threshold tertentu, dipotong magnitudanya untuk memenuhi: ~ bn if bn A bn = { jθ Ae n lainnya jθn bn = bn e n=1,..., N subcarrier (.4) Gambar.3 POCS QPSK Gambar.4 POCS 16QAM Gambar.5 POCS 64QAM 3. Model Sistem 3.1 Model OFDM implementasi subcarrier 64, 18, 56, 51, 104, dan 048 Gambar 3.1 Sistem OFDM dengan 3

3. Model WiMAX 80.16d dengan pada sisi penerima sinyal modulasi 64QAM lebih tinggi dari pada sinyal modulasi QPSK dan 16QAM. Dari definisi PAPR maka akan cenderung memberikan hasil yang sama. Sehingga jenis modulasi memberikan pengaruh yang sedikit terhadap perbedaan PAPR. 4. Penurunan PAPR Menggunakan POCS Sinyal OFDM Dalam subbab ini akan ditunjukan data hasil simulasi untuk setiap jenis modulasi yaitu QPSK dan 16 QAM, berupa data PAPR tertinggi sebelum dan sesudah dengan nilai kemungkinannya, nilai penurunan PAPR, pengaruh terhadap rata-rata amplituda sinyal, pengaruh terhadap puncak amplituda sinyal, pengaruh terhadap input back off IBO sinyal, serta pengaruhnya terhadap output back off OBO sinyal. Gambar 3. Sistem WiMAX implementasi 4..1 Penurunan PAPR Untuk Modulasi QPSK 4. Analisis Hasil Simulasi 4.1 Faktor-faktor penyebab peningkatan PAPR 4.4.1 Pengaruh Subcarrier terhadap PAPR Gambar 4.1 Pengaruh jumlah subcarrier terhadap PAPR Berdasarkan gambar.9 nilai PAPR pada subcarrier 64 lebih kecil dari pada PAPR pada subcarrier 048. Sehingga semakin besar nilai subcarrier yang digunakan maka semakin besar nilai PAPR simbol. 4.4. Pengaruh Jenis Modulasi Terhadap PAPR Gambar 4. Pengaruh jenis modulasi pada PAPR Berdasarkan gambar 4., PAPR dari modulasi QPSK, 16QAM, dan 64QAM cenderung sama. Hal ini dapat dijelaskan melalui data puncak amplituda dan rata-rata amplituda sinyal OFDM. Sinyal modulasi 64QAM memiliki rata-rata amplituda sinyal yang lebih besar daripada sinyal modulasi QPSK dan 16QAM. Selain itu puncak amplituda Gambar 4.3 PAPR sebelum dan sesudah QPSK Tabel 4.1 Rata-rata amplituda sinyal OFDM QPSK Rata - Rata (db) Kenaikan 1 56 0.344 1.4039 1.0597 048 0.3544 1.4346 1.080 POCS meningkatkan rata-rata amplituda sinyal OFDM. Pada subcarrier besar, peningkatan rata-rata amplituda semakin besar, karena POCS memperluas konstelasi sinyal pada space signal domain yang dapat meningkatkan rata-rata amplituda kesuluruhan simbol. Semakin besar subcarrier, maka semakin banyak sinyal yang mengalami perlusan dan rata-rata amplituda semakin besar. Tabel 4. Puncak amplituda sinyal OFDM QPSK Puncak (db) Penurunan 1 56 6.1507 3.965.188 048 6.4988 3.7363.765 POCS menurunkan puncak amplituda sinyal OFDM, dengan memotong sinyal yang melewati clipping level tertentu. Subcarrier yang besar memiliki kemungkinan yang tinggi akan banyaknya simbol dengan phasa sama, sehingga puncak amplituda lebih besar. Maka pemotongan level amplituda menjadi lebih besar. Tabel 4.3 Output back off sinyal OFDM QPSK Jumlah OBO (db) Penurunan No. Subcarrier 1 56 9.008 7.304 1.7904 048 9.0117 7.1636 1.8481 4

Output back off merupakan perbandingan daya saturasi HPA dengan daya rata-rata sinyal HPA[]. Amplituda saturasi yang digunakan adalah 5 db diatas amplituda rata-rata sinyal HPA. Dengan POCS, rata-rata amplituda semakin besar, maka level saturasi akan semakin besar. Tetapi daya ratarata sinyal HPA juga semakin besar, sehingga nilai penurunan back off cenderung memiliki perbedaan tipis untuk setiap subcarrier. Penurunan back off ini cenderung lebih besar untuk subcarrier yang besar hal ini berkaitan dengan peningkatan rata-rata amplituda yang lebih besar dan perbaikan PAPR yang lebih baik untuk subcarrier yang lebih besar Penurunan back off diperlukan untuk efisiensi penggunaan daya penguat dan meningkatkan coverage sinyal. Tabel 4.4 Input back off sinyal OFDM QPSK IBO (db) Penurunan 1 56 8.9603 7.1711 1.789 048 8.949 7.100 1.847 Input Back off merupakan perbandingan daya saturasi HPA dengan daya rata-rata sinyal input HPA. Semakin besar subcarrier semakin besar penurunan input back off tetapi dengan perbedaan yang kecil, dengan analisa seperti pada OBO Gambar 4.4 Konsentrasi sinyal QPSK POCS mengurangi titik kerja daya maksimum HPA dan mengurangi nonlinearities effect. Gambar 4.5 Spektrum sinyal QPSK 048 subcarrier Terjadi kenaikan atau pelebaran spektrum yang dapat menyebabkan interferensi dan kenaikan BER 4.. Penurunan PAPR Untuk Modulasi 16QAM Gambar 4.6 PAPR sebelum dan sesudah 16QAM menurunkan PAPR lebih baik pada subcarrier yang lebih besar. Penurunan PAPR pada QPSK lebih baik daripada 16QAM. Tabel 4.5 Rata-rata amplituda OFDM 16QAM Jumlah Rata - Rata (db) Kenaikan No. Subcarrier 1 56 3.8405 4.7395 0.8990 048 3.8488 4.7917 0.949 16 QAM memiliki rata-rata amplituda lebih, karena mapping simbol. QPSK mempunyai empat titik konstelasi 1+j, 1-j, -1+j, dan -1-j, dan empat extension point. Lain halnya dengan 16 QAM yang memiliki 16 titik 3+3i, 3+i, 3-3i, 3-i, 1+3i, 1+i, 1-3i, 1-i, -1+3i, -1+i, -1-3i, -1-i, -3+3i, -3+i, -3-3i, dan -3- i, dan 1 extension point, maka 16 QAM memiliki amplituda dan rata-rata lebih besar. Tabel 4.6 Puncak amplituda OFDM 16QAM Puncak (db) Penurunan 1 56 9.395 8.0435 1.860 048 10.08 7.7639.589 16QAM memiliki puncak lebih besar, tetapi penurunan puncak sinyal lebih kecil, karena clipping level yang lebih kecil untuk minimalisasi error. Tabel 4.7 output back off OFDM 16QAM OBO (db) Penurunan 1 56 9.0133 7.3837 1.696 048 9.0139 7.3087 1.705 Penurunan OBO pada 16QAM tidak lebih baik dibandingkan QPSK, karena kenaikan rata-rata dan perbaikan PAPR lebih kecil. Tabel 4.8 input back off OFDM 16QAM IBO (db) Penurunan 1 56 8.9496 7.795 1.6701 048 8.9517 7.06 1.7491 Penurunan IBO pada 16QAM tidak lebih baik dibandingkan QPSK, karena kenaikan rata-rata dan perbaikan PAPR lebih kecil. 5

Gambar 4.7 Konsentrasi Sinyal 16QAM POCS mengurangi titik kerja daya maksimum HPA dan mengurangi nonlinearities effect. QPSK memiliki hasil lebih baik karena perbaikan PAPR yang lebih baik. yang relatif lebih besar dengan amplituda yang lebih besar pada 64QAM. Tabel 4.11 output back off OFDM 64QAM OBO (db) Penurunan 1 56 9.0133 7.3837 1.696 048 9.0139 7.3087 1.705 Terjadi penurunan obo. Tidak lebih baik dari QPSK dan 16QAM, karena kenaikan rata-rata, dan penurunan puncak lebih kecil. Tabel 4.1 input back off OFDM 64QAM IBO (db) Penurunan 1 56 8.9496 7.795 1.6701 048 8.9517 7.06 1.7491 Terjadi penurunan ibo. Tidak lebih baik dari QPSK dan 16QAM, karena kenaikan rata-rata, dan penurunan puncak lebih kecil. Gambar 4.8 Spektrum sinyal 16QAM 048 subcarrier Pelebaran spektrum dapat menyebabkan interferensi dan peningkatan BER 4..3 Penurunan PAPR Untuk Modulasi 64QAM Gambar 4.10 konsentrasi sinyal 64QAM Terjadi pergeseran konsentrasi sinyal pada daerah yang lebih linier. Gambar 4.9 PAPR sebelum dan sesudah 64QAM menurunkan PAPR lebih baik pada subcarrier yang lebih besar. Penurunan pada 64QAM tidak lebih baik dari QPSK dan 16QAM. Tabel 4.9 Rata-rata amplituda OFDM 64QAM Rata - Rata (db) Kenaikan 1 56 3.8405 4.7395 0.8990 048 3.8488 4.7917 0.949 Terjadi peningkatan rata-rata, tetapi tidak lebih baik dari QPSK dan 16QAM karena proses perluasan yang relatif lebih sedikit daripada jumlah titik konstelasi. Tabel 4.10 Puncak amplituda OFDM 64QAM No Puncak (db) Penurunan Subcarrier 1 56 9.395 8.0435 1.860 048 10.08 7.7639.589 Terjadi penurunan puncak, tetapi tidak lebih baik dari QPSK dan 16QAM karena clipping level Gambar 4.11 Spektrum sinyal 64QAM 048 subcarrier Pelebaran spektrum dapat menyebabkan interferensi dan peningkatan BER 4.3 Penurunan PAPR Untuk Sistem 56 80.16d Gambar 4.1 PAPR sebelum dan sesudah fixed WiMAX system 6

menurunkan PAPR pada OFDM dan fixed WiMAX, dianalisa pada subbab 4.. Tabel 4.13 Rata-rata amplituda fixed WiMAX system No. Mapping Rata-rata (db) Kenaikan 1 QPSK 0.4015 1.4955 1.0940 16 QAM 3.8641 4.8070 0.949 3 64QAM 6.977 7.6794 0.7067 Terjadi kenaikan rata-rata pada tiap modulasi. QPSK memiliki kanaikan lebih besar. Tabel 4.14 Puncak amplituda fixed WiMAX system No. Mapping Puncak (db) Penurunan 1 QPSK 5.7 3.8754 1.8467 16 QAM 9.4439 8.143 1.3016 3 64QAM 1.539 11.4844 1.0548 Pnurunan puncak lebih besar terjadi pada modulasi QPSK. Penjelasan pada subbab 4. Tabel 4.15 output back off fixed WiMAX system No. Mapping OBO (db) Penurunan 1 QPSK 9.0179 7.398 1.7780 16 QAM 9.0110 7.418 1.598 3 64QAM 9.0167 7.7645 1.5 Penurunan OBO lebih besar pada QPSK. Penjelasan pada subbab 4.. Tabel 4.16 input back off fixed WiMAX system No. Mapping IBO (db) Penurunan 1 QPSK 8.9555 7.1831 1.774 16 QAM 8.9488 7.3167 1.631 3 64QAM 8.9567 7.6561 1.3006 Penurunan IBO lebih besar pada QPSK. Penjelasan pada subbab 4.. Gambar 4.17 Konsentrasi sinyal 16QAM fixed WiMAX system. Pergeseran konsentrasi sinyal tidak lebih baik dari QPSK, karena berkaitan penurunan back off. Gambar 4.18 Konsentrasi sinyal 64QAM fixed WiMAX system Pergeseran konsentrasi sinyal tidak lebih baik dari QPSK dan 16QAM, karena berkaitan penurunan back off. Gambar 4.16 Spektrum sinyal QPSK 56 fixed WiMAX Terjadi pelebaran spektrum setelah Gambar 4.13 Konsentrasi sinyal QPSK pada 56 fixed WiMAX Penggunaan knee factor=3 dapat memperbaiki titik kerja sinyal untuk lebih mendekati respon ideal yang linier. Hasil dianalisa pada subbab 4.. Gambar 4.17 Spektrum sinyal 16QAM 56 fixed WiMAX Terjadi pelebaran spektrum setelah yang lebih kecil dari QPSK. 7

Gambar 4.18 Spektrum sinyal 64QAM 56 fixed WiMAX Terjadi pelebaran spektrum setelah yang lebih kecil dari QPSK dan 16QAM, yang berkaitan dengan clipping level yang lebih besar. 4.4 Analisa Kinerja sistem 56 fixed WiMAX Pada target BER yang sama dibutuhkan SNR lebih besar. 5. Kesimpulan dan Saran 5.1 Kesimpulan 1. sangat efektif bekerja pada ukuran konstelasi sinyal yang kecil seperti pada QPSK jika dibandingkan dengan 16QAM.. memberikan perbaikan yang lebih besar pada jumlah subcarrier yang lebih besar. 3. mengurangi jumlah sinyal yang bekerja pada daerah tidak linier. 4. meningkatkan BER, akan tetapi target BER masih tercapai yaitu 10-4. 5. Saran 1. Untuk hasil optimal perlu dikaji penggunaan predistorsi pada HPA.. Untuk meningkatkan unjuk kerja perlu dikaji proses filtering setelah pemotongan sinyal. 3. Optimasi pada perluasan titik konstelasi sinyal. Gambar 4.19 Grafik SNR dan BER modulasi QPSK dan 16 QAM pada kanal AWGN dan Rayleigh 0 km/jam pada 56 fixed WiMAX system meningkatkan BER, hal ini terjadi karena pemotongan dan pemetaan sinyal. Tabel 4.19 SNR sebelum dan sesudah QPSK AWGN dan Rayleigh target BER 10-4 SNR No. Kanal BER Sebelum 1 AWGN 5.14 10-4 8.11 8.83 Rayleigh 0 km/jam 3.4 10-4 13.8 16 Pada target BER yang sama dibutuhkan SNR lebih besar sekitar 0.7 db pada AWGN dan. db pada Rayleigh. Tabel 4.0 SNR sebelum dan sesudah 16 QAM AWGN dan Rayleigh target BER 10-4 No. Kanal BER db SNR Sebelum 1 AWGN 3.3 10-4 14.78 15.98 Rayleigh 10-4 9.4 9.47 0 km/jam 4.57 10-5 9.83 9.99 Pada target BER yang sama dibutuhkan SNR lebih besar sekitar 1. db pada AWGN dan 0.05 db pada Rayleigh. Tabel 4.1 SNR sebelum dan sesudah 64QAM AWGN dan Rayleigh target BER 10-4 No. Kanal BER db SNR Sebelum 1 AWGN 10-4 1. 1.55 Rayleigh 10-4 40 41.99 0 km/jam 10-4 1. 1.55 DAFTAR PUSTAKA [1]. B. S. Krongold and D. L. Jones. 003. PAR Reduction in OFDM via Active Constellation Extension. IEEE Transactions on Broadcasting, vol. 3, pp. 58-68. []. C. Ciochina, F. Buda, and H. Sari An Analysis of OFDM Peak Power Reduction Techniques for WiMAX Systems. France: Sequans Communication. [3]. IEEE. 004. Draft IEEE Standart For Local And Metropolitan Area Network Part 16 : Air Interface For Fixed Broadband Wireless Access Systems. New York. [4]. Langton, Charan. 004. Orthogonal Frequency Division Multiplexing (OFDM). http:// www.complextoreal.com. [5]. Pietikäinen, Kari. Orthogonal Frequency Division Multiplexing. Finland: Helsinki University Of Technology. [6]. Prasad, Ramjee. 004. OFDM for Wireless Communications Systems. Norwood: Artech House. [7]. Purnama Sari, Rini. 006. Reduksi PAPR Dengan Menggunakan Partial Transmit Sequences (PTS) Dan Selected Mapping (SLM) Pada Sistem OFDM. Bandung: STT Telkom. [8]. Roca, Amalia. 007. Implementation of a WiMAX simulator in Simulink. Vienna: Universität Wien. [9]. Rohde & Schwarz. WiMAX General Information About the Standard 80.16. http://www.rohde-schwarz.com. [10]. Sutejo, Anjar. 006. Perancangan dan Analisis Kinerja Sistem Mimo x Dengan Adaptif Beamforming Pada Standar WiMAX IEEE 80.16e. Bandung: STT Telkom. 8