PERILAKU GESER DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (Hw/Lw) TERHADAP BEBAN LATERAL STATIK JURNAL

Ukuran: px
Mulai penontonan dengan halaman:

Download "PERILAKU GESER DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (Hw/Lw) TERHADAP BEBAN LATERAL STATIK JURNAL"

Transkripsi

1 PERILAKU GESER DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (Hw/Lw) TERHADAP BEBAN LATERAL STATIK JURNAL Diajukan untuk memenuhi pesyaratan memperoleh gelar Sarjana Teknik Disusun Oleh: RIBUT HERMAWAN NIM: KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK MALANG 2015

2 PERILAKU GESER DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (Hw/Lw) TERHADAP BEBAN LATERAL STATIK Ribut Hermawan, Ari Wibowo, Siti Nurlina Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Jalan MT. Haryono 167, Malang 65145, Indonesia ABSTRAK Teknologi baru konstruksi dinding yaitu dinding panel jaring kawat baja tiga dimensi yang berbahan EPS (Extended Polystrene System) dan wiremesh telah dikembangkan saat ini. Dinding ini didesain sebagai dinding struktural yang berfungsi sebagai penahan beban lateral (in-plane). Perilaku dinding dalam menerima beban biasanya terlihat pada mekanisme keruntuhan suatu dinding yang diawali dengan timbulnya keretakan pada dinding, kemudian tulangan leleh dan pada akhirnya dinding runtuh. Rasio tinggi dan lebar (Hw/Lw) pada dinding akan memperngaruhi bagaimana perilaku dinding tersebut dalam menerima beban lateral. Pada penelitian ini digunakan tiga variasi rasio tinggi dan lebar (Hw/Lw) dinding panel kawat jaring baja tiga dimensi yaitu dengan ukuran 60 cm x 60 cm (Hw/Lw=1), ukuran 90 cm x 60 cm (Hw/Lw=1,5), dan ukuran 120 cm x 60 cm (Hw/Lw=2). Tebal dinding sama yaitu 15 cm dengan EPS+wiremesh setebal 8 cm dan beton 7 cm. Pengujian beban lateral statik (static load test) dilakukan dengan memberikan beban tiap 100 kg (load control) hingga mencapai beban maksimum dinding dan dilanjutkan dengan tahap displacement control. Pencatatan data dilakukan setiap tahap pembebanan yaitu pencatatan deformasi lateral total, perpanjangan diagonal dinding, dan pengamatan mekanisme pola retak serta keruntuhan dinding (failure mechanisme). Hasil dari penelitian dan pembahasan data menjelaskan bahwa dinding dengan rasio tinggi dan lebar (Hw/Lw) 1 mampu menahan beban yang paling besar yaitu berkisar 3 sampai 4 ton lebih, serta pada dinding ini terjadi deformasi geser yang paling besar yakni berkisar sampai 90% lebih dari deformasi lateral total. Selain itu,dari hasil perhitungan aktual dan teoritis dinding dengan rasio ini mempunyai kekakuan geser global (shear stiffness) dan kuat geser ultimate (ultimate shear strength) paling besar dibandingkan dinding dengan rasio tinggi dan lebar (Hw/Lw) 2. Sehingga dapat disimpulkan bahwa perilaku geser (shear behaviour) yang paling dominan terjadi pada dinding dengan rasio tinggi dan lebar (Hw/Lw) 1. Kata Kunci : Perilaku geser, dinding panel jaring kawat baja tiga dimensi, rasio tinggi dan lebar (Hw/Lw), beban lateral statik. 1. Pendahuluan Teknologi dunia konstruksi yang semakin berkembang membuat banyak elemen kontruksi yang sangat inovatif bermunculan. Seperti halnya dinding yang umumnya dibuat dari susunan batu bata, baik bata merah maupun bata ringan, kini muncul teknologi baru konstruksi dinding panel jaring kawat baja tiga dimensi yang berbahan EPS (Extended Polystrene System) dan wiremesh. Salah satu produsen produk tersebut adalah PT. M-Panel Indonesia yang saat ini produknya sudah banyak digunakan untuk konstruksi dinding rumah dan gedung namun belum banyak penelitian di laboratorium di Indonesia mengenai dinding M-Panel ini. Jenis dinding M-Panel ini ada beberapa macam, ada yang hanya berfungsi sebagai dinding partisi, ada pula yang berfungsi sebagai dinding struktural atau dinding geser. Dinding geser merupakan salah satu konsep penyelesaian masalah gempa dalam bidang Teknik Sipil. Salah satu hal yang perlu diperhatikan dalam perencanaan dinding geser bahwa dinding geser tidak boleh runtuh akibat gaya geser. Hal ini disebabkan karena fungsi utama dinding geser adalah untuk menahan gaya geser yang besar akibat gempa, sehingga apabila dinding geser tersebut runtuh akibat gaya geser itu sendiri, maka otomatis keseluruhan struktur akan runtuh karena tidak ada lagi yang dapat menahan gaya geser tersebut. Dinding geser hanya 1

3 boleh runtuh akibat adanya momen plastis yang menyebabkan timbulnya sendi plastis pada bagian kakinya (Wolfgang, 1977). Perilaku dinding dalam menerima beban biasanya terlihat pada mekanisme keruntuhan suatu dinding yang diawali dengan timbulnya keretakan pada dinding, kemudian tulangan leleh dan pada akhirnya dinding runtuh. Rasio tinggi dan lebar (Hw/Lw) pada dinding akan memperngaruhi bagaimana perilaku dinding tersebut dalam menerima beban lateral. Pada perbedaan rasio tinggi dan lebar (Hw/Lw) dinding tersebut nantinya akan dapat dilihat pada dinding mana yang akan terjadi mekanisme kegagalan geser (shear dominant), lentur (flexural dominant), atau bahkan terjadi geser dan lentur. Perilaku geser (Shear Behavior) pada dinding ditandai dengan adanya mekanisme kegagalan geser atau retak geser pada dinding. Keruntuhan atau kegagalan dinding jenis ini sifatnya getas dan menghasilkan perilaku disipasi yang jelek. Tujuan penelitian ini untuk mengetahui perilaku geser dinding yaitu mekanisme keruntuhan geser pada dinding panel jaring kawat baja tiga dimensi yang dalam hal ini adalah dinding M-Panel jenis PSM terhadap beban lateral statik dengan rasio tinggi dan lebar (Hw/Lw) pada dinding tersebut. Serta akan didapatkan pula hasil berupa beban maksimum yang dapat ditahan oleh dinding panel jaring kawat baja tiga dimensi ini. 2. Tinjauan Pustaka 2.1. Dinding Panel Kawat Jaring Baja Tiga Dimensi Dinding panel kawat jaring baja tiga dimensi dapat dikatakan sebagai salah satu bentuk inovasi dalam bidang konstruksi. Salah satu produsen dinding ini adalah PT Modern Panel. Melalui penelitian yang dilakukan lebih dari 30 tahun, Modern Panel telah melakukan suatu pembaharuan dalam bidang pembangunan. Terinspirasi dari sistem bangunan dinding panel di Eropa, saat ini M-Panel telah memproduksi dinding panel sebagai pengganti batu bata yang memiliki kelebihan proses pembangunan lebih cepat serta kualitas bangunan yang baik. Struktur M-Panel jenis Single Panel Structures (PSM) terdiri dari 2 lapisan beton plesteran di kedua sisinya. Lapisan beton dengan tebal 35 mm (1,4 inch) dengan perbandingan PC : Pasir yaitu 1 : 4 atau setara dengan beton mutu K175. Tetapi untuk dinding non struktural ketebalan plesteran dapat diperkecil dan kuat tekan yang lebih rendah. Dinding ini juga terdiri dari 2 rangkaian kawat wiremesh dikedua sisinya dan dihubungkan dengan connector kawat wiremesh juga. Untuk pengisi tengahnya digunakan EPS (Expanded Polystrene). Karakteristik kawat wiremesh dengan kuat leleh (fy) lebih dari 600 MPa dan kuat tarik (ft) lebih dari 680 MPa. Gambar 2.1 Dinding Panel Kawat Jaring Baja Tiga Dimensi 2.2. Dinding Geser Dinding geser sebagai elemen penahan gaya lateral memiliki keuntungan utama karena menyediakan kontinuitas vertikal pada sistem lateral struktur gedung. Struktur gedung dengan dinding geser sebagai elemen penahan gaya lateral pada umumnya memiliki performance yang cukup baik 2

4 pada saat gempa. Hal ini terbukti dari sedikitnya kegagalan yang terjadi pada sistem struktur dinding geser di kejadian-kejadian gempa yang lalu (Fintel, 1991). Menurut Pantazopoulou dan Imran, 1992, perilaku batas yang terjadi pada dinding geser dapat diklasifikasikan sebagai berikut: a. Flexural behavior (perilaku lentur), dimana respons yang terjadi pada dinding akibat gaya luar dibentu oleh mekanisme kelelehan pada tulangan yang menahan lentur. Keruntuhan jenis ini pada umumnya bersifat daktil. b. Flexural-shear behavior (perilaku lentur-geser), dimana kelelehan yang terjadi pada tulangan yang menahan lentur diikuti dengan kegagalan geser. c. Shear behavior (perilaku geser), dimana di bawah pembebanan, sliding shear bisa terjadi akibat adanya flexural cracks yang terbuka lebar di dasar dinding. Keruntuhan jenis ini sifatnya getas dan menghasilkan perilaku disipasi yang jelek. Gambar 2.2 Pola Keruntuhan Dinding Geser 2.3 Deformasi Geser Menurut hasil penelitian Ari Wibowo tahun 2012 mengenai Seismic Performance of Insitu and Precast Soft Storey Buildings dimana dalam pembahasan mengenai deformasi lateral (Lateral Displacement) menyebutkan bahwa deformasi lateral pada suatu strutktur terdiri dari 3 komponen yaitu deformasi lentur (flexural displacement), yield penetration, and deformasi geser (shear displacement). Seperti yang digambarkan pada gambar berikut: Gambar 2.3 Komponen Deformasi Ada dua mekanisme kegagalan geser utama dari struktur beton bertulang yaitu kegagalan karena kompresi geser dan kegagalan/keruntuhan tarik diagonal. Kegagalan kompresi geser terjadi karena perilaku kelengkungan yang menyebabkan hancurnya beton sepanjang strut diagonal atau terjadi pemisahan diagonal. Sementara untuk keruntuhan tarik diagonal, tegangan tarik dalam beton mengatur mekanisme kegagalan yang menyebabkan retak cenderung menjadi tidak stabil dan memperpanjang melalui zona kompresi. Kegagalan geser biasanya terjadi karea beban aksial yang sangat tinggi (diatas titik keseimbangan) atau pada rasio bentang geser yang relatif rendah yaitu < 2. (Wibowo, 2012) 3. Metodologi Penelitian Penelitian ini tergolong penelitian eksperimental yang dilakukan di laboratorium. Objek dalam penelitian ini adalah dinding m-panel dengan variasi tinggi dibanding lebar (Hw/Lw) sebesar 1 ; 1,5 ; dan 2. Sedangkan pengujian dinding terhadap beban lateral statik dilakukan setelah beton berumur 14 hari dengan mutu K225 (beton normal) untuk balok sloof dan dengan mutu beton setara K175 untuk plesteran dinding. Pengujian beban lateral statik dilakukan dengan memberikan beban bertahap setiap kenaikan 100 kg dan meliputi dua bagian tahap pembebanan yaitu tahap kontrol beban (Load control) dan 3

5 kontrol deformasi (Displacement control). Analisis data yang dilakukan yaitu analisis teoritis dan analisis data eksperimental. 3.1 Diagram Alir Penelitian Mulai Identifikasi Masalah Studi Pustaka Perancangan Model Benda Uji & Persiapan Material Perencanaan Dimensi Benda Uji Dinding : A. Rasio Hw/Lw = 1 (60 x 60 cm) B. Rasio Hw/Lw = 1,5 (90 x 60 cm) C. Rasio Hw/Lw = 2 (120 x 60 cm) Persiapan Bahan dan Uji Balok Sloof 15/20 : Dinding Jaring Kawat Baja PC Pasir Kerikil Tulangan Ø8 dan Ø10 Wiremesh EPS Bekisting 15x20x100 Uji Tarik Uji Tekan Pembuatan Benda Uji Dinding dan Pengambilan Sampel Beton Setiap Dinding Data Kuat Tarik Data Kuat Tekan Perawatan Benda Uji selama 7 Hari Pengujian Beban Lateral Statik dan Uji Tekan Sampel Beton (Usia 14 Hari) B A 4

6 A Data Beban, Deformasi Total, dan Pola Retak dinding Data Kuat Tekan Beton B Analisis Data Eksperimen : 1. Beban Maksimum 2. Kekakuan Geser 3. Deformasi Total 4. Deformasi Geser 5. Kuat Geser Ultimit 6. Mekanisme Keruntuhan Geser Analisis Data Secara Teoritis : 1. Beban Maksimum 2. Kekakuan Geser 3. Deformasi Total 4. Deformasi Geser 5. Kuat Geser Ultimit Komparasi Hasil Analisis Teoritis dan Eksperimen Kesimpulan Selesai Gambar 3.1 Diagram Alir Penelitian TAMPAK DEPAN Gambar 3.2 Benda Uji Penelitian 3.2 Hipotesis Penelitian Hipotesis penelitian dinding Panel ini adalah sebagai berikut: 1. Dinding dengan rasio tinggi dan lebar (Hw/Lw) = 1 akan cenderung berperilaku geser atau mekanisme kegagalan (keruntuhan) dinding dominan dengan retak geser. 2. Dinding dengan rasio tinggi dan lebar (Hw/Lw) = 1,5 akan berperilaku perpaduan antara lentur dan geser dengan mekanisme kegagalan diawali terjadinya retak lentur kemudian retak geser. 3. Dinding dengan rasio tinggi dan lebar (Hw/Lw) = 2 akan cenderung berperilaku lentur dengan mekanisme kegagalan diawali terjadinya retak lentur dan sendi plastis. 5

7 4. Hasil dan Pembahasan 4.1 Analisis Beban Maksimum Beban maksimum yang bekerja pada dinding menunjukkan hasil yang berbeda pada setiap dinding yang memiliki rasio tinggi dan lebar (Hw/Lw) yang berbeda. Perhitungan beban maksimum dilakukan dengan analisis penampang berdasarkan kapasitas lentur dan geser. Serta menggunakan data kuat tekan beton (f c) dari hasil uji tekan sampel beton masing-masing dinding dan kuat leleh (fy) wiremesh yang sesuai spesifikasi yaitu 600 MPa. Tabel 4.1 Perhitungan Beban Maksimum Teoritis dan Aktual Dinding Beban Maks. Teoritis (kg) Kap. Lentur Kap. Geser Beban Maks. Aktual (kg) A1 4191, , A2 2823, , A3 1930, , B1 2322, , B2 2149, , pengujian yaitu mengalami rigid body movement, serta pada dinding B1 dan C1 yang terjadi kegagalan dalam mekanisme pemberian beban sehingga pembebanan tidak mencapai beban maksimum. Sehingga dalam analisis selanjutnya dinding A3, B1, dan C1 tidak disertakan. 4.2 Analisis Deformasi Total Analisis deformasi total pada dinding dilakukan perhitungan berdasarkan hasil pengujian (aktual) dan secara teoritis. Deformasi total aktual pada dinding merupakan deformasi horizontal yang nilainya didapat dari bacaan LVDT pada dinding. Setiap dinding diberi LVDT pada ketinggian setiap 30 cm. sehingga dinding A dengan tinggi 60 cm ada 2 LVDT. Sedangkan untuk dinding B tinggi 90 cm ada 3 LVDT dan untuk dinding C tinggi 120 cm ada 4 buah LVDT. Berikut adalah grafik P- pada dinding A1, A2, B2, B3, C2, dan C3 : B3 2950, , C1 1158, , C2 1158, , C3 1960, , Gambar 4.1 Grafik perbandingan Beban Maksimum teoritis dan Aktual Berdasarkan tabel dan grafik tersebut didapatkan bahwa dinding A yang berukuran 60 x 60 cm atau dengan rasio tinggi dan lebar (Hw/Lw) = 1 dapat menerima beban lebih besar baik secara teoritis maupun aktual daripada dinding B dan C. Yaitu sekitar 3 sampai 4 ton. Pada dinding A3 mengalami kegagalan pada saat Gambar 4.2 Grafik Hubungan P- Berdasarkan grafik tersebut yang memiliki deformasi total tertinggi adalah dinding B3. Seharusnya dinding C yang paling tinggi memiliki deformasi yang paling besar, akan tetapi dikarenakan ada faktor lain yang mempengaruhi besarnya deformasi dinding. Untuk mengetahui lebih deformasi aktual yang terjadi dibandingakan keenam dinding tersebut pada tahap beban yang sama yaitu berkisar 1700 kg yang didasarkan pada beban maksimum dinding C dimana dinding C hanya mampu menerima beban maksimum sekitar 1700 kg. 6

8 Gambar 4.3 Grafik Perubahan Bentuk Deformasi Total Aktual Dapat dilihat pada grafik perbandingan tersebut bahwa dinding A1 maupun A2 yang mempunyai rasio Hw/Lw = 1 mengalami deformasi geser yang ditunjukkan oleh garis kurva warna merah. Untuk dinding B2 dan B3 yang mempunyai rasio Hw/Lw = 1,5 mengalami deformasi lentur. Sedangkan dinding C2 dan C3 yang mempunyai rasio Hw/Lw = 2 mengalami deformasi lentur yang lebih besar dari dinding B. Dari grafik tersebut juga dapat dilihat bahwa deformasi dinding A paling kecil dari yang lain. Dan deformasi pada dinding C paling besar. Tetapi dapat dilihat pada dinding B2 yang lebih besar dari C2. Seharusnya deformasi pada dinding yang semakin tinggi akan jauh lebih besar dari dinding yang lebih rendah. Hal ini bisa terjadi dikarenakan banyak faktor yang mempengaruhi deformasi dinding tersebut. Faktorfaktor tersebut yaitu kekuatan material penyusun dinding seperti kuat tekan beton (f c) dinding, mekanisme keruntuhan (failure mechanisme), dan pola retak yang terjadi pada dinding. Sehingga dapat menyebabkan deformasi dinding tersebut menjadi lebih kecil atau lebih besar dari semestinya. Untuk analisis secara teoritis mengenai deformasi total juga dihitung pada enam dinding yaitu A1, A2, B2, B3, C2, dan C3. Sesuai pada teori yang dijabarkan dalam tinjauan pustaka jika deformasi total itu antara lain terdiri dari deformasi lentur dan geser. Sehingga perhitungan deformasi total dihitung secara teoritis yang terdiri dari perhitungan deformasi geser dan lentur. Berdasarkan referensi buku teknik gempa (Sri Murni Dewi, 2009), perhitungan deformasi menggunakan rumus P = k., dimana k adalah kekakuan. Kekakuan lateral dindingterdiri dari kekakuan lentur ( dan kekakuan geser (. Setelah didapatkan kekakuan masing-masing barulah dihitung deformasi ( ) dinding dengan menggunakan beban teoritis masing-masing dinding yang sama dengan aktual. Perhitungan deformasi total dilakukan pada tahap beban berkisar 1700 kg yang didasarkan pada beban maksimum dinding C. Berikut hasil perhitungan deformasi total secara teoritis dan aktual : Tabel 4.2 Perhitungan Deformasi Total Teoritis dan Aktual Dinding P (kg) Deformasi Geser Deformasi Lentur Deformasi Total Teoritis Deformasi Total Aktual v (mm) fl (mm) total (mm) tot (mm) A ,0434 0,0515 0,0949 2,31 A ,0747 0,0886 0,1632 0,95 B ,1329 0,3546 0, ,74 B ,0611 0,1630 0, ,36 C ,2052 0,9736 1, C ,0804 0,3813 0, ,72 Gambar 4.4 Grafik Perbandingan Deformasi Total Teoritis dan Aktual Dari tabel dan grafik tersebut pada beban sekitar 1700 kg, deformasi total terbesar terjadi pada dinding C3 sebesar 57,72 mm. Dari perhitungan teoritis dinding A memiliki deformasi geser dan lentur yang hampir sama, sedangkan dinding B dan C dominan pada lentur. Untuk analisis lebih lanjut guna membuktikan dinding mana yang mengalami perilaku geser paling dominan akan dibuktikan secara analitis pada sub bab berikutnya seperti kekakuan geser dinding, deformasi geser, dan kuat geser dinding. 7

9 4.3 Analisis Kekakuan Geser Analisis kekakuan geser juga dilakukan perhitungan berdasarkan data pengujian (aktual) dan secara teoritis. Analisa perhitungan kekakuan geser aktual dihitung seperti pada ASTM E 564 dengan rumus : G = x Perhitungan kekakuan ini dilakukan pada tahan beban yang sama seperti pada perbandingan sebelumnya yaitu beban berkisar 1700 kg, dimana dinding C2 sudah mencapai beban puncak maksimum. Tabel 4.3 Kekakuan Geser Aktual Benda Uji Pu (kg) (mm) a (mm) b (mm) G' (kg/m) A , ,736 A , ,684 B , ,040 B , ,680 C ,394 C , ,158 Secara teoritis, kekakuan geser teoritis didapatkan dari rumus k =, dimana G adalah modulus geser yang nilainya sama dengan E/2(1+ʋ) dimana ʋ adalah raiso poisson 0,3. Sedangkan A adalah luas penampang dinding. Modulus elastisitas (E) didapat dari perhitungan berdasarkan berat isi dinding dan kuat tekan beton pada dinding. Sehingga berdasarkan referensi dari R. Park dan T. Paulay, digunakan rumus yaitu E = w 1,5.33 f c (psi). Dimana w adalah berat isi dalam lb/ft 3. (Indrawahyuni dkk, 2010). Tabel 4.4 Kekakuan Geser Teoritis Dapat dilihat pada kedua tabel maupun grafik perbandingan tersebut jika hasil analisis secara teoritis menghasilkan kekakuan geser yang lebih besar dari pada analisis aktual. Hasil analisis secara aktual, dinding yang memiliki kekakuan geser paling besar yaitu dinding A2, sedangkan secara teoritis dinding yang memiliki kekakuan geser paling besar adalah dinding A1. Sehingga dapat dikatakan baik secara aktual maupun teoritis bahwa dinding A dengan rasio tinggi dan lebar (Hw/Lw) = 1 memiliki kekakuan geser paling besar dibandingkan dengan dinding B dan C. 4.4 Analisis Deformasi Geser Analisis deformasi geser juga dilakukan berdasarkan perhitungan aktual dan teoritis. Perhitungan aktual dihitung berdasarkan data yang didapat dari pengujian dinding. Analisis deformasi geser disini akan dihitung berdasarkan perhitungan pada ASTM E 564 tentang Pengujian Beban Statik. Perhitungan besar deformasi geser secara aktual dihitung untuk besar deformasi geser horizontal dan vertikal. Untuk itu cara perhitungannya seperti berikut ini: Gambar 4.6 Perhitungan Deformasi Geser ASTM E 564 Untuk deformasi horizontal digunakan rumus = Gambar 4.5 Grafik Perbandingan Kekakuan Geser Teoritis dan Aktual Beban yang digunakan dalam analisis deformasi geser ini sama seperti perbandingan sebelumnya yaitu berkisar pada 1700 kg. 8

10 Tabel 4.5 Deformasi Geser Aktual Benda Uji a (mm) b (mm) c (mm) δ (mm) v (mm) total (mm) v/ tot (%) A , ,31 - A ,528 0,62 0,877 0,95 92,3 B ,67 0,08 0,144 43,74 0,3 B ,67 0,08 0,144 12,36 1,2 C ,64 0,88 1, ,0 C ,64 0,04 0,089 59,72 0,1 Sedangkan untuk perhitungan deformasi geser secara teoritis dihitung juga dengan rumus P = k., sehingga didapat = P/k. Tabel 4.6 Deformasi Geser Teoritis Dinding P Kekakuan Geser v total v/ tot (kg) (kg/m) (mm) (mm) (%) A ,59 0,0434 0, ,74 A ,98 0,0747 0, ,74 B ,03 0,1329 0, ,26 B ,37 0,0611 0, ,26 C ,924 0,2052 1, ,41 C ,89 0,0804 0, ,41 Gambar 4.7 Grafik Perbandingan Deformasi Geser Teoritis dan Aktual Berdasarkan perhitungan analitis deformasi geser secara aktual dan teoritis dinding A, B, dan C tersebut dapat dikatakan deformasi geser dinding yang paling dominan terjadi pada dinding A yakni dinding dengan rasio tinggi dan lebar dinding (Hw/Lw) = 1. Yakni secara aktual sekitar 90% lebih prosentase deformasi geser terhadap deformasi totalnya. Sedangkan pada analisis teoritisnya menunjukkan prosentase deformasi geser terhadap deformasi totalnya yakni sekitar 40% lebih, tetapi dinding A memiliki prosentase tertinggi daripada dinding lainnya. Sehingga dapat dikatakan dinding A berdeformasi geser dominan. 4.5 Analisis Kuat Geser Ultimit Analisis kuat geser ultimit ini juga dihitung secara aktual berdasarkan hasil pengujian dinding serta perhitungan secara teoritis berdasarkan beban maksimum teoritis yang telah dihitung sebelumnya. Kuat geser ultimit (ultimate shear strength) dihitung pada keenam dinding tersebut. Pada perhitungan secara aktual dihitung seperti pada ASTM E 564 tersebut dengan beban maksimum hasil pengujian dinding. Cara perhitungannya disebutkan bahwa untuk menghitung ultimate shear strength (Su) dengan rumus : Tabel 4.7 Kuat Geser Ultimit Aktual Benda Uji Pu (kg) b (m) Su (kg/m) A ,61 A ,14 B ,95 B ,40 C ,80 C ,01 Sedangkan secara teoritis perhitungannya menggunakan rumus yang sama tetapi menggunakan beban maksimum yang didapat dari perhitungan analisis sebelumnya. Tabel 4.8 Kuat Geser Ultimit Teoritis Benda Uji Pu (kg) b (m) Su (kg/m) A1 4180, ,97 A2 3619, ,03 B2 2149, ,58 B3 2950, ,92 C2 1158, ,93 C3 1960, ,27 Gambar 4.8 Grafik Perbandingan Kuat Geser Ultimit Teoritis dan Aktual Dari hasil perhitungan ultimate shear strength (Su) dari tabel maupun grafik tersebut baik berdasarkan aktual maupun teoritis juga menunjukkan bahwa dinding A1 dan A2 mempunyai kuat geser yang terbesar dibanding dinding B dan C. Berdasarkan kondisi aktual dengan beban maksimum dari 9

11 hasil pengujian kuat geser dinding A lebih dari 5 kg/m. Sedangkan pada perhitungan secara teoritis didapatkan kuat geser ultimit dinding A juga terbesar yaitu lebih dari 6 kg/m. Hasil ini tidak jauh berbeda antara perhitungan aktual dan teoritisnya. Sehingga dari semua uraian pembahasan dan perhitungan kuat geser ultimit dinding, dapat dikatakan bahwa dinding yang berperilaku geser dominan adalah dinding A dengan rasio tinggi dan lebar Hw/Lw = Analisis Mekanisme Keruntuhan Geser Dinding Ada 3 jenis keretakan serta mekanisme keruntuhan pada dinding struktural yaitu kegagalan lentur (flexural behavior), kegagalan lenturgeser (flexural-shear behavior), dan kegagalan geser (shear behavior). Keruntuhan atau kegagalan suatu dinding diawali dengan pola retak yang akan terjadi pada dinding. Analisa yang dilakukan untuk mekanisme keruntuhan dinding ini dilakukan melalui pengamatan visual yakni mengamati pola keretakan yang terjadi pada dinding. Pertama pada dinding A dengan rasio tinggi dan lebar (Hw/Lw) = 1 : terjadi rigid body movement, dimana retak dan bukaan lebar terjadi dipermukaan balok pertemuan antara dinding dan balok sloof, serta terjadinya retak tekan pada daerah tulangan tekan yang besar. Yang kedua dinding B dengan rasio tinggi dan lebar (Hw/Lw) = 1,5 : (B1) (B2) (B3) Gambar 4.10 Hasil Akhir Pengujian Dinding B1, B2, dan B3 Pada semua dinding B baik itu B1, B2, maupun B3, hampir sama terjadi pola retak yang sama. Mekanisme kegagalan geser pada dinding ini ditunjukkan dengan retak diagonal tarik (retak geser) setelah terjadinya retak lentur terlebih dahulu. Dapat dilihat jika dinding ini mengalami retak lentur dan geser yang cukup berimbang antara keduanya dengan artian tidak ada yang dominan salah satunya. Sedangkan untuk dinding C dengan rasio tinggi dan lebar (Hw/Lw) = 2 : (A1) (A2) (A3) Gambar 4.9 Hasil Akhir Pengujian Dinding A1, A2, dan A3 Dari gambar tersebut dapat diketahui bahwa dinding A1 dan A2 mengalami mekanisme kegagalan dinding yang sama, yaitu kegagalan geser (shear behavior) yang dominan. Hal ini ditunjukkan bahwa dinding mengalami pola retak tarik diagonal pada penampang dinding, sedangkan retak lentur tidak terlalu terlihat pada dinding ini. Kecuali dinding A3 yang (C1) (C2) (C3) Gambar 4.11 Hasil Akhir Pengujian Dinding C1, C2, dan C3 Dari gambar mekanisme keruntuhan ketiga dinding C tersebut dapat dilihat bahwa mekanisme kegagalan geser tidak begitu dominan di awal terjadinya retak pada dinding. Retak yang terjadi pada dinding ini didominasi retak lentur yang ditandai panjangnya garis retak horizontal pada muka dinding yang kemudian juga disusul terjadinya retak geser yang mengarah diagonal ke ujung bawah dinding. Sehingga dapat dikatakan 10

12 kegagalan geser pada dinding ini tidak dominan, tetapi kegagalan lentur yang dominan pada dinding ini. 5. Penutup Berdasarkan hasil penelitian serta analisis dan pembahasan data, dapat ditarik beberapa kesimpulan yaitu sebagai berikut: 1. Beban maksimum (Pu) yang bekerja pada dinding dengan rasio tinggi dan lebar dinding (Hw/Lw) = 1 mempunyai kapasitas beban yang paling besar baik secara aktual dan teoritis dibandingkan dengan dinding lainnya yaitu berkisar antara 3 sampai 4 ton lebih. 2. Mekanisme keruntuhan geser yang terjadi pada dinding ditunjukkan dengan terjadinya retak geser atau retak tarik diagonal pada muka dinding. Mekanisme ini lebih terlihat dominan pada dinding dengan rasio tinggi dan lebar dinding (Hw/Lw) = Perilaku geser (shear behavior) yang dominan terjadi pada dinding dengan rasio tinggi dan lebar dinding (Hw/Lw) = 1. Hal ini dibuktikan dengan bentuk deformasi horizontal total yang menunjukkan bentuk deformasi geser, perhitungan analitis deformasi geser secara aktual maupun teoritis yang terjadi pada dinding ini terbesar (dominan) daripada dinding lainnya, serta dinding ini mempunyai kekakuan geser global (Global Shear Stiffness) dan kuat geser ultimit (ultimate shear strength) paling besar. Kami juga merekomendasikan beberapa hal sebagai saran yaitu yang pertama, metode pelaksanaan penelitian dalam proses pembuatan benda uji khususnya dalam mix desain serta pelaksanaan shortcrete yang harus diperhatikan betul sehingga kuat tekan beton dapat sesuai rencana. Kedua, cara penyambungan antara balok sloof dan dinding yang menggunakan stek sebagai penghubung perlu diperhatikan dalam pemasangannya. Serta penelitian ini dapat dijadikan dasar sebagai penelitian selanjutnya mengenai dinding panel jaring kawat baja tiga dimensi ini. Seperti dapat dilanjutkan dengan beban lateral siklik. Daftar Pustaka ASTM E Standard Practice for Static Load Test for Shear Resistance of Framed Walls for Buildings. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA , United States. Dewi, Sri Murni Teknik Gempa untuk Teknik Sipil. Malang : Bargie Media Press Fintel, M. Shearwalls An Answer for Seismic Resistance? Point of View : 30 Years of Observation on the Performance of Buildings with Shearwalls in Earthquakes. Concrete International, Vol. 13, No. 7. Imran, I., et al. Aplicability Metoda Desain Kapasitas pada Perancangan Struktur Dinding Geser Beton Bertulang. Seminar dan Pameran HAKI Pengaruh Gempa dan Angin terhadap Struktur Indrawahyuni, Herlin, dkk Mekanika Bahan untuk Teknik Sipil. Malang : Bargie Media Press R. Park & Pauley Reinforced Concrete Structure. John Wiley & Sons Inc. Schueller, Wolfgang High-Rise Building Structures. John Wiley & Sons Inc. Wibowo, Ari Seismic performance of Insitu and precast soft Storey buildings. Thesis. Faculty of Engineering and Industrial Sciences Swinburne University of Technology 11

PERILAKU GESER PADA DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (Hw/Lw) TERHADAP BEBAN LATERAL STATIK

PERILAKU GESER PADA DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (Hw/Lw) TERHADAP BEBAN LATERAL STATIK ERILAKU GESER ADA DINDING ANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (Hw/Lw) TERHADA BEBAN LATERAL STATIK Ari Wibowo 1, Wisnumurti 1, Ribut Hermawan 2 1 Dosen / Jurusan Teknik

Lebih terperinci

POLA RETAK DAN LEBAR RETAK DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (Hw/Lw) TERHADAP BEBAN LATERAL STATIK

POLA RETAK DAN LEBAR RETAK DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (Hw/Lw) TERHADAP BEBAN LATERAL STATIK POLA RETAK DAN LEBAR RETAK DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (Hw/Lw) TERHADAP BEBAN LATERAL STATIK Uswatun Chasanah, Wisnumurti, Indradi Wijatmiko Jurusan

Lebih terperinci

ANALISA TEGANGAN DAN REGANGAN DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (Hw/Lw) TERHADAP BEBAN LATERAL STATIK

ANALISA TEGANGAN DAN REGANGAN DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (Hw/Lw) TERHADAP BEBAN LATERAL STATIK ANALISA TEGANGAN DAN REGANGAN DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (Hw/Lw) TERHADAP BEBAN LATERAL STATIK Putri Dewanti S.U, Sri Murni Dewi, Wisnumurti Jurusan

Lebih terperinci

PERILAKU LENTUR DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (Hw/Lw) TERHADAP BEBAN LATERAL STATIK

PERILAKU LENTUR DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (Hw/Lw) TERHADAP BEBAN LATERAL STATIK PERILAKU LENTUR DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (Hw/Lw) TERHADAP BEBAN LATERAL STATIK Gingga Molidan, Indradi Wijatmiko, Siti Nurlina Jurusan Teknik Sipil

Lebih terperinci

EKSPERIMEN DAN ANALISIS BEBAN LENTUR PADA BALOK BETON BERTULANGAN BAMBU RAJUTAN

EKSPERIMEN DAN ANALISIS BEBAN LENTUR PADA BALOK BETON BERTULANGAN BAMBU RAJUTAN EKSPERIMEN DAN ANALISIS BEBAN LENTUR PADA BALOK BETON BERTULANGAN BAMBU RAJUTAN Devi Nuralinah Dosen / Teknik Sipil / Fakultas Teknik / Universitas Brawijaya Malang Jl. MT Haryono 167, Malang 65145, Indonesia

Lebih terperinci

ANALISIS DAKTILITAS DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (HW/LW) TERHADAP BEBAN LATERAL STATIK

ANALISIS DAKTILITAS DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (HW/LW) TERHADAP BEBAN LATERAL STATIK ANALISIS DAKTILITAS DINDING PANEL JARING KAWAT BAJA TIGA DIMENSI DENGAN VARIASI RASIO TINGGI DAN LEBAR (HW/LW) TERHADAP BEBAN LATERAL STATIK Roni Dwi Prastyo, Sri Murni Dewi, Ari Wibowo Jurusan Teknik

Lebih terperinci

PENGARUH VARIASI JARAK SENGKANG DAN RASIO TULANGAN LONGITUDINAL TERHADAP MEKANISME DAN POLA RETAK KOLOM BERTULANGAN RINGAN AKIBAT BEBAN SIKLIK

PENGARUH VARIASI JARAK SENGKANG DAN RASIO TULANGAN LONGITUDINAL TERHADAP MEKANISME DAN POLA RETAK KOLOM BERTULANGAN RINGAN AKIBAT BEBAN SIKLIK PENGARUH VARIASI JARAK SENGKANG DAN RASIO TULANGAN LONGITUDINAL TERHADAP MEKANISME DAN POLA RETAK KOLOM BERTULANGAN RINGAN AKIBAT BEBAN SIKLIK Ari Wibowo 1, Sugeng P. Budio 1, Siti Nurlina 1, Eva Arifi

Lebih terperinci

PERBANDINGAN KUAT LENTUR DUA ARAH PLAT BETON BERTULANGAN BAMBU RANGKAP LAPIS STYROFOAM

PERBANDINGAN KUAT LENTUR DUA ARAH PLAT BETON BERTULANGAN BAMBU RANGKAP LAPIS STYROFOAM PERBANDINGAN KUAT LENTUR DUA ARAH PLAT BETON BERTULANGAN BAMBU RANGKAP LAPIS STYROFOAM DENGAN PLAT BETON BERTULANGAN BAMBU RANGKAP TANPA STYROFOAM Lutfi Pakusadewo, Wisnumurti, Ari Wibowo Jurusan Teknik

Lebih terperinci

PENGARUH PENAMBAHAN KAIT PADA TULANGAN BAMBU TERHADAP RESPON LENTUR BALOK BETON BERTULANGAN BAMBU

PENGARUH PENAMBAHAN KAIT PADA TULANGAN BAMBU TERHADAP RESPON LENTUR BALOK BETON BERTULANGAN BAMBU PENGARUH PENAMBAHAN KAIT PADA TULANGAN BAMBU TERHADAP RESPON LENTUR BALOK BETON BERTULANGAN BAMBU Agustin Dita Lestari *1, Sri Murni Dewi 2, Wisnumurti 2 1 Mahasiswa / Program Magister / Jurusan Teknik

Lebih terperinci

PENGARUH VARIASI LETAK TULANGAN HORIZONTAL TERHADAP DAKTILITAS DAN KEKAKUAN DINDING GESER DENGAN PEMBEBANAN SIKLIK (QUASI-STATIS)

PENGARUH VARIASI LETAK TULANGAN HORIZONTAL TERHADAP DAKTILITAS DAN KEKAKUAN DINDING GESER DENGAN PEMBEBANAN SIKLIK (QUASI-STATIS) PENGARUH VARIASI LETAK TULANGAN HORIZONTAL TERHADAP DAKTILITAS DAN KEKAKUAN DINDING GESER DENGAN PEMBEBANAN SIKLIK (QUASI-STATIS) Aldi Efrata Sembiring *1, Ari Wibowo 2, Lilya Susanti 2 1 Mahasiswa / Program

Lebih terperinci

Seminar Nasional VII 2011 Teknik Sipil ITS Surabaya Penanganan Kegagalan Pembangunan dan Pemeliharaan Infrastruktur

Seminar Nasional VII 2011 Teknik Sipil ITS Surabaya Penanganan Kegagalan Pembangunan dan Pemeliharaan Infrastruktur STUDI PERILAKU SAMBUNGAN BALOK PRACETAK UNTUK RUMAH SEDERHANA TAHAN GEMPA AKIBAT BEBAN STATIK Leonardus Setia Budi Wibowo 1 Tavio 2 Hidayat Soegihardjo 3 Endah Wahyuni 4 dan Data Iranata 5 1 Mahasiswa

Lebih terperinci

ANALISIS DAN EKSPERIMEN PELAT BETON BERTULANG BAMBU LAPIS STYROFOAM

ANALISIS DAN EKSPERIMEN PELAT BETON BERTULANG BAMBU LAPIS STYROFOAM ANALISIS DAN EKSPERIMEN PELAT BETON BERTULANG BAMBU LAPIS STYROFOAM Desinta Nur Lailasari *1, Sri Murni Dewi 2, Devi Nuralinah 2 1 Mahasiswa / Program Studi Magister / Jurusan Teknik Sipil / Fakultas Teknik

Lebih terperinci

STUDI PERILAKU SAMBUNGAN BALOK PRACETAK UNTUK RUMAH SEDERHANA TAHAN GEMPA AKIBAT BEBAN STATIK

STUDI PERILAKU SAMBUNGAN BALOK PRACETAK UNTUK RUMAH SEDERHANA TAHAN GEMPA AKIBAT BEBAN STATIK STUDI PERILAKU SAMBUNGAN BALOK PRACETAK UNTUK RUMAH SEDERHANA TAHAN GEMPA AKIBAT BEBAN STATIK Leonardus Setia Budi Wibowo Tavio Hidayat Soegihardjo 3 Endah Wahyuni 4 dan Data Iranata 5 Mahasiswa S Jurusan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Pembebanan Komponen Struktur Dalam perencanaan bangunan tinggi, struktur gedung harus direncanakan agar kuat menahan semua beban yang bekerja padanya. Berdasarkan Arah kerja

Lebih terperinci

BAB III UJI LABORATORIUM. Pengujian bahan yang akan diuji merupakan bangunan yang terdiri dari 3

BAB III UJI LABORATORIUM. Pengujian bahan yang akan diuji merupakan bangunan yang terdiri dari 3 BAB III UJI LABORATORIUM 3.1. Benda Uji Pengujian bahan yang akan diuji merupakan bangunan yang terdiri dari 3 dimensi, tiga lantai yaitu dinding penumpu yang menahan beban gempa dan dinding yang menahan

Lebih terperinci

PENGARUH VARIASI JARAK TULANGAN HORIZONTAL DAN KEKANGAN TERHADAP DAKTILITAS DAN KEKAKUAN DINDING GESER DENGAN PEMBEBANAN SIKLIK (QUASI-STATIS)

PENGARUH VARIASI JARAK TULANGAN HORIZONTAL DAN KEKANGAN TERHADAP DAKTILITAS DAN KEKAKUAN DINDING GESER DENGAN PEMBEBANAN SIKLIK (QUASI-STATIS) PENGARUH VARIASI JARAK TULANGAN HORIZONTAL DAN KEKANGAN TERHADAP DAKTILITAS DAN KEKAKUAN DINDING GESER DENGAN PEMBEBANAN SIKLIK (QUASI-STATIS) NASKAH PUBLIKASI TEKNIK SIPIL Ditujukan untuk memenuhi persyaratan

Lebih terperinci

PENGARUH JARAK SENGKANG DAN RASIO TULANGAN LONGITUDINAL TERHADAP DAKTILITAS KOLOM BERTULANGAN RINGAN AKIBAT BEBAN SIKLIK

PENGARUH JARAK SENGKANG DAN RASIO TULANGAN LONGITUDINAL TERHADAP DAKTILITAS KOLOM BERTULANGAN RINGAN AKIBAT BEBAN SIKLIK PENGARUH JARAK SENGKANG DAN RASIO TULANGAN LONGITUDINAL TERHADAP DAKTILITAS KOLOM BERTULANGAN RINGAN AKIBAT BEBAN SIKLIK Karina Pearlaura Vadra, Ari Wibowo, Sugeng P. Budio Jurusan Teknik Sipil Fakultas

Lebih terperinci

PEMODELAN DINDING GESER PADA GEDUNG SIMETRI

PEMODELAN DINDING GESER PADA GEDUNG SIMETRI PEMODELAN DINDING GESER PADA GEDUNG SIMETRI Nini Hasriyani Aswad Staf Pengajar Jurusan Teknik Sipil Fakultas Teknik Universitas Haluoleo Kampus Hijau Bumi Tridharma Anduonohu Kendari 93721 niniaswad@gmail.com

Lebih terperinci

Aplicability Metoda Desain Kapasitas pada Perancangan Struktur Dinding Geser Beton Bertulang

Aplicability Metoda Desain Kapasitas pada Perancangan Struktur Dinding Geser Beton Bertulang Aplicability Metoda Desain Kapasitas pada Perancangan Struktur Dinding Geser Beton Bertulang Iswandi Imran 1, Ester Yuliari 2, Suhelda 5, dan A. Kristianto 3 1. PENDAHULUAN Bangunan tinggi tahan gempa

Lebih terperinci

KERUNTUHAN LENTUR BALOK PADA STRUKTUR JOINT BALOK-KOLOM BETON BERTULANG EKSTERIOR AKIBAT BEBAN SIKLIK

KERUNTUHAN LENTUR BALOK PADA STRUKTUR JOINT BALOK-KOLOM BETON BERTULANG EKSTERIOR AKIBAT BEBAN SIKLIK KERUNTUHAN LENTUR BALOK PADA STRUKTUR JOINT BALOK-KOLOM BETON BERTULANG EKSTERIOR AKIBAT BEBAN SIKLIK Ratna Widyawati 1 Abstrak Dasar perencanaan struktur beton bertulang adalah under-reinforced structure

Lebih terperinci

PENGARUH PENGGUNAAN PENGEKANG (BRACING) PADA DINDING PASANGAN BATU BATA TERHADAP RESPON GEMPA

PENGARUH PENGGUNAAN PENGEKANG (BRACING) PADA DINDING PASANGAN BATU BATA TERHADAP RESPON GEMPA PENGARUH PENGGUNAAN PENGEKANG (BRACING) PADA DINDING PASANGAN BATU BATA TERHADAP RESPON GEMPA Lilya Susanti, Sri Murni Dewi, Siti Nurlina Jurusan Teknik Sipil, Fakultas Teknik, Universitas Brawijaya Malang

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu

IV. HASIL DAN PEMBAHASAN. Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu IV. HASIL DAN PEMBAHASAN Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu pengujian mekanik beton, pengujian benda uji balok beton bertulang, analisis hasil pengujian, perhitungan

Lebih terperinci

RESPON DINAMIS STRUKTUR PADA PORTAL TERBUKA, PORTAL DENGAN BRESING V DAN PORTAL DENGAN BRESING DIAGONAL

RESPON DINAMIS STRUKTUR PADA PORTAL TERBUKA, PORTAL DENGAN BRESING V DAN PORTAL DENGAN BRESING DIAGONAL RESPON DINAMIS STRUKTUR PADA PORTAL TERBUKA, PORTAL DENGAN BRESING V DAN PORTAL DENGAN BRESING DIAGONAL Oleh : Fajar Nugroho Jurusan Teknik Sipil dan Perencanaan,Institut Teknologi Padang fajar_nugroho17@yahoo.co.id

Lebih terperinci

PENGUJIAN KAPASITAS LENTUR DAN KAPASITAS TUMPU KONSTRUKSI DINDING ALTERNATIF BERBAHAN DASAR EPOXY POLYSTYRENE (EPS)

PENGUJIAN KAPASITAS LENTUR DAN KAPASITAS TUMPU KONSTRUKSI DINDING ALTERNATIF BERBAHAN DASAR EPOXY POLYSTYRENE (EPS) PENGUJIAN KAPASITAS LENTUR DAN KAPASITAS TUMPU KONSTRUKSI DINDING ALTERNATIF BERBAHAN DASAR EPOXY POLYSTYRENE (EPS) Agus Setiawan Jurusan Teknik Sipil, Fakultas Sains dan Teknologi, Universitas Bina Nusantara

Lebih terperinci

NASKAH TERPUBLIKASI TEKNIK SIPIL

NASKAH TERPUBLIKASI TEKNIK SIPIL PENGARUH VARIASI JARAK TULANGAN VERTIKAL TERHADAP POLA RETAK DAN MOMEN KAPASITAS PADA DINDING GESER DENGAN PEMBEBANAN SIKLIK (QUASI-STATIS) NASKAH TERPUBLIKASI TEKNIK SIPIL Ditujukan untuk memenuhi persyaratan

Lebih terperinci

PERILAKU STRUKTUR BETON BERTULANG AKIBAT PEMBEBANAN SIKLIK

PERILAKU STRUKTUR BETON BERTULANG AKIBAT PEMBEBANAN SIKLIK PERILAKU STRUKTUR BETON BERTULANG AKIBAT PEMBEBANAN SIKLIK Raja Marpaung 1 ), Djaka Suhirkam 2 ), Lina Flaviana Tilik 3 ) Staf Pengajar Jurusan Teknik Sipil Polsri Jalan Srijaya Negara Bukit Besar Palembang

Lebih terperinci

SLOOF PRACETAK DARI BAMBU KOMPOSIT

SLOOF PRACETAK DARI BAMBU KOMPOSIT SLOOF PRACETAK DARI BAMBU KOMPOSIT Ilanka Cahya Dewi, Sri Murni Dewi, Agoes Soehardjono Jurusan Teknik Sipil, Fakultas Teknik, Universitas Brawijaya Malang Jl. MT. Haryono 167, Malang 65145, Indonesia

Lebih terperinci

TINJAUAN KEKUATAN DAN ANALISIS TEORITIS MODEL SAMBUNGAN UNTUK MOMEN DAN GESER PADA BALOK BETON BERTULANG TESIS

TINJAUAN KEKUATAN DAN ANALISIS TEORITIS MODEL SAMBUNGAN UNTUK MOMEN DAN GESER PADA BALOK BETON BERTULANG TESIS TINJAUAN KEKUATAN DAN ANALISIS TEORITIS MODEL SAMBUNGAN UNTUK MOMEN DAN GESER PADA BALOK BETON BERTULANG TESIS Diajukan Kepada Program Magister Teknik Sipil Universitas Muhammadiyah Surakarta Untuk Memenuhi

Lebih terperinci

PUBLIKASI ILMIAH TEKNIK SIPIL

PUBLIKASI ILMIAH TEKNIK SIPIL PENGARUH LETAK LAP SPLICE DAN RASIO TULANGAN LONGITUDINAL TERHADAP POLA RETAK KOLOM BERTULANGAN RINGAN AKIBAT BEBAN SIKLIK PUBLIKASI ILMIAH TEKNIK SIPIL Ditujukan untuk memenuhi persyaratan memperoleh

Lebih terperinci

STUDI DAKTILITAS DAN KUAT LENTUR BALOK BETON RINGAN DAN BETON MUTU TINGGI BERTULANG

STUDI DAKTILITAS DAN KUAT LENTUR BALOK BETON RINGAN DAN BETON MUTU TINGGI BERTULANG 9 Vol. Thn. XV April 8 ISSN: 854-847 STUDI DAKTILITAS DAN KUAT LENTUR BALOK BETON RINGAN DAN BETON MUTU TINGGI BERTULANG Ruddy Kurniawan, Pebrianti Laboratorium Material dan Struktur Jurusan Teknik Sipil

Lebih terperinci

Prosiding Seminar Nasional Teknik Sipil 2016 ISSN: Fakultas Teknik Universitas Muhammadiyah Surakarta

Prosiding Seminar Nasional Teknik Sipil 2016 ISSN: Fakultas Teknik Universitas Muhammadiyah Surakarta GAYA LATERAL IN PLANE STRUKTUR DINDING PASANGAN BATA ½ BATU MELALUI BEBAN STATIK Hakas Prayuda 1*, Martyana Dwi Cahyati 2 1, 2, Jurusan Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Yogyakarta

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Material baja ringan (Cold Formed Steel) merupakan baja profil yang dibentuk sedemikian rupa melalui proses pendinginan sebuah pelat baja. Baja ringan memiliki ketebalan

Lebih terperinci

KINERJA DINDING BATA TANPA TULANGAN TERHADAP BEBAN GEMPA

KINERJA DINDING BATA TANPA TULANGAN TERHADAP BEBAN GEMPA KINERJA DINDING BATA TANPA TULANGAN TERHADAP BEBAN GEMPA Age, Zulfikar Djauhari,Iskandar R.S Jurusan Teknik Sipil S1 - Universitas Riau Kampus Bina Widya, Km 12,5 Simpang Baru, Pekanbaru Email : Agesipilunri@gmail.com

Lebih terperinci

BAB V. Resume kerusakan benda uji pengujian material dapat dilihat pada Tabel V-1 berikut. Tabel V-1 Resume pola kerusakan benda uji material

BAB V. Resume kerusakan benda uji pengujian material dapat dilihat pada Tabel V-1 berikut. Tabel V-1 Resume pola kerusakan benda uji material BAB V ANALISIS HASIL EKSPERIMEN 5.1 UMUM Hasil eksperimen pada 10 benda uji menunjukkan adanya persamaan dan perbedaan pada benda uji satu sama lain. Bab ini menampilkan pembahasan hasil eksperimen dengan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan ilmu pengetahuan dan teknologi dalam pembangunan infrastrukur semakit pesat. Hal ini dapat dilihat dengan banyaknya inovasi baru baik metoda pelaksanaan

Lebih terperinci

Kata Kunci : Aspek Rasio, Dinding Geser, Drift, Momen Ultimit, Panjang Retak, Pola Retak

Kata Kunci : Aspek Rasio, Dinding Geser, Drift, Momen Ultimit, Panjang Retak, Pola Retak PENGARUH ASPEK RASIO (Hw/Lw) TERHADAP POLA RETAK DAN MOMEN KAPASITAS PADA DINDING GESER BERTULANGAN HORIZONTAL BERJARAK RAPAT DI BAWAH PEMBEBANAN SIKLIK (QUASI-STATIS) (The Effect of Aspect Ratio (Hw/Lw)

Lebih terperinci

KAJIAN EKSPERIMENTAL PERILAKU BALOK BETON TULANGAN TUNGGAL BERDASARKAN TIPE KERUNTUHAN BALOK ABSTRAK

KAJIAN EKSPERIMENTAL PERILAKU BALOK BETON TULANGAN TUNGGAL BERDASARKAN TIPE KERUNTUHAN BALOK ABSTRAK VOLUME 5 NO. 2, OKTOBER 9 KAJIAN EKSPERIMENTAL PERILAKU BALOK BETON TULANGAN TUNGGAL BERDASARKAN TIPE KERUNTUHAN BALOK Oscar Fithrah Nur 1 ABSTRAK Keruntuhan yang terjadi pada balok tulangan tunggal dipengaruhi

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Semakin berkembangnya teknologi dan ilmu pengetahuan dewasa ini, juga membuat semakin berkembangnya berbagai macam teknik dalam pembangunan infrastruktur, baik itu

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang

BAB I PENDAHULUAN A. Latar Belakang BAB I PENDAHULUAN A. Latar Belakang Dinding geser tidak mungkin digunakan tanpa adanya beberapa bukaan (openings) di dalamnya. Permintaan para arsitek yang ingin menempatkan jendela, pintu, lift, koridor,

Lebih terperinci

PENGARUH VARIASI MODEL TERHADAP RESPONS BEBAN DAN LENDUTAN PADA RANGKA KUDA-KUDA BETON KOMPOSIT TULANGAN BAMBU

PENGARUH VARIASI MODEL TERHADAP RESPONS BEBAN DAN LENDUTAN PADA RANGKA KUDA-KUDA BETON KOMPOSIT TULANGAN BAMBU PENGARUH VARIASI MODEL TERHADAP RESPONS BEBAN DAN LENDUTAN PADA RANGKA KUDA-KUDA BETON KOMPOSIT TULANGAN BAMBU Ristinah S., Retno Anggraini, Wawan Satryawan Jurusan Teknik Sipil, Fakultas Teknik, Universitas

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan ilmu pengetahuan dan teknologi telah membawa suatu perubahan bagi dunia konstruksi, khususnya di Indonesia. Kita telah mengenal adanya konstruksi kayu,

Lebih terperinci

ANALISIS KINERJA BANGUNAN BETON BERTULANG DENGAN LAYOUT BERBENTUK YANG MENGALAMI BEBAN GEMPA TERHADAP EFEK SOFT-STOREY SKRIPSI

ANALISIS KINERJA BANGUNAN BETON BERTULANG DENGAN LAYOUT BERBENTUK YANG MENGALAMI BEBAN GEMPA TERHADAP EFEK SOFT-STOREY SKRIPSI ANALISIS KINERJA BANGUNAN BETON BERTULANG DENGAN LAYOUT BERBENTUK YANG MENGALAMI BEBAN GEMPA TERHADAP EFEK SOFT-STOREY SKRIPSI Oleh : RONI SYALIM 07 172 043 JURUSAN TEKNIK SIPIL - FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

BERAT VOLUME DAN KEKAKUAN PLAT SATU ARAH PADA PLAT BETON BERTULANGAN BAMBU DENGAN LAPIS STYROFOAM

BERAT VOLUME DAN KEKAKUAN PLAT SATU ARAH PADA PLAT BETON BERTULANGAN BAMBU DENGAN LAPIS STYROFOAM BERAT VOLUME DAN KEKAKUAN PLAT SATU ARAH PADA PLAT BETON BERTULANGAN BAMBU DENGAN LAPIS STYROFOAM Candra Kurniawan Ramadhani *1, Sri Murni Dewi 2, Devi Nuralinah 2 1 Mahasiswa / Program Sarjana / Jurusan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Struktur komposit merupakan gabungan antara dua atau lebih jenis material yang berbeda sehingga merupakan satu kesatuan dalam menahan gaya atau beban luar, dimana komposit

Lebih terperinci

STUDI EKSPERIMENTAL PERILAKU GESER BALOK PADA SAMBUNGAN BALOK KOLOM BETON BERTULANG ABSTRAK

STUDI EKSPERIMENTAL PERILAKU GESER BALOK PADA SAMBUNGAN BALOK KOLOM BETON BERTULANG ABSTRAK VOLUME 12 NO. 1, FEBRUARI 216 STUDI EKSPERIMENTAL PERILAKU GESER BALOK PADA SAMBUNGAN BALOK KOLOM BETON BERTULANG Rita Anggraini 1, Jafril Tanjung 2, Jati Sunaryati 3, Rendy Thamrin 4, Riza Aryanti 5 ABSTRAK

Lebih terperinci

PENGARUH PENEMPATAN PENYAMBUNGAN PADA PERILAKU RANGKAIAN BALOK-KOLOM BETON PRACETAK BAGIAN SISI LUAR

PENGARUH PENEMPATAN PENYAMBUNGAN PADA PERILAKU RANGKAIAN BALOK-KOLOM BETON PRACETAK BAGIAN SISI LUAR MAKARA, TEKNOLOGI, VOL. 8, NO. 3, DESEMBER 2004: 90-97 PENGARUH PENEMPATAN PENYAMBUNGAN PADA PERILAKU RANGKAIAN BALOK-KOLOM BETON PRACETAK BAGIAN SISI LUAR Elly Tjahjono dan Heru Purnomo Departemen Teknik

Lebih terperinci

NASKAH PUBLIKASI TEKNIK SIPIL. Ditujukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik AYU SAPUTRI NIM.

NASKAH PUBLIKASI TEKNIK SIPIL. Ditujukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik AYU SAPUTRI NIM. PENGARUH ASPEK RASIO (H W /L W ) TERHADAP POLA RETAK DAN MOMEN KAPASITAS PADA DINDING GESER BERTULANGAN HORIZONTAL BERJARAK LEBAR DI BAWAH PEMBEBANAN SIKLIK (QUASI-STATIS) NASKAH PUBLIKASI TEKNIK SIPIL

Lebih terperinci

I. PENDAHULUAN. Pekerjaan struktur seringkali ditekankan pada aspek estetika dan kenyamanan

I. PENDAHULUAN. Pekerjaan struktur seringkali ditekankan pada aspek estetika dan kenyamanan I. PENDAHULUAN A. Latar Belakang Pekerjaan struktur seringkali ditekankan pada aspek estetika dan kenyamanan selain dari pada aspek keamanan. Untuk mempertahankan aspek tersebut maka perlu adanya solusi

Lebih terperinci

ANALISA PENGARUH DINDING GESER PADA STRUKTUR BANGUNAN HOTEL BUMI MINANG AKIBAT BEBAN GEMPA ABSTRAK

ANALISA PENGARUH DINDING GESER PADA STRUKTUR BANGUNAN HOTEL BUMI MINANG AKIBAT BEBAN GEMPA ABSTRAK VOLUME 6 NO. 1, FEBRUARI 2010 ANALISA PENGARUH DINDING GESER PADA STRUKTUR BANGUNAN HOTEL BUMI MINANG AKIBAT BEBAN GEMPA Fauzan 1, Zaidir 2, Dwi Putri Nengsi 3, Indri Miswar 4 ABSTRAK Sumatera Barat merupakan

Lebih terperinci

PEMANFAATAN BAMBU UNTUK TULANGAN JALAN BETON

PEMANFAATAN BAMBU UNTUK TULANGAN JALAN BETON PEMANFAATAN BAMBU UNTUK TULANGAN JALAN BETON Fakultas Teknik, Universitas Negeri Semarang Abstrak. Bambu dapat tumbuh dengan cepat dan mempunyai sifat mekanik yang baik dan dapat digunakan sebagai bahan

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN. Tabel 5.1 Spesifikasi Benda Uji Benda Uji Tulangan Dimensi Kolom BU 1 D mm x 225 mm Balok BU 1 D mm x 200 mm

BAB V HASIL DAN PEMBAHASAN. Tabel 5.1 Spesifikasi Benda Uji Benda Uji Tulangan Dimensi Kolom BU 1 D mm x 225 mm Balok BU 1 D mm x 200 mm BAB V HASIL DAN PEMBAHASAN Bab ini akan membahas hasil dari analisa uji sambungan balok kolom precast. Penelitian dilakukan dengan metode elemen hingga yang menggunakan program ABAQUS. memodelkan dua jenis

Lebih terperinci

PERILAKU LATERAL SIKLIK PORTAL BETON BERTULANG BERISI DINDING BATA MERAH

PERILAKU LATERAL SIKLIK PORTAL BETON BERTULANG BERISI DINDING BATA MERAH ISSN 2088-9321 ISSN e-2502-5295 PERILAKU LATERAL SIKLIK PORTAL BETON BERTULANG BERISI DINDING BATA MERAH pp. 845-856 Mutia Intan Sari 1, Abdullah 2, Mochammad Afifuddin 3 1) Mahasiswa Magister Teknik Sipil,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. aman secara konstruksi maka struktur tersebut haruslah memenuhi persyaratan

BAB II TINJAUAN PUSTAKA. aman secara konstruksi maka struktur tersebut haruslah memenuhi persyaratan BAB II TINJAUAN PUSTAKA 2.1 Dasar-dasar Pembebanan Struktur Dalam merencanakan suatu struktur bangunan tidak akan terlepas dari beban-beban yang bekerja pada struktur tersebut. Agar struktur bangunan tersebut

Lebih terperinci

PENGARUH PENINGKATAN KEKUATAN MORTAR TERHADAP DEFORMASI DINDING BATA MERAH LOKAL

PENGARUH PENINGKATAN KEKUATAN MORTAR TERHADAP DEFORMASI DINDING BATA MERAH LOKAL PENGARUH PENINGKATAN KEKUATAN MORTAR TERHADAP DEFORMASI DINDING BATA MERAH LOKAL Aldi Jaka Asmara Dana, Wisnumurti, Lilya Susanti Jurusan Teknik Sipil, Fakultas Teknik, Universitas Brawijaya Malang Jl.

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Perkembangan infrastruktur dalam industri konstruksi pada abad ke-21 terus berkembang seiring dengan pertumbuhan ekonomi dan kecepatan informasi. Oleh karena

Lebih terperinci

PENGARUH SENSITIFITAS DIMENSI DAN PENULANGAN KOLOM PADA KURVA KAPASITAS GEDUNG 7 LANTAI TIDAK BERATURAN

PENGARUH SENSITIFITAS DIMENSI DAN PENULANGAN KOLOM PADA KURVA KAPASITAS GEDUNG 7 LANTAI TIDAK BERATURAN Konferensi Nasional Teknik Sipil 3 (KoNTekS 3) Jakarta, 6 7 Mei 2009 PENGARUH SENSITIFITAS DIMENSI DAN PENULANGAN KOLOM PADA KURVA KAPASITAS GEDUNG 7 LANTAI TIDAK BERATURAN Nurlena Lathifah 1 dan Bernardinus

Lebih terperinci

BAB III METODOLOGI. Mulai. Pengumpulan Data. Preliminary Desain Struktur Model-1. Input Beban Yang Bekerja Pada Struktur

BAB III METODOLOGI. Mulai. Pengumpulan Data. Preliminary Desain Struktur Model-1. Input Beban Yang Bekerja Pada Struktur BAB III METODOLOGI 3.1 Pendekatan Untuk mengetahui pengaruh pemasangan partisi bata terhadap karakteristik struktur pada studi ini melalui beberapa tahapan. Adapun tahapan yang dilakukan untuk penyelesaian

Lebih terperinci

ABSTRAK. Kata Kunci: gempa, kolom dan balok, lentur, geser, rekomendasi perbaikan.

ABSTRAK. Kata Kunci: gempa, kolom dan balok, lentur, geser, rekomendasi perbaikan. VOLUME 8 NO. 1, FEBRUARI 2012 EVALUASI KELAYAKAN BANGUNAN BERTINGKAT PASCA GEMPA 30 SEPTEMBER 2009 SUMATERA BARAT ( Studi Kasus : Kantor Dinas Perhubungan, Komunikasi dan Informatika Provinsi Sumatera

Lebih terperinci

Gambar 2.1 Rangka dengan Dinding Pengisi

Gambar 2.1 Rangka dengan Dinding Pengisi BAB II TINJAUAN PUSTAKA 2.1. Dinding Pengisi 2.1.1 Definisi Dinding pengisi yang umumnya difungsikan sebagai penyekat, dinding eksterior, dan dinding yang terdapat pada sekeliling tangga dan elevator secara

Lebih terperinci

BAB I PENDAHULUAN. Perkembangan dunia baik di bidang ekonomi, politik, sosial, budaya

BAB I PENDAHULUAN. Perkembangan dunia baik di bidang ekonomi, politik, sosial, budaya BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian Perkembangan dunia baik di bidang ekonomi, politik, sosial, budaya maupun teknik tidak terlepas dari bangunan tetapi dalam perencanaan bangunan sering tidak

Lebih terperinci

ANALISIS VARIASI KONFIGURASI RANGKA PADA JEMBATAN BAJA (STUDI KASUS JEMBATAN "5" BRIDGE)

ANALISIS VARIASI KONFIGURASI RANGKA PADA JEMBATAN BAJA (STUDI KASUS JEMBATAN 5 BRIDGE) ANALISIS VARIASI KONFIGURASI RANGKA PADA JEMBATAN BAJA (STUDI KASUS JEMBATAN "5" BRIDGE) Candra Zainur Rochim, Achfas Zacoeb, Retno Anggraini Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Lebih terperinci

STUDI EKSPERIMENTAL TENTANG PENGARUH UKURAN BATA MERAH SEBAGAI DINDING PENGISI TERHADAP KETAHANAN LATERAL STRUKTUR BETON BERTULANG

STUDI EKSPERIMENTAL TENTANG PENGARUH UKURAN BATA MERAH SEBAGAI DINDING PENGISI TERHADAP KETAHANAN LATERAL STRUKTUR BETON BERTULANG STUDI EKSPERIMENTAL TENTANG PENGARUH UKURAN BATA MERAH SEBAGAI DINDING PENGISI TERHADAP KETAHANAN LATERAL STRUKTUR BETON BERTULANG Jafril Tanjung 1 dan Maidiawati 2 1 Jurusan Teknik Sipil, Fakultas Teknik,

Lebih terperinci

BAB III METODE PENELITIAN SKRIPSI

BAB III METODE PENELITIAN SKRIPSI BAB III METODE PENELITIAN SKRIPSI KAJIAN PERBANDINGAN RUMAH TINGGAL SEDERHANA DENGAN MENGGUNAKAN BEKISTING BAJA TERHADAP METODE KONVENSIONAL DARI SISI METODE KONSTRUKSI DAN KEKUATAN STRUKTUR IRENE MAULINA

Lebih terperinci

PENGARUH DINDING PENGISI PADA LANTAI DASAR BANGUNAN TINGKAT TINGGI TERHADAP TERJADINYA MEKANISME SOFT STORY

PENGARUH DINDING PENGISI PADA LANTAI DASAR BANGUNAN TINGKAT TINGGI TERHADAP TERJADINYA MEKANISME SOFT STORY PENGARUH DINDING PENGISI PADA LANTAI DASAR BANGUNAN TINGKAT TINGGI TERHADAP TERJADINYA MEKANISME SOFT STORY Dessy S. Tosari 1 (dessytosari@yahoo.com) Elia Hunggurami 2 (Elia Hunggurami@yahoo.com ) Jusuf

Lebih terperinci

PERBANDINGAN KUAT LENTUR SATU ARAH PELAT BETON TULANGAN BAMBU DENGAN PELAT BETON TULANGAN BAMBU ISI STYROFOAM PUBLIKASI ILMIAH TEKNIK SIPIL

PERBANDINGAN KUAT LENTUR SATU ARAH PELAT BETON TULANGAN BAMBU DENGAN PELAT BETON TULANGAN BAMBU ISI STYROFOAM PUBLIKASI ILMIAH TEKNIK SIPIL PERBANDINGAN KUAT LENTUR SATU ARAH PELAT BETON TULANGAN BAMBU DENGAN PELAT BETON TULANGAN BAMBU ISI STYROFOAM PUBLIKASI ILMIAH TEKNIK SIPIL Diajukan untuk memenuhi persyaratan memperoleh gelar Sarjana

Lebih terperinci

STUDI EKSPERIMENTAL SAMBUNGAN KOLOM-KOLOM PADA SISTEM BETON PRACETAK DENGAN MENGGUNAKAN SLEEVES

STUDI EKSPERIMENTAL SAMBUNGAN KOLOM-KOLOM PADA SISTEM BETON PRACETAK DENGAN MENGGUNAKAN SLEEVES STUDI EKSPERIMENTAL SAMBUNGAN KOLOM-KOLOM PADA SISTEM BETON PRACETAK DENGAN MENGGUNAKAN SLEEVES 1. PENDAHULUAN Iswandi Imran, Liyanto Eddy, Mujiono, Elvi Fadilla Sistem beton pracetak telah banyak digunakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan BAB II TINJAUAN PUSTAKA 2.1 Umum Gempa adalah fenomena getaran yang diakibatkan oleh benturan atau pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan (fault zone). Besarnya

Lebih terperinci

BAB IV. HASIL DAN PEMBAHASAN

BAB IV. HASIL DAN PEMBAHASAN BAB IV. HASIL DAN PEMBAHASAN Bab ini menampilkan hasil pengujian karakteristik material bata dan elemen dinding bata yang dilakukan di Laboratorium Rekayasa Struktur Pusat Rekayasa Industri ITB. 4.1. Uji

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan ilmu pengetahuan dan teknologi pada saat sekarang ini juga memberikan dampak kepada dunia konstruksi. Sebelumnya kita telah mengenal kontruksi kayu, konstruksi

Lebih terperinci

PENGARUH PENGGUNAAN WIRE ROPE SEBAGAI PERKUATAN LENTUR TERHADAP KEKUATAN DAN DAKTILITAS BALOK BETON BERTULANG TAMPANG T (040S)

PENGARUH PENGGUNAAN WIRE ROPE SEBAGAI PERKUATAN LENTUR TERHADAP KEKUATAN DAN DAKTILITAS BALOK BETON BERTULANG TAMPANG T (040S) PENGARUH PENGGUNAAN WIRE ROPE SEBAGAI PERKUATAN LENTUR TERHADAP KEKUATAN DAN DAKTILITAS BALOK BETON BERTULANG TAMPANG T (040S) Anggun Tri Atmajayanti 1, Iman Satyarno 2, Ashar Saputra 3 1 Program Studi

Lebih terperinci

NASKAH PUBLIKASI TEKNIK SIPIL

NASKAH PUBLIKASI TEKNIK SIPIL PENGARUH ASPEK RASIO (Hw/Lw) TERHADAP DAKTILITAS DAN KEKAKUAN PADA DINDING GESER BERTULANGAN HORIZONTAL BERJARAK RAPAT DI BAWAH PEMBEBANAN SIKLIK (QUASI-STATIS) NASKAH PUBLIKASI TEKNIK SIPIL Ditujukan

Lebih terperinci

STUDI PENGARUH PEMASANGAN ANGKUR DARI KOLOM KE DINDING BATA PADA RUMAH SEDERHANA AKIBAT BEBAN GEMPA ABSTRAK

STUDI PENGARUH PEMASANGAN ANGKUR DARI KOLOM KE DINDING BATA PADA RUMAH SEDERHANA AKIBAT BEBAN GEMPA ABSTRAK VOLUME 6 NO. 1, FEBRUARI 2010 STUDI PENGARUH PEMASANGAN ANGKUR DARI KOLOM KE DINDING BATA PADA RUMAH SEDERHANA AKIBAT BEBAN GEMPA Febrin Anas Ismail 1 ABSTRAK Gempa bumi yang melanda Sumatera Barat, 6

Lebih terperinci

BAB I PENDAHULUAN. dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau

BAB I PENDAHULUAN. dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau 17 BAB I PENDAHULUAN 1.1. Latar Belakang Dunia konstruksi di Indonesia semakin berkembang dengan pesat. Seiring dengan banyaknya dilakukan penelitian untuk menemukan bahan-bahan baru atau bahan yang dapat

Lebih terperinci

BAB I. PENDAHULUAN 1.1 Latar Belakang

BAB I. PENDAHULUAN 1.1 Latar Belakang BAB I. PENDAHULUAN 1.1 Latar Belakang Dinding bata sering digunakan sebagai partisi pemisah di bagian dalam atau penutup luar bangunan pada struktur portal beton bertulang maupun struktur portal baja,

Lebih terperinci

PENGARUH VARIASI JARAK SENGKANG KOLOM UNTUK RUMAH SEDERHANA TERHADAP BEBAN GEMPA DI PADANG ABSTRAK

PENGARUH VARIASI JARAK SENGKANG KOLOM UNTUK RUMAH SEDERHANA TERHADAP BEBAN GEMPA DI PADANG ABSTRAK VOLUME 6 NO. 2, OKTOBER 2010 PENGARUH VARIASI JARAK SENGKANG KOLOM UNTUK RUMAH SEDERHANA TERHADAP BEBAN GEMPA DI PADANG Febrin Anas Ismail 1 ABSTRAK Gempa yang terjadi di Sumatera Barat merusak banyak

Lebih terperinci

BAB IV ANALISA STRUKTUR

BAB IV ANALISA STRUKTUR BAB IV ANALISA STRUKTUR 4.1 Data-data Struktur Pada bab ini akan membahas tentang analisa struktur dari struktur bangunan yang direncanakan serta spesifikasi dan material yang digunakan. 1. Bangunan direncanakan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Kerangka Berfikir Sengkang merupakan elemen penting pada kolom untuk menahan beban gempa. Selain menahan gaya geser, sengkang juga berguna untuk menahan tulangan utama dan

Lebih terperinci

Studi Eksperimental Kuat Geser Pelat Beton Bertulang Bambu Lapis Styrofoam

Studi Eksperimental Kuat Geser Pelat Beton Bertulang Bambu Lapis Styrofoam Reka Racana Teknik Sipil Itenas No.3 Vol.3 Jurnal Online Institut Teknologi Nasional September 2017 Studi Eksperimental Kuat Geser Pelat Beton Bertulang Bambu Lapis Styrofoam DESINTA NUR LAILASARI 1, SRI

Lebih terperinci

BAB 4 PENGOLAHAN DATA DAN ANALISA

BAB 4 PENGOLAHAN DATA DAN ANALISA BAB 4 PENGOLAHAN DATA DAN ANALISA 4.1 Studi Eksperimental 4.1.1 Pendahuluan Model dari eksperimen ini diasumsikan sesuai dengan kondisi di lapangan, yaitu berupa balok beton bertulang untuk balkon yang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Inovasi terhadap struktur kolom komposit telah banyak diteliti dan dikembangkan. Terdapat beberapa jenis struktur komposit baja-beton yang sering digunakan, yaitu baja

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang

BAB I PENDAHULUAN A. Latar Belakang BAB I PENDAHULUAN A. Latar Belakang Ilmu teknologi dalam bidang teknik sipil mengalami perkembangan dengan cepat. Beton merupakan salah satu unsur yang sangat penting dalam struktur bangunan pada saat

Lebih terperinci

KUAT LENTUR PROFIL LIPPED CHANNEL BERPENGAKU DENGAN PENGISI BETON RINGAN BERAGREGAT KASAR AUTOCLAVED AERATED CONCRETE HEBEL

KUAT LENTUR PROFIL LIPPED CHANNEL BERPENGAKU DENGAN PENGISI BETON RINGAN BERAGREGAT KASAR AUTOCLAVED AERATED CONCRETE HEBEL Konferensi Nasional Teknik Sipil 3 (KoNTekS 3) Jakarta, 6 7 Mei 2009 KUAT LENTUR PROFIL LIPPED CHANNEL BERPENGAKU DENGAN PENGISI BETON RINGAN BERAGREGAT KASAR AUTOCLAVED AERATED CONCRETE HEBEL Ade Lisantono

Lebih terperinci

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek DAFTAR NOTASI A g = Luas bruto penampang (mm 2 ) A n = Luas bersih penampang (mm 2 ) A tp = Luas penampang tiang pancang (mm 2 ) A l =Luas total tulangan longitudinal yang menahan torsi (mm 2 ) A s = Luas

Lebih terperinci

STUDI ANALISIS DAN EKSPERIMENTAL PENGARUH PERKUATAN SAMBUNGAN PADA STRUKTUR JEMBATAN RANGKA CANAI DINGIN TERHADAP LENDUTANNYA

STUDI ANALISIS DAN EKSPERIMENTAL PENGARUH PERKUATAN SAMBUNGAN PADA STRUKTUR JEMBATAN RANGKA CANAI DINGIN TERHADAP LENDUTANNYA STUDI ANALISIS DAN EKSPERIMENTAL PENGARUH PERKUATAN SAMBUNGAN PADA STRUKTUR JEMBATAN RANGKA CANAI DINGIN TERHADAP LENDUTANNYA Roland Martin S 1*)., Lilya Susanti 2), Erlangga Adang Perkasa 3) 1,2) Dosen,

Lebih terperinci

BAB VII PEMBAHASAN MASALAH. mengetahui metode di lapangan, maka dibuatkan gambar shop drawing. Dimana

BAB VII PEMBAHASAN MASALAH. mengetahui metode di lapangan, maka dibuatkan gambar shop drawing. Dimana BAB VII PEMBAHASAN MASALAH 7.1 Uraian Umum Dalam setiap proyek konstruksi, metode pelaksanaan konstruksi merupakan salah satu proses pelaksanaan konstruksi yang harus direncanakan sebelumnya. Untuk mengetahui

Lebih terperinci

PERHITUNGAN STRUKTUR BETON BERTULANG HOTEL 8 LANTAI DI JALAN AHMAD YANI 2 KUBU RAYA

PERHITUNGAN STRUKTUR BETON BERTULANG HOTEL 8 LANTAI DI JALAN AHMAD YANI 2 KUBU RAYA PERHITUNGAN STRUKTUR BETON BERTULANG HOTEL 8 LANTAI DI JALAN AHMAD YANI 2 KUBU RAYA Novian 1), Andry Alim Lingga 2), Gatot Setya Budi 2) Abstrak Seiring dengan meningkatnya perkembangan pembangunan dan

Lebih terperinci

Desain Struktur Beton Bertulang Tahan Gempa

Desain Struktur Beton Bertulang Tahan Gempa Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 SKS : 3 SKS Desain Struktur Beton Bertulang Tahan Gempa Pertemuan 13, 14 TIU : Mahasiswa dapat mendesain berbagai elemen struktur beton bertulang TIK

Lebih terperinci

RESPON SAMBUNGAN GROUTING PADA KUDA-KUDA BETON KOMPOSIT TULANGAN BAMBU TERHADAP VARIASI BEBAN VERTIKAL SIMETRIS DAN HORIZONTAL NASKAH PUBLIKASI

RESPON SAMBUNGAN GROUTING PADA KUDA-KUDA BETON KOMPOSIT TULANGAN BAMBU TERHADAP VARIASI BEBAN VERTIKAL SIMETRIS DAN HORIZONTAL NASKAH PUBLIKASI RESPON SAMBUNGAN GROUTING PADA KUDA-KUDA BETON KOMPOSIT TULANGAN BAMBU TERHADAP VARIASI BEBAN VERTIKAL SIMETRIS DAN HORIZONTAL NASKAH PUBLIKASI TEKNIK SIPIL Ditujukan untuk memenuhi persyaratan memperoleh

Lebih terperinci

KAJIAN EKSPERIMENTAL POLA RETAK PADA PORTAL BETON BERTULANG AKIBAT BEBAN QUASI CYCLIC ABSTRAK

KAJIAN EKSPERIMENTAL POLA RETAK PADA PORTAL BETON BERTULANG AKIBAT BEBAN QUASI CYCLIC ABSTRAK VOLUME 6 NO. 1, FEBRUARI 2010 KAJIAN EKSPERIMENTAL POLA RETAK PADA PORTAL BETON BERTULANG AKIBAT BEBAN QUASI CYCLIC Oscar Fithrah Nur 1 ABSTRAK Kajian eksperimental ini dilakukan untuk mendapatkan kurva

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 [12] Perbandingan umum antara sistem struktur dengan jumlah tingkat

BAB II DASAR TEORI. Gambar 2.1 [12] Perbandingan umum antara sistem struktur dengan jumlah tingkat BAB II DASAR TEORI 2.1 SISTEM STRUKTUR Sistem struktur adalah kombinasi dari berbagai elemen struktur yang disusun sedemikian rupa sehingga membentuk satu kesatuan struktur yang dapat memikul beban-beban

Lebih terperinci

Ika Bali 1,2* dan Sadikin 1. Jurusan Teknik Sipil, Universitas Tarumanagara, Jl. Letjen. S. Parman No.1, Jakarta 11440

Ika Bali 1,2* dan Sadikin 1. Jurusan Teknik Sipil, Universitas Tarumanagara, Jl. Letjen. S. Parman No.1, Jakarta 11440 PREDIKSI LENDUTAN AKIBAT BOND SLIP PADA DINDING BETON BERTULANG [PREDICTION OF DEFLECTION DUE TO BOND SLIP ON REINFORCED CONCRETE WALLS] Ika Bali 1,2* dan Sadikin 1 1 Jurusan Teknik Sipil, Universitas

Lebih terperinci

ANALISIS DAN DESAIN DINDING GESER GEDUNG 20 TINGKAT SIMETRIS DENGAN SISTEM GANDA ABSTRAK

ANALISIS DAN DESAIN DINDING GESER GEDUNG 20 TINGKAT SIMETRIS DENGAN SISTEM GANDA ABSTRAK ANALISIS DAN DESAIN DINDING GESER GEDUNG 20 TINGKAT SIMETRIS DENGAN SISTEM GANDA MICHAEL JERRY NRP. 0121094 Pembimbing : Ir. Daud R. Wiyono, M.Sc. FAKULTAS TEKNIK JURUSAN SIPIL UNIVERSITAS KRISTEN MARANATHA

Lebih terperinci

PENGARUH RASIO TULANGAN LOGITUDINAL DAN JARAK SENGKANG TERHADAP KAPASITAS BEBAN LATERAL MAKSIMUM KOLOM BERTULANGAN RINGAN AKIBAT BEBAN SIKLIK

PENGARUH RASIO TULANGAN LOGITUDINAL DAN JARAK SENGKANG TERHADAP KAPASITAS BEBAN LATERAL MAKSIMUM KOLOM BERTULANGAN RINGAN AKIBAT BEBAN SIKLIK PENGARUH RASIO TULANGAN LOGITUDINAL DAN JARAK SENGKANG TERHADAP KAPASITAS BEBAN LATERAL MAKSIMUM KOLOM BERTULANGAN RINGAN AKIBAT BEBAN SIKLIK NASKAH PUBLIKASI TEKNIK SIPIL Ditujukan untuk memenuhi persyaratan

Lebih terperinci

PENGARUH KUAT TEKAN TERHADAP KUAT LENTUR BALOK BETON BERTULANG

PENGARUH KUAT TEKAN TERHADAP KUAT LENTUR BALOK BETON BERTULANG PENGARUH KUAT TEKAN TERHADAP KUAT LENTUR BALOK BETON BERTULANG Yohanes Trian Dady M. D. J. Sumajouw, R. S. Windah Fakultas Teknik Jurusan Sipil Universitas Sam Ratulangi Manado Email : yohanesdady@yahoo.co.id

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Beton memiliki kelebihan kuat terhadap gaya tekan dan lemah terhadap gaya tarik. Sehingga pada bidang konstruksi, beton dikombinasikan dengan tulangan baja yang mampu

Lebih terperinci

Ach. Lailatul Qomar, As ad Munawir, Yulvi Zaika ABSTRAK Pendahuluan

Ach. Lailatul Qomar, As ad Munawir, Yulvi Zaika ABSTRAK Pendahuluan Pengaruh Variasi Jarak Celah pada Konstruksi Dinding Pasangan Bata Beton Bertulang Penahan Tanah Terhadap Deformasi Lateral dan Butiran Yang Lolos Celah dari Lereng Pasir + 20% Kerikil Ach. Lailatul Qomar,

Lebih terperinci

BAB I PENDAHULUAN. pozolanik) sebetulnya telah dimulai sejak zaman Yunani, Romawi dan mungkin juga

BAB I PENDAHULUAN. pozolanik) sebetulnya telah dimulai sejak zaman Yunani, Romawi dan mungkin juga BAB I PENDAHULUAN 1.1. Latar Belakang Penggunaan beton dan bahan-bahan vulkanik sebagai pembentuknya (seperti abu pozolanik) sebetulnya telah dimulai sejak zaman Yunani, Romawi dan mungkin juga sebelum

Lebih terperinci

TINJAUAN KUAT LENTUR BALOK BETON BERTULANGAN BAMBU LAMINASI DAN BALOK BETON BERTULANGAN BAJA PADA SIMPLE BEAM. Naskah Publikasi

TINJAUAN KUAT LENTUR BALOK BETON BERTULANGAN BAMBU LAMINASI DAN BALOK BETON BERTULANGAN BAJA PADA SIMPLE BEAM. Naskah Publikasi TINJAUAN KUAT LENTUR BALOK BETON BERTULANGAN BAMBU LAMINASI DAN BALOK BETON BERTULANGAN BAJA PADA SIMPLE BEAM Naskah Publikasi untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Teknik Sipil

Lebih terperinci

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut : 4 BAB II TINJAUAN PUSTAKA 2.1.Pembebanan Struktur Perencanaan struktur bangunan gedung harus didasarkan pada kemampuan gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam Peraturan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Beton Beton didefinisikan sebagai campuran antara sement portland atau semen hidraulik yang lain, agregat halus, agregat kasar dan air, dengan atau tanpa bahan tambahan yang

Lebih terperinci