STUDI EKSPERIMENTAL PERILAKU GESER BALOK PADA SAMBUNGAN BALOK KOLOM BETON BERTULANG ABSTRAK

dokumen-dokumen yang mirip
KAJIAN EKSPERIMENTAL KUAT LENTUR BALOK PADA SAMBUNGAN BALOK KOLOM BETON BERTULANG ABSTRAK

KERUNTUHAN LENTUR BALOK PADA STRUKTUR JOINT BALOK-KOLOM BETON BERTULANG EKSTERIOR AKIBAT BEBAN SIKLIK

STUDI EKSPERIMENTAL BALOK BETON BERTULANG BERSENGKANG TERTUTUP TEGAK DENGAN PENYAMBUNG KAIT DAN LAS

EVALUASI KUAT GESER BALOK BETON BERTULANG SECARA EKSPERIMEN DAN ANALISIS NUMERIK

BAB I PENDAHULUAN 1.1. Latar Belakang

Analisis Perilaku Lentur Balok Beton Bertulang Tampang T Menggunakan. Response-2000

PENGARUH KUAT TEKAN TERHADAP KUAT LENTUR BALOK BETON BERTULANG

BAB I PENDAHULUAN 1.1 Latar Belakang

Latar Belakang : Banyak bencana alam yang terjadi,menyebabkan banyak rumah penduduk rusak

KAJIAN EKSPERIMENTAL PERILAKU BALOK BETON TULANGAN TUNGGAL BERDASARKAN TIPE KERUNTUHAN BALOK ABSTRAK

STUDI EKSPERIMENTAL PERKUATAN GESER BALOK BETON BERTULANG DENGAN GFRP (GLASS FIBER REINFORCED POLYMER)

PERILAKU STRUKTUR BETON BERTULANG AKIBAT PEMBEBANAN SIKLIK

Kinerja Hubungan Pelat-Kolom Struktur Flat Plate Bertulangan Geser Stud Rail dan Sengkang Dalam Menahan Beban Lateral Siklis

PEMODELAN DINDING GESER PADA GEDUNG SIMETRI

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB I PENDAHULUAN. tarik yang tinggi namun kuat tekan yang rendah.kedua jenis bahan ini dapat. bekerja sama dengan baik sebagai bahan komposit.

PERBANDINGAN KUAT LENTUR DUA ARAH PLAT BETON BERTULANGAN BAMBU RANGKAP LAPIS STYROFOAM

STUDI EKSPERIMENTAL TENTANG PENGARUH UKURAN BATA MERAH SEBAGAI DINDING PENGISI TERHADAP KETAHANAN LATERAL STRUKTUR BETON BERTULANG

PENGARUH PENGGUNAAN WIRE ROPE SEBAGAI PERKUATAN LENTUR TERHADAP KEKUATAN DAN DAKTILITAS BALOK BETON BERTULANG TAMPANG T (040S)

BAB I PENDAHULUAN 1.1. Latar Belakang

STUDI EKSPERIMENTAL BALOK TUMPUAN SEDERHANA DENGAN TULANGAN GESER YANG DILAS. R. Risang Haryo C.D., Mashuri Amin D. Purwanto *), Sukamta *)

PENGARUH VARIASI JARAK SENGKANG DAN RASIO TULANGAN LONGITUDINAL TERHADAP MEKANISME DAN POLA RETAK KOLOM BERTULANGAN RINGAN AKIBAT BEBAN SIKLIK

STUDI DAKTILITAS DAN KUAT LENTUR BALOK BETON RINGAN DAN BETON MUTU TINGGI BERTULANG

Seminar Nasional VII 2011 Teknik Sipil ITS Surabaya Penanganan Kegagalan Pembangunan dan Pemeliharaan Infrastruktur

STUDI EKSPERIMENTAL PENGARUH DINDING BATA TERHADAP KETAHANAN KOLOM STRUKTUR PORTAL SEDERHANA ABSTRAK

ANALISIS EKSPERIMEN LENTUR KOLOM BATATON PRACETAK AKIBAT BEBAN AKSIAL EKSENTRIS

PENGARUH VARIASI JARAK SENGKANG KOLOM UNTUK RUMAH SEDERHANA TERHADAP BEBAN GEMPA DI PADANG ABSTRAK

BAB 4 PENGOLAHAN DATA DAN ANALISA

BAB III LANDASAN TEORI

PENGARUH JARAK SENGKANG TERHADAP KAPASITAS BEBAN AKSIAL MAKSIMUM KOLOM BETON BERPENAMPANG LINGKARAN DAN SEGI EMPAT

BAB II TINJAUAN PUSTAKA. yang aman. Pengertian beban di sini adalah beban-beban baik secara langsung

STUDI PERILAKU SAMBUNGAN BALOK PRACETAK UNTUK RUMAH SEDERHANA TAHAN GEMPA AKIBAT BEBAN STATIK

BAB III LANDASAN TEORI

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

ANALISIS DAN EKSPERIMEN PELAT BETON BERTULANG BAMBU LAPIS STYROFOAM

PENGUJIAN LENTUR BALOK BETON BERTULANG DENGAN MENGGUNAKAN MODIFIKASI ALAT UJI TEKAN

BAB I PENDAHULUAN. 1.1 Latar Belakang

KAJIAN PERILAKU LENTUR PELAT KERAMIK BETON (KERATON) (064M)

STUDI EKSPERIMENTAL SAMBUNGAN KOLOM-KOLOM PADA SISTEM BETON PRACETAK DENGAN MENGGUNAKAN SLEEVES

PENGUJIAN GESER BALOK BETON BERTULANG DENGAN MENGGUNAKAN SENGKANG KONVENSIONAL

STUDI EKSPERIMENTAL PENGARUH KONFIGURASI SENGKANG PADA DAERAH TEKAN BALOK BETON SERAT BERTULANG

ANALISA PENGARUH DINDING GESER PADA STRUKTUR BANGUNAN HOTEL BUMI MINANG AKIBAT BEBAN GEMPA ABSTRAK

TULANGAN GESER. tegangan yang terjadi

BAB II TINJAUAN PUSTAKA

BAB IV. HASIL DAN PEMBAHASAN

PENGARUH VARIASI LETAK TULANGAN HORIZONTAL TERHADAP DAKTILITAS DAN KEKAKUAN DINDING GESER DENGAN PEMBEBANAN SIKLIK (QUASI-STATIS)

KAJIAN DAKTILITAS DAN KEKAKUAN PERKUATAN BALOK T DENGAN KABEL BAJA PADA MOMEN NEGATIF

PENGARUH JARAK SENGKANG DAN RASIO TULANGAN LONGITUDINAL TERHADAP DAKTILITAS KOLOM BERTULANGAN RINGAN AKIBAT BEBAN SIKLIK

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB II TINJAUAN PUSTAKA

LENDUTAN DAN POLA RETAK PELAT JEMBATAN BENTANG 5 METER DITINJAU DARI PERBANDINGAN HASIL PENELITIAN DAN PENDEKATAN NUMERIK. Oleh: Hafiz Abdillah 4

PENGARUH SENSITIFITAS DIMENSI DAN PENULANGAN KOLOM PADA KURVA KAPASITAS GEDUNG 7 LANTAI TIDAK BERATURAN

BAB I PENDAHULUAN. pozolanik) sebetulnya telah dimulai sejak zaman Yunani, Romawi dan mungkin juga

STUDI PARAMETRIK PENGARUH VARIASI TINGKATAN BEBAN AKSIAL TERHADAP PERILAKU LENTUR DAN AKSIAL PENAMPANG KOLOM BETON BERTULANG DENGAN BEBAN SIKLIK

BAB II TINJAUAN PUSTAKA

PROSENTASE DEVIASI BIAYA PADA PERENCANAAN KONSTRUKSI BALOK BETON KONVENSIONAL TERHADAP BALOK BETON PRATEGANG PADA PROYEK TUNJUNGAN PLAZA 5 SURABAYA

BAB III LANDASAN TEORI

KUAT LENTUR PROFIL LIPPED CHANNEL BERPENGAKU DENGAN PENGISI BETON RINGAN BERAGREGAT KASAR AUTOCLAVED AERATED CONCRETE HEBEL

ABSTRAK. Kata Kunci: gempa, kolom dan balok, lentur, geser, rekomendasi perbaikan.

a home base to excellence Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 Pelat Pertemuan - 1

ANALISIS KINERJA STRUKTUR BETON BERTULANG DENGAN VARIASI PENEMPATAN BRACING INVERTED V ABSTRAK

Andini Paramita 2, Bagus Soebandono 3, Restu Faizah 4 Jurusan Teknik Sipil, Fakultas Teknik Universitas Muhammadiyah Yogyakarta

PENGARUH VARIASI DIMENSI BENDA UJI TERHADAP KUAT LENTUR BALOK BETON BERTULANG

BAB I PENDAHULUAN A. Latar Belakang

BAB III UJI LABORATORIUM. Pengujian bahan yang akan diuji merupakan bangunan yang terdiri dari 3

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN. 1.1 Latar Belakang. Perkembangan pada setiap bidang kehidupan pada era globalisasi saat ini

PENGARUH PERBANDINGAN PANJANG BENTANG GESER DAN TINGGI EFEKTIF PADA BALOK BETON BERTULANG

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai

PERILAKU GESER DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (Hw/Lw) TERHADAP BEBAN LATERAL STATIK JURNAL

BAB III METODE PENELITIAN

BAB I PENDAHULUAN. Perkembangan dunia baik di bidang ekonomi, politik, sosial, budaya

Jurusan Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Sepuluh Nopember Surabaya 2010

TINJAUAN REKAYASA PENULANGAN GESER BALOK BETON BERTULANG DENGAN SENGKANG VERTIKAL MODEL U

I. PENDAHULUAN. Pekerjaan struktur seringkali ditekankan pada aspek estetika dan kenyamanan

MODIFIKASI PERENCANAAN GEDUNG APARTEMEN TRILIUM DENGAN METODE PRACETAK (PRECAST) PADA BALOK DAN PELAT MENGGUNAKAN SISTEM RANGKA GEDUNG (BUILDING

BAB III LANDASAN TEORI. A. Pembebanan

STUDI EKSPERIMENTAL KOMPARASI KAPASITAS BALOK DENGAN PLATFORM GALVALUM DENGAN BALOK KONVENSIONAL

BAB VII TINJAUAN KHUSUS METODE PELAKSANAAN FLAT SLAB ATAU DROP PANEL. yang dapat dikerjakan secara bersamaan. Pelaksanaan pekerjaan tersebut

BAB II TINJAUAN PUSTAKA. Beton berlulang merupakan bahan konstruksi yang paling penting dan merupakan

2.5.3 Dasar Teori Perhitungan Tulangan Torsi Balok... II Perhitungan Panjang Penyaluran... II Analisis dan Desain Kolom...

BAB III LANDASAN TEORI

BAB I PENDAHULUAN Latar Belakang. Kolom memegang peranan penting dari suatu bangunan karena memikul

Desain Struktur Beton Bertulang Tahan Gempa

TINJAUAN KUAT GESER DAN KUAT LENTUR BALOK BETON ABU KETEL MUTU TINGGI DENGAN TAMBAHAN ACCELERATOR

PUBLIKASI ILMIAH TEKNIK SIPIL

PENGGUNAAN CARBON FIBRE PADA STRUKTUR BETON BERDASARKAN PERANCANGAN DENGAN STRUT-AND-TIE MODEL

BAB VI KESIMPULAN DAN SARAN. Setelah dilakukan analisis dan perancangan pada Struktur Atas Gedung

IDENTIFIKASI KEGAGALAN, ALTERNATIF PERBAIKAN DAN PERKUATAN PADA STRUKTUR GEDUNG POLTEKES SITEBA PADANG ABSTRAK

INVESTIGASI EKSPERIMENTAL PADA HUBUNGAN KOLOM DAN SLAB PADA BETON MUTU NORMAL DAN BETON MUTU TINGGI

Kata Kunci : beton, baja tulangan, panjang lewatan, Sikadur -31 CF Normal

Desain Struktur Beton Bertulang Tahan Gempa

PENGARUH JUMLAH TULANGAN BAGI DAN ARAH SENGKANG PADA KEMAMPUAN GESER BALOK TINGGI

VARIASI RASIO VOLUME TULANGAN TRANSVERSAL DENGAN INTI BETON TERHADAP DAKTILITAS AKSIAL KOLOM BETON BERTULANG

IV. HASIL DAN PEMBAHASAN. Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu

PENGARUH PENEMPATAN PENYAMBUNGAN PADA PERILAKU RANGKAIAN BALOK-KOLOM BETON PRACETAK BAGIAN SISI LUAR

BAB II TINJAUAN PUSTAKA

ANALISIS KUAT GESER STRUKTUR BALOK BETON BERTULANG DENGAN LUBANG HOLLOW CORE PADA TENGAH PENAMPANG BALOK NASKAH PUBLIKASI TEKNIK SIPIL

SLOOF PRACETAK DARI BAMBU KOMPOSIT

Transkripsi:

VOLUME 12 NO. 1, FEBRUARI 216 STUDI EKSPERIMENTAL PERILAKU GESER BALOK PADA SAMBUNGAN BALOK KOLOM BETON BERTULANG Rita Anggraini 1, Jafril Tanjung 2, Jati Sunaryati 3, Rendy Thamrin 4, Riza Aryanti 5 ABSTRAK Suatu bangunan memiliki ketahanan yang baik terbuat dari struktur beton bertulang dapat diamati dari struktural bangunan itu sendiri. Salah satu komponen struktural yang paling berpengaruh dalam keruntuhan suatu bangunan adalah sambungan balok-kolom. Keruntuhan bangunan tersebut, khususnya bangunan gedung beton bertulang adalah akibat kerusakan dari sambungan balok-kolom yang merupakan bagian struktur yang terpenting pada bangunan. Pada penelitian ini dilakukan untuk mengevaluasi perilaku geser balok pada sambungan balok-kolom beton bertulang dengan 3 variasi rasio tulangan balok BCJ-2 (ρ =.67), BCJ-3 (ρ =.) dan BCJ-5 (ρ =.167) serta mengetahui besarnya beban pada saat retak awal (first crack), dan beban saat runtuh. Dari hasil yang diperoleh pada penilitian ini adalah semakin besar rasio tulangan yang digunakan maka semakin besar beban yang dapat ditahan balok. Pengaruh adanya variasi rasio tulangan dapat meningkatkan kapasitas baloknya, baik pada pakai sengkang maupun tanpa sengkang. Dimana BCJ-S 5 adanya peningkatan kapasitasnya sebesar 25,49% dari BCJ-TS 5, sedangkan BCJ-S 3 dengan BCJ-TS 3 dan BCJ-S 2 dengan BCJ-TS 2 yang tidak begitu menunjukan peningkatan yang signifikan. Dari keenam benda uji, satu mengalami keruntuhan lentur dan lima mengalami keruntuhan geser. Kata kunci : sambungan balok kolom, rasio tulangan, beban, kapasitas geser, keruntuhan geser. 1. PENDAHULUAN Struktur bangunan adalah komponen utama dari bangunan yang mampu memikul beban secara bersama-sama dan meneruskan beban ke bagian struktur. Kolom, balok dan pelat merupakan komponen utama struktur bangunan yang berperan dalam menahan dan menyalurkan beban. Komponen struktur yang paling berpengaruh dalam menahan kestabilan suatu bangunan selain kolom, balok, dan pelat lantai adalah sambungan balok-kolom. Pada umumnya kegagalan struktur banyak disebabkan pada sambungan balok-kolom yang diakibatkan adalah karena adanya perubahan peraturan, serta perencanaan tidak ada merencanakan pendetailan terhadap jumlah tulangan pada sambungan balok kolom, sesuai kebutuhan kekuatan dalam menahan beban lentur maupun aksial. Dan juga karena terjadi akibat lemahnya kemampuan menahan geser dan rendahnya daktalitas yang direncanakan. Sambungan balok - kolom merupakan bagian penting pada struktur bangunan gedung bertingkat. Beberapa dekade terakhir, penelitian intensif dalam bidang rekayasa struktur telah memberikan pemahaman yang baik terhadap perilaku struktur khususnya perilaku struktur beton bertulang akibat beban lentur maupun geser. Maka itu diperlukan berbagai teknik untuk memperoleh nilai yang paling mendekati dengan nilai eksaknya. 1 Mahasiswa Pasca Sarjana Teknik Sipil Universitas Andalas, 2 Staf Pengajar Jurusan Teknik Sipil Fakultas Teknik Universitas Andalas, jafriltanjung@ft.unand.ac.id 3.Staf Pengajar Jurusan Teknik Sipil Fakultas Teknik Universitas Andalas, 4.Staf Pengajar Jurusan Teknik Sipil Fakultas Teknik Universitas Andalas, 5.Staf Pengajar Jurusan Teknik Sipil Fakultas Teknik Universitas Andalas, 24

Rita Anggraini Dalam hal tersebut seiring dengan studi uji eksperimental. Oleh sebab itu, penelitian ini adalah eksperimental perilaku geser balok pada sambungan balok - kolom beton bertulang yang dilaksanakan di Laboratorium Material dan Struktur Jurusan Teknik Sipil Fakultas Teknik Universitas Andalas Padang. 2. MODEL EKSPERIMENTAL 2.1 Pembuatan Benda Uji Perencanaan dimensi penampang sambungan balok-kolom beton bertulang pada penelitian ini adalah berdasarkan pendekatan lapangan dan kapasitas alat yang akan digunakan untuk melakukan pengujian. Pembuatan benda uji sambungan balok-kolom nilai kuat tekan sebesar MPa dimana pada balok menggunakan sengkang dan rasio tulangan yang bervariasi. Dimensi yang digunakan yaitu balok dengan ukuran 18 mm x 2 mm x mm dan untuk kolom digunakan ukuran 18 mm x mm x 15 mm. Untuk benda uji sendiri digunakan penampang persegi biasa dengan variasi rasio tulangan longitudinal balok yang berbeda. Benda uji ini terdiri dari 6 buah sampel yang bentuknya dapat dilihat pada Gambar 1 berikut. (a) Pakai Sengkang (b) Tanpa Pakai Sengkang Gambar 1. Model Benda Uji VOLUME 12 NO. 1, FEBRUARI 216 25

Studi Perilaku Geser Balok Pada Sambungan Balok Kolom Beton Bertulang Untuk lebih jelasnya penamaan dari benda uji pada Gambar 1. diatas, dapat dilihat variabel variabel yang digunakan, baik pakai sengkang maupun tanpa pakai sengkang pada Tabel 1 sebagai berikut : Tabel 1 Data Penulangan Sambungan Balok-Kolom Benda uji Tulangan kolom Tulangan tekan Tulangan Balok Tulangan lentur Tulangan sengkang BCJ - TS 2 8 D 19 2 D 13 2 D 13 - BCJ - TS 3 8 D 19 3 D 13 3 D 13 - BCJ - TS 5 8 D 19 5 D 13 5 D 13 - BCJ - S 2 8 D 19 2 D 13 2 D 13 Ø - BCJ - S 3 8 D 19 3 D 13 3 D 13 Ø - BCJ - S 5 8 D 19 5 D 13 5 D 13 Ø - Material-material yang digunakan: a. Beton Tabel 2 Properties Beton yang Digunakan No. Material Beton Nilai 1. Poisson s ratio (µ),2 2. Compressive strength (f c) 27 Mpa b. Baja Tabel 3 Properties Baja yang Digunakan No. Material Baja Nilai 1. Yield strength (fy) balok 417,434 Mpa 2. Yield strength (fy) kolom 462,9 Mpa 3. Modulus Elastisitas (E) 2. Mpa 2.2 Pembuatan cetakan benda uji (bekisting) dan pembesian Bekisting atau papan cetak merupakan komponen penting dalam pembuatan strukur beton bertulang. Agar diperoleh benda hasil akhir (finishing) yang ukurannya presisi maka pembuatan bekisting merupakan sesuatu yang perlu diperhatikan. Kecuali itu, bekisting harus cukup kuat menahan beban akibat menampung beton basah yang relatif berat, termasuk bila ada getaran yang diberikan sebagai bagian tahapan pengecoran. Sebelum dilakukan pengecoran atau pembuatan benda uji, maka langkah pertama yang harus terlebih dahulu dilakukan adalah pembuatan cetakan benda uji (bekisting). Cetakan benda uji dibuat dengan menggunakan bahan dasar multiplek, multiplek digunakan sebagai bahan dasar cetakan benda uji agar proses perangkaian cetakan benda uji mudah dilaksanakan. Cetakan benda uji dibuat dengan ukuran yaitu 18 mm x 2 mm dengan panjang bentang mm untuk bagian balok dan 18 mm x mm dengan panjang 15 mm untuk bagian kolom. 26 JURNAL REKAYASA SIPIL

Rita Anggraini Gambar 2 Cetakan Benda Uji Cetakan dibuat sebanyak 6 buah, ini dikarenakan perbandingan rasio tulangan yang digunakan dalam penelitian ini ada 3 macam dengan 2 variasi yaitu 3 buah pakai sengkang dan 3 buah yang tidak pakai sengkang. Setelah bekisting dibuat, selanjutnya dilakukan pemasangan tulangan longitudinal pada setiap cetakan sesuai dengan jumlah yang dibutuhkan lalu pemasangan sengkang pada bagian baloknya. Variasi jumlah tulangan yang dipakai dalam penelitian ini adalah 2 tulangan, 3 tulangan dan 5 tulangan ulir berdiameter 13 mm. 2.3 Campuran Beton Gambar 3 Cetakan benda uji beserta tulangannya siap untuk dicor Pembuatan campuran beton dilakukan di PT. IGASAR yang telah dipesan seminggu sebelum mulai pengecoran. Campuran adukan beton yang telah datang ke Laboratorium Material dan Struktur Universitas Andalas dengan mobil Ready Mix dimasukkan kedalam cetakan yang telah dibuat, dapat dilihat pada Gambar 4. Sampel pengujian dibuat sebanyak 6 buah dengan keterangan sebagai berikut: VOLUME 12 NO. 1, FEBRUARI 216 27

Studi Perilaku Geser Balok Pada Sambungan Balok Kolom Beton Bertulang 3. SET UP PENGUJIAN Gambar 4 Benda uji setelah pengecoran Set up Pengujian seperti terlihat pada Gambar 5. Benda uji diletakan pada frame Load dengan posisi kolom diletakan pada bagian bawah yang kedua ujung kolom di pasangkan 2 buah perletakan dengan pelat tumpuan yang di asumsikan sebagai tumpuan sendi sendi pasa kedua ujungnya. Dan posisi balok yang menerima gaya horizontal dari Actuator yang diteruskan ke load cell. Load cell diletakan pada ujung Actuator dan ujung yang menekan kepada ujung balok. Pasang alat LVDT (Lateral Vertical Displacement Tranducer) pada area lentur balok dan kolom. Kemudian pasang data logger untuk membantu kita dalam mencatat setiap beban yang diberikan dan lendutan yang terjadi. Pengujian siap dilakukan. Gaya/beban diberikan secara perlahan lahan dan beban dinaikan secara berangsur angsur hingga pada batas tertentu sampai pada tegangan maksimum, sehingga benda uji akan mengalami retak dan lendutan maksimum. Selama proses pembebanan berlangsung, lakukan penggarisan pada setiap retakan yang terjadi. Garis ini bertujuan untuk mempermudah kita dalam melihat pola retak dan jenis keruntuhan yang terjadi. Besarnya beban yang diberikan akan di rekap secara otomatis tercatat melalui data logger. Pembebanan akan dihentikan jika benda uji sudah runtuh dan data logger yang membaca besarnya beban dari load cell tidak bertambah. Setelah balok mengalami keruntuhan, amati pola retak dan jenis keruntuhan yang terjadi pada benda uji. 28 JURNAL REKAYASA SIPIL

Rita Anggraini 7,5 15 7,5 LOAD CELL 75 5 5 X Y Z 5 28 16 27,5 5 18,5 18,5 2,5 124 12 W 214,5,5 4,5 4,5 Gambar 5. Set Up Peralatan dan Bahan Uji Sambungan Balok - Kolom Load Cell Actuator LVD Gambar 6. Bahan uji siap buat diuji 4. HASIL PENGUJIAN DAN PEMBAHASAN 4.1 Beban vs Perpindahan Berdasarkan hasil penelitian eksperimental yang telah dilakukan di Laboratorium Material dan Struktur Universitas Andalas, maka penulis dapat mengevaluasi hasil yang dibaca dari data logger berupa grafik hubungan antara beban dan perpindahan, dapat terlihat pada Gambar 7 dan Gambar 8 sebagai berikut : VOLUME 12 NO. 1, FEBRUARI 216 29

Studi Perilaku Geser Balok Pada Sambungan Balok Kolom Beton Bertulang 1 9 8 EXP BCJ TS 2 EXP BJC TS 3 EXP BCJ TS 5 7 4 2 5 15 2 25 35 4 45 55 65 7 75 Gambar 7. Grafik Beban vs Perpindahan eksperimental tanpa pakai sengkang Gambar 4. menunjukan hasil pada eksperimental yang tidak pakai sengkang (BCJ-TS 2, BCJ-TS 3 dan BCJ-TS 5) yaitu menunjukan adanya pengaruh variasi jumlah rasio tulangan yang dapat meningkatkan kapasitas balok pada sambungan balok kolom, dimana rasio tulangan yang kecil lebih besar perpindahan yang terjadi daripada rasio tulangan yang besar. Pada BCJ-TS 2 pada daerah tarik dan tekan (ρ =,67) dapat dilihat grafiknya lebih daktail, dimana beban maksimum terjadi pada beban 36, 1 kn yang mengalami perpindahan sebesar 22,8 mm. Pada BCJ-TS 3 pada daerah tarik dan tekan (ρ =,) beban maksimum terjadi pada beban 4,2 kn yang mengalami perpindahan sebeasar 11,8 mm serta ditandai dengan keruntuhan. Sedangkan pada BCJ-TS 5 pada daerah tarik dan tekan (ρ =,167) beban maksimum terjadi 45,9 kn yang mengalami perpindahan sebeasar 15,3 mm yang juga ditandai dengan keruntuhan. 1 9 8 EXP BCJ S 2 EXP BCJ S 3 EXP BCJ S 5 7 4 2 5 15 2 25 35 4 45 55 65 7 75 Gambar 8. Grafik Beban vs Perpindahan eksperimental pakai sengkang Dari hasil grafik Gambar 5. yang didapatkan dalam pengujian eksperimental yang pakai sengkang (BCJ-S 2, BCJ-S 3 dan BCJ-S 5) yaitu adanya pengaruh variasi jumlah rasio tulangan yang dapat meningkatkan kapasitas balok pada sambungan balok kolom, dimana rasio tulangan yang kecil lebih besar perpindahan yang terjadi daripada rasio tulangan yang besar. Dibuktikan dengan BCJ-S 2 pada daerah tarik dan tekan (ρ =,67) pada kondisi beban maksimumnya sebesar 36,2 kn mengalami perpindahan sebesar 51,7 mm dapat dilihat grafiknya lebih daktail; BCJ-S 3 pada daerah tarik dan tekan (ρ =,) kondisi beban maksimum sebesar 4,4 kn mengalami perpindahan sebesar 14,14 mm; dan BCJ-S 5 pada daerah tarik dan tekan (ρ =,167) kondisi maksimumnya 61,6 kn mengalami perpindahan sebesar 18,18 mm. Pada kondisi pada BCJ-S 2 lebih daktail dibandingan BCJ-S 3 dan BCJ-S 5, ini disebabkan adanya perlemahan pada daerah pembebanan. Di dalam kekakuannya BCJ-S 5 lebih kaku dibandingkan dengan BCJ-S 3 dan BJC-S 2. JURNAL REKAYASA SIPIL

Rita Anggraini Untuk lebih jelasnya antara benda uji yang pakai sengkang dan tanpa pakai sengkang, dapat dilihat perbedaannya pada Gambar 9, Gambar. dan Gambar 11. sebagai berikut. 1 9 8 BCJ S 2 BCJ TS 2 7 4 2 5 15 2 25 35 4 45 55 65 7 75 Gambar 9. Grafik beban vs perpindahan perbandingan antara BCJ-S 2 dan BCJ-TS 2 Berdasarkan Gambar 6 terlihat bahwa sengkang memiliki pengaruh, dapat dilihat pada benda uji BCJ-S 2 lebih daktail dibandingkan BCJ-TS 2 yang adanya penahan dari penggunaan sengkang, Sedangkan pada BCJ-TS 2 pada perpindahan 22,8 mm beban mengalami sudah penurunan, berbeda dengan prilaku BCJ-S 2. 1 9 BCJ S 3 BCJ TS 3 8 7 4 2 5 15 2 25 35 4 45 55 65 7 75 Gambar. Grafik Beban vs Perpindahan Perbandingan antara BCJ-S 3 dan BCJ-TS 3 Gambar 7. menunjukan bahwa sengkang memiliki pengaruh besar, dapat dilihat pada specimen BCJ-S 3 dibandingkan BCJ-TS 3, sedangkan pada BCJ-TS 3 pada perpindahan 11,8 mm beban mengalami penurunan beban secara drastis, berbeda dengan prilaku BCJ-S 3 mengalami penahan dari sengkang, hanya saja pada eksperimen BCJ-S 3 terjadinya keruntuhan terlebih dahulu pada daerah perlemahan pemberian beban yang menyebabkan balok mengalami keruntuhan. VOLUME 12 NO. 1, FEBRUARI 216 31

Studi Perilaku Geser Balok Pada Sambungan Balok Kolom Beton Bertulang 1 9 BCJ S 5 BCJ TS 5 8 7 4 2 5 15 2 25 35 4 45 55 65 7 75 Gambar 11. Grafik Beban vs Perpindahan Perbandingan antara BCJ-S 5 dan BCJ-TS 5 Gambar 11. menunjukan bahwa sengkang memiliki pengaruh besar, dapat dilihat pada specimen BCJ-S 5 dibandingkan BCJ-TS 5, dimana kapasitas geser BCJ-S 5 mengalami peningkatan sebesar 25,49%. Sedangkan pada BCJ-TS 5 pada perpindahan 15,3 mm beban mengalami penurunan beban secara drastis, berbeda dengan prilaku BCJ-S 5 mengalami penahan dari sengkang. Sama dengan kasus BCJ-S 3, benda uji BCJ-S 5 juga mengalami perlemahan pemberian beban yang menyebabkan balok mengalami keruntuhan. 4.2 Pola Keruntuhan Pola keruntuhan yang terjadi pada balok benda uji sambungan balok-kolom beton bertulang ini adalah keruntuhan geser, dimana pola retaknya mengalami pola retak diagonal. Pengamatan pola keruntuhan terhadap benda uji selama pengujian dapat dilihat pada gambar 12, 13, 14, 15, 16 dan 17 dibawah ini. Gambar 12. Pola Keruntuhan pada Benda Uji S 2 32 JURNAL REKAYASA SIPIL

Rita Anggraini Gambar 13. Pola Keruntuhan pada Benda Uji S - 3 Gambar 14. Pola Keruntuhan pada Benda Uji S 5 Gambar 15. Pola Keruntuhan pada Benda Uji TS 2 VOLUME 12 NO. 1, FEBRUARI 216 33

Studi Perilaku Geser Balok Pada Sambungan Balok Kolom Beton Bertulang Gambar 16. Pola Retak pada Benda Uji TS - 3 Gambar 17. Pola Keruntuhan pada Benda Uji TS 5 4.3 Secara Analitik SNI-3-2847-22 ketentuan kekuatan tegangan geser beton (Vc) untuk komponen struktur yang hanya dibebani oleh geser dan lentur : 34 JURNAL REKAYASA SIPIL 1 6.. Dimana : fc = Kuat tekan beton (Mpa), bw = Lebar balok (mm), d = Tinggi efektif balok. Atau dengan menggunakan persamaan yang lebih terperinci sebagai berikut: 12... 7 Dimana : = gaya geser (N), fc' = kuat tekan beton (N/mm²), bw = lebar efektif penampang balok (mm), = rasio tulangan lentur dengan luas penampang balok, a = jarak beban ke perletakan (mm).

Rita Anggraini 1 9 8 7 4 2 Vn= 4,14 Vc = 33,23 kn 5 15 2 25 35 4 45 55 65 7 75 Vf= 77,66 kn Exp BCJ S 5 Exp BCJ TS 5 Vn Vc Vf Gambar 18 Perbandingan Grafik Beban vs Perpindahan BCJ-S 5 dan BCJ-TS 5 1 9 8 7 4 2 Exp BCJ S 3 Exp BCJ TS 3 Vn = 2,6 kn Vf = 49,85 kn Vn Vc Vf Vc = 31,69 kn 5 15 2 25 35 4 45 55 65 7 75 Gambar 19 Perbandingan Grafik Beban vs Perpindahan BCJ-S 3 dan BCJ-TS 3 1 9 8 7 4 2 Vn = 1,84 kn Vc =,93 kn Vf = 33,75 kn Exp BCJ S 2 Exp BCJ TS 2 Vn Vc Vf 5 15 2 25 35 4 45 55 65 7 75 Gambar 2 Perbandingan Grafik Beban vs Perpindahan BCJ-S 2 dan BCJ-TS 2 VOLUME 12 NO. 1, FEBRUARI 216 35

Studi Perilaku Geser Balok Pada Sambungan Balok Kolom Beton Bertulang 5. KESIMPULAN Berdasarkan dari hasil dan pembahasan yang telah dibahas pada bab sebelumnya dapat disimpulkan sebagai berikut : 1. Pengaruh adanya variasi rasio tulangan dapat meningkatkan kapasitas baloknya, baik pada pakai sengkang maupun tanpa sengkang. Dimana BCJ-S 5 adanya peningkatan kapasitasnya sebesar 25,49% dari BCJ-TS 5, sedangkan BCJ-S 3 dengan BCJ-TS 3 dan BCJ-S 2 dengan BCJ-TS 2 yang tidak begitu menunjukan peningkatan yang signifikan. 2. Balok tanpa sengkang tidak mencapai kapasitas lentur penampangnya, karena balok terlebih dahulu mengalami keruntuhan geser. Keruntuhan geser terjadi pada balok tanpa sengkang yang ditandai oleh terbentuknya retak diagonal yang dominan. 6. DAFTAR PUSTAKA Dept. PU. 1991. SK SNI T-15-1991-3: Tata Cara Perhitungan Struktur Beton untuk Bangunan Gedung. Yayasan LPMB. Bandung. Dept. PU. 22. SNI 3-2847-22: Tata Cara Perhitungan Struktur Beton untuk Bangunan Gedung. Yayasan LPMB. Bandung. Ekaputri, M., 212, Studi Analitik Tentang Kekuatan Geser Sambungan Balok-Kolom Struktur Beton Bertulang Akibat Beban Monotonik dengan Metode Elemen Hingga Nonlinier (ATENA). Skripsi Sarjana, Jurusan Teknik Sipil, Fakultas Teknik Universitas Andalas. Kaku, T. and Asakusa, H., 1991, Ductility Estimation of Exterior Beam-Column subassemblages ini RC Frames, Design of Beam Column Joints For Seismic Resistance, SP-123, American Concrete Institute, Formington Hills, Mich., pp 379-4. Morita, S., and Kaku, T. 1984, Slippage of Reinforcement in Beam Column Joint of Reinforced Concrete Frame, Proceedings of the eighth. World Conference on Earthquake Engineering, Vol. VI, pp. 477-484. MacGregor, J.G., Reinforced Concrete Mechanics and Design, Prentice-Hall 1997 McCormac, Jack C., 24, Desain Beton Bertulang (Diterjemahkan Oleh Sumargo, PhD), Erlangga, Jakarta. Nawy, Edward G (1998), Beton Bertulang suatu Pendekatan Dasar. PT Refika Aditama. Bandung. Park, R., Paulay, T., (1975), Reinforced Concrete Structure, John Wiley & Sons, New York. Thamrin, R. et.all. 211. Eksperimental Study on Diagonal Shear Cracks of Concrete Beams without Stirrups Longitudinally Reinforced with GFRP Bars. fib Symposium Praguea, Juni. ISBN 978-8- 87158-29-6 www.detiknews.com/read/29/9//174632/1212113//usgs-catat-kekuatan-gempa-79-sr www.lauwtjunnji.weebly.com/besi-tulangan--parameter.html www. perjalananharianku.blogspot.com 36 JURNAL REKAYASA SIPIL