ANALISIS LIMPASAN LANGSUNG DENGAN MODEL DISTRIBUSI DAN KOMPOSIT

dokumen-dokumen yang mirip
MODEL HIDROGRAF BANJIR NRCS CN MODIFIKASI

ANALISIS LIMPASAN LANGSUNG MENGGUNAKAN METODE NAKAYASU, SCS, DAN ITB STUDI KASUS SUB DAS PROGO HULU

PENDAHULUAN. tempat air hujan menjadi aliran permukaan dan menjadi aliran sungai yang

BAB I PENDAHULUAN. Gabungan antara karakteristik hujan dan karakteristik daerah aliran sungai

ANALISIS PERUBAHAN BILANGAN KURVA ALIRAN PERMUKAAN (RUNOFF CURVE NUMBER) TERHADAP DEBIT BANJIR DI DAS LESTI

Seminar Nasional Informatika 2012 (semnasif 2012) ISSN: UPN Veteran Yogyakarta, 30 Juni 2012

PENGARUH HUJAN EKSTRIM DAN KONDISI DAS TERHADAP ALIRAN

DocuCom PDF Trial. ANALISIS TINGGI LIMPASAN UNTUK KETERSEDIAAN AIR PADA DAS MANIKIN KOTA/KABUPATEN KUPANG

M. Barron Syauqi Suprapto Dibyosaputro INTISARI

PENGARUH PERUBAHAN PENGGUNAAN LAHAN TERHADAP DEBIT PUNCAK PADA SUBDAS BEDOG DAERAH ISTIMEWA YOGYAKARTA. R. Muhammad Isa

ANALISIS POTENSI LIMPASAN PERMUKAAN (RUN OFF) DI KAWASAN INDUSTRI MEDAN MENGGUNAKAN METODE SCS

I. PENDAHULUAN I.1 Latar Belakang I.2 Tujuan II. TINJAUAN PUSTAKA 2.1 Daur Hidrologi

PERKIRAAN SEBARAN CURVE NUMBER U.S SOIL CONSERVATION SERVICE PADA SUB DAS BRANTAS HULU ABSTRAK

BAB III METODOLOGI 3.1 Lokasi dan Waktu Penelitian 3.2 Alat dan Bahan

BAB V ANALISA DATA. Dalam bab ini ada beberapa analisa data yang dilakukan, yaitu :

PENDUGAAN DEBIT PUNCAK MENGGUNAKAN WATERSHED MODELLING SYSTEM SUB DAS SADDANG. Sitti Nur Faridah, Totok Prawitosari, Muhammad Khabir

STUDI PERBANDINGAN ANTARA HIDROGRAF SCS (SOIL CONSERVATION SERVICE) DAN METODE RASIONAL PADA DAS TIKALA

Misal dgn andalan 90% diperoleh debit andalan 100 m 3 /det. Berarti akan dihadapi adanya debit-debit yg sama atau lebih besar dari 100 m 3 /det


ESTIMASI DEBIT PUNCAK BERDASARKAN BEBERAPA METODE PENENTUAN KOEFISIEN LIMPASAN DI SUB DAS KEDUNG GONG, KABUPATEN KULONPROGO, YOGYAKARTA

KAJIAN KARAKTERISTIK DAS (Studi Kasus DAS Tempe Sungai Bila Kota Makassar)

KEMAMPUAN LAHAN UNTUK MENYIMPAN AIR DI KOTA AMBON

Pemodelan kejadian banjir daerah aliran sungai Ciliwung hulu dengan menggunakan data radar

BAB IV HASIL DAN PEMBAHASAN. Sungai Banjaran merupakan anak sungai Logawa yang mengalir dari arah

III. METODE PENELITIAN

BAB II TINJAUAN PUSTAKA

ANALISIS DEBIT ANDALAN

BAB I PENDAHULUAN. A. Latar Belakang Masalah

(Simulated Effects Of Land Use Against Flood Discharge In Keduang Watershed)

ANALISIS PERUBAHAN BILANGAN KURVA ALIRAN PERMUKAAN (RUNOFF CURVE NUMBER) TERHADAP DEBIT LIMPASAN PADA DAS BRANTAS HULU

ANALISA PENINGKATAN NILAI CURVE NUMBER TERHADAP DEBIT BANJIR DAERAH ALIRAN SUNGAI PROGO. Maya Amalia 1)

KALIBRASI MODEL HIDROLOGI PERUBAHAN TATA GUNA LAHAN PADA SUB DAS KAMPAR KANAN DALAM PROGRAM HEC-HMS

METODOLOGI. Tempat dan Waktu. Alat dan Bahan

DAFTAR ISI. HALAMAN JUDUL... i. LEMBAR PERSETUJUAN... ii. PERNYATAAN... iii. LEMBAR PERSEMBAHAN... iv. KATA PENGANTAR... v. DAFTAR ISI...

PENDUGAAN PARAMETER UPTAKE ROOT MENGGUNAKAN MODEL TANGKI. Oleh : FIRDAUS NURHAYATI F

ANALISIS UNIT RESPON HIDROLOGI DAN KADAR AIR TANAH PADA HUTAN TANAMAN DI SUB DAS CIPEUREU HUTAN PENDIDIKAN GUNUNG WALAT SANDY LESMANA

Bab I Pendahuluan. I.1 Latar Belakang

KALIBRASI PARAMETER TERHADAP DEBIT BANJIR DI SUB DAS SIAK BAGIAN HULU

Bab IV Metodologi dan Konsep Pemodelan

ESTIMASI POTENSI LIMPASAN PERMUKAAN MENGGUNAKAN PENGINDERAAN JAUH DAN SISTEM INFORMASI GEOGRAFIS DI DAERAH ALIRAN SUNGAI SERANG

1.4. Manfaat Penelitian Manfaat dari penelitian mengenai sebaran bahaya erosi serta respon aliran ini adalah :

KAJIAN HUJAN ALIRAN MENGGUNAKAN MODEL HEC HMS DI SUB DAERAH ALIRAN SUNGAI WURYANTORO WONOGIRI, JAWA TENGAH. Rifai Munajad

BAB IV ANALISA DATA. Dalam bab ini ada beberapa analisa data yang dilakukan, yaitu :

Gambar 1. Peta DAS penelitian

BAB III METODOLOGI PENELITIAN. paket program HEC-HMS bertujuan untuk mengetahui ketersediaan air pada suatu

HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN 1.1 Latar Belakang

PENGARUH PERUBAHAN TATA GUNA LAHAN TERHADAP KARAKTERISTIK HIDROLOGI

BAB V HASIL DAN PEMBAHASAN

DAFTAR ISI HALAMAN JUDUL... I HALAMAN PERSETUJUAN... II HALAMAN PERSEMBAHAN... III PERNYATAAN... IV KATA PENGANTAR... V DAFTAR ISI...

PENDAHULUAN Latar Belakang

PENGKAJIAN POTENSI RESAPAN AIR MENGGUNAKAN SISTEM INFORMASI GEOGRAFI STUDI KASUS CEKUNGAN BANDUNG TESIS MAGISTER. Oleh : MARDI WIBOWO NIM :

ESTIMASI DEBIT ALIRAN BERDASARKAN DATA CURAH HUJAN DENGAN MENGGUNAKAN SISTEM INFORMASI GEOGRAFIS (STUDI KASUS : WILAYAH SUNGAI POLEANG RORAYA)

ANALISIS RESAPAN LIMPASAN PERMUKAAN DENGAN LUBANG BIOPORI DAN KOLAM RETENSI DI FAKULTAS TEKNIK UNS SKRIPSI

Surface Runoff Flow Kuliah -3

V. SIMULASI LUAS HUTAN TERHADAP HASIL AIR

BAB V HASIL DAN PEMBAHASAN

DAFTAR ISI. ABSTRAK... i KATA PENGANTAR... ii DAFTAR ISI... iv DAFTAR TABEL... ix DAFTAR GAMBAR xiii BAB I PENDAHULUAN... 1

BAB I PENDAHULUAN A. Latar Belakang

APLIKASI SIG UNTUK EVALUASI SISTEM JARINGAN DRAINASE SUB DAS GAJAHWONG KABUPATEN BANTUL

Luas (Ha) L ms (km) h10. aws (%) L c (km) ars (%) h 85 (m) SubDAS. (m)

II. TINJAUAN PUSTAKA 2.1. Karakteristik Hujan

I. PENDAHULUAN. Provinsi Lampung terbagi menjadi 3 Wilayah Sungai (WS), yaitu : (1) WS

PENELUSURAN BANJIR DENGAN MENGGUNAKAN METODE KINEMATIK DI DAERAH ALIRAN SUNGAI TEMON WONOGIRI SKRIPSI

ANALISIS KOEFISIEN ALIRAN PERMUKAAN PADA BERBAGAI BENTUK PENGGUNAAN LAHAN DENGAN MENGGUNAKAN MODEL SWAT

PEMODELAN DINAMIS LIMPASAN PERMUKAAN DENGAN INTEGRASI PENGINDERAAN JAUH DAN SISTEM INFORMASI GEOGRAFIS

BAB I PENDAHULUAN 1.1. Latar Belakang

2016 ANALISIS NERACA AIR (WATER BALANCE) PADA DAERAH ALIRAN SUNGAI (DAS) CIKAPUNDUNG

BAB I PENDAHULUAN. I.1. Latar Belakang Penelitian

PENGARUH TANAMAN KELAPA SAWIT TERHADAP KESEIMBANGAN AIR HUTAN (STUDI KASUS SUB DAS LANDAK, DAS KAPUAS)

ANALISIS DEBIT BANJIR RANCANGAN BANGUNAN PENAMPUNG AIR KAYANGAN UNTUK SUPLESI KEBUTUHAN AIR BANDARA KULON PROGO DIY

Unjuk Kerja Resapan Air Hujan

APLIKASI HEC-HMS UNTUK PERKIRAAN HIDROGRAF ALIRAN DI DAS CILIWUNG BAGIAN HULU RISYANTO

APLIKASI METODE CURVE NUMBER UNTUK MEMPRESENTASIKAN HUBUNGAN CURAH HUJAN DAN ALIRAN PERMUKAAN DI DAS CILIWUNG HULU JAWA BARAT

EXECUTIVE SUMMARY PENELITIAN KARAKTERISTIK HIDROLOGI DAN LAJU EROSI SEBAGAI FUNGSI PERUBAHAN TATA GUNA LAHAN

Analisa Perubahan Tata Guna Lahan Terhadap Karakteristik Hidrologi Dengan HEC HMS Dan GIS Untuk Mitigasi Bencana

MENUJU KETERSEDIAAN AIR YANG BERKELANJUTAN DI DAS CIKAPUNDUNG HULU : SUATU PENDEKATAN SYSTEM DYNAMICS

BAB IV ANALISA Kriteria Perencanaan Hidrolika Kriteria perencanaan hidrolika ditentukan sebagai berikut;

imbuhan DAS dari pada penggunaan lahan semak dan tegakan (Prych, 1998). I. PENDAHULUAN

ANALISIS KETERSEDIAAN AIR PULAU-PULAU KECIL DI DAERAH CAT DAN NON-CAT DENGAN CARA PERHITUNGAN METODE MOCK YANG DIMODIFIKASI.

II. TINJAUAN PUSTAKA 2.1. Aliran Permukaan 2.2. Proses Terjadinya Aliran Permukaan

Pengaruh Hujan terhadap Perubahan Elevasi Muka Air Tanah pada Model Unit Resapan dengan Media Tanah Pasir

DAFTAR ISI. HALAMAN JUDUL... iii. LEMBAR PENGESAHAN... iii. PERNYATAAN... iii. KATA PENGANTAR... iv. DAFTAR ISI... v. DAFTAR TABEL...

Oleh : PUSPITAHATI,STP,MP Dosen Fakultas Pertanian UNSRI (2002 s/d sekarang) Mahasiswa S3 PascaSarjana UNSRI (2013 s/d...)

ANALISIS DAN PEMETAAN DAERAH KRITIS RAWAN BENCANA WILAYAH UPTD SDA TUREN KABUPATEN MALANG

BAB V HASIL DAN PEMBAHASAN

Penggunaan SIG Untuk Pendeteksian Konsentrasi Aliran Permukaan Di DAS Citarum Hulu

PENGARUH PERUBAHAN TATAGUNA LAHAN TERHADAP KARAKTERISTIK HIDROGRAF BANJIR

DAFTAR ISI. Halaman HALAMAN JUDUL HALAMAN PENGESAHAN PERNYATAAN BEBAS PLAGIASI DEDIKASI KATA PENGANTAR

TINJAUAN PUSTAKA 2.1 TINJAUAN UMUM SUB-DAS CITARIK

ANALISA DEBIT BANJIR SUNGAI BATANG LUBUH KABUPATEN ROKAN HULU PROPINSI RIAU

1. BAB I PENDAHULUAN 1.1. Latar Belakang

BAB V HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN. Di bumi terdapat kira-kira sejumlah 1,3-1,4 milyard km 3 : 97,5% adalah air

Dr. Ir. Robert J. Kodoatie, M. Eng 2012 BAB 3 PERHITUNGAN KEBUTUHAN AIR DAN KETERSEDIAAN AIR

BAB I PENDAHULUAN 1.1. Latar Belakang

SKRIPSI. Oleh WINDU PRAPUTRA SETIA SKRIPSI INI DIAJUKAN UNTUK MELENGKAPI SEBAGIAN PERSYARATAN MENJADI SARJANA TEKNIK

Pemetaan Erosivitas Hujan Dengan Sistem Informasi Geografis. Sukoco. Universitas Surakarta

PENGARUH PERUBAHAN TATA GUNA LAHAN TERHADAP DEBIT LIMPASAN PADA SUB DAS SEPAUK KABUPATEN SINTANG KALIMANTAN BARAT

TUGAS TERSTRUKTUR II IRIGASI DAN DRAINASE : Neraca Air Tanah

Transkripsi:

Forum Teknik Sipil No. XVIII/-Januari 8 69 ANALISIS LIMPASAN LANGSUNG DENGAN MODEL DISTRIBUSI DAN KOMPOSIT Puji Harsanto ), Bambang Agus Kironoto ), Bambang Triatmodjo ) ) Fakultas Teknik, Universitas Muhammadiyah Purwokerto. Jalan Raya Dukuhwaluh PO BOX Purwokerto 8 ) Jurusan Teknik Sipil dan Lingkungan, Fakultas Teknik, Universitas Gadjah Mada. Jalan Grafika No. Yogyakarta 8 ABSTRACT Hydrological models are classified as lumped and distributed. Lumped models ignore the spatial variability of precipitation, and other related processes. Even though lumped model are unable to account for internal variation of hydrological processes, they have the advantage of simplicity. Distributed hydrological model on the other hand account for spatial variation of hydrological processes and parameters. This type of model has the potential to give more accurate results but computationally more complex. The spatially distributed input and analysis required by spatially distributed model can be met by incorporating a system that can manage data on a grid basis. An approach to handle this problem is using geographic information system (GIS). The overall objective of this study was to comparing of distributed and composite model. The SCS curve number method also known as the hydrologic soil cover complex method, is widely used procedure for runoff estimation. This method includes several important properties of the watershed namely soil s permeability, landuse and antecedent soil water conditions which are taken into consideration. Daily runoff calculations were generated using the SCS curve number method, its based on the retention parameter, S, initial abstractions, I a (surface storage, interception, and infiltration prior to runoff), and daily rainfall, R day. Ratio of initial abstraction (I a ) to retention parameter (S) called λ is changes from time to time. Because of its, the hydrology analysis to estimating direct runoff need calibrate for this parameter. Goodness of fit analysis is used to comparing of both, distributed model and composite model. The average of relatif error, correlation factor, and coefficient of determination, R for distributed model respectively are.7 %,.7 and., from composite model are. %,.66 and.44. The result from research is obtained that the distributed model is more accurate than composite model. The average initial abstraction ratio from distrubted model is. and composite model is.4. KEYWORDS : Direct runoff, Distributed model, Lumped model, Initial abstraction ratio PENGANTAR Latar Belakang Debit yang melewati suatu pias sungai terkait langsung dengan limpasan langsung yang terjadi di dalam DAS. Limpasan langsung yang terjadi dalam DAS sangat dipengaruhi antara lain oleh curah hujan dan elemen daerah pengaliran yang menyatakan sifat-sifat fisik daerah pengaliran. Sifat-sifat fisik DAS tersebut yang penting antara lain bentuk dan ukuran, topografi, geologi, serta tataguna lahan. Metode untuk meghitung volume limpasan langsung yang mengkaitkan beberapa sifat fisik DAS adalah metode yang dikembangkan U.S. Soil Concervation Service (sekarang Natural Resources Conservation Service, NRCS). Metode SCS memperhitungkan kondisi fisik dari DAS sebagai masukan dalam analisa hidrologi. Kondisi fisik DAS yang dipakai dalam metode ini adalah penutupan lahan dan jenis tanah. Kondisi pentutupan lahan dan jenis tanah tersebut kemudian diterjemahkan dalam suatu indek yang mencerminkan potensi limpasan langsung. Indek tersebut dinamakan curve number.

694 Puji Harsanto, Bambang Agus K., Bambang Triatmodjo, Analisis Limpasan Langsung Karena hujan, penutupan lahan dan jenis tanah sifatnya bervariasi terhadap ruang (spasial) maka analisa hidrologi yang terbaik adalah dengan metode terdistribusi. Analisis hidrologi dengan model distribusi memerlukan hitungan yang banyak dan komplek. Untuk mempermudah hitungan dalam analisis hidrologi biasanya beberapa parameter yang sifatnya spasial dijadikan komposit. Pengolahan data yang berbasis keruangan akan lebih mudah dilakukan dengan pendekatan Sistem Informasi Geografis (SIG). Dengan pendekatan SIG ini diharapkan hasil yang diperoleh lebih akurat. Maksud dari penelitian ini adalah penggunaan sistem informasi geografis (SIG) dalam menangani permasalahan hidrologi. Tujuan penelitian adalah menghitung volume limpasan permukaan yang terjadi dengan model terdistribusi dan model komposit. Tinjauan Pustaka Analisa limpasan langsung yang menggunakan faktor physiographic sebagai parameter masukan adalah metode SCS curve number. Metode tersebut dikembangkan oleh U.S. SCS atau dikenal metode SCS curve number paling banyak dimanfaatkan (Asdak, 4). Karena hujan, penutupan lahan dan jenis tanah sifatnya bervariasi terhadap ruang (spasial) maka analisa hidrologi yang terbaik adalah dengan metode terdistribusi. Model distribusi adalah model yang memperhitungkan variabilitas terhadap ruang dari parameter dan proses hidrologi. Menurut Smadi (998) model jenis ini mempunyai potensi memberi hasil yang lebih akurat tetapi mempunyai langkah hitungan yang lebih komplek dan sulit. Suatu model yang mempertimbangkan parameter hidrologi secara spasial maka akan menghasilkan output yang lebih akurat (Smadi, 998). Analisis hidrologi spasial selalu berhubungan dengan proses kombinasi peta atau data yang banyak dan komplek. Proses kombinasi data yang mempunyai tipe atau jenis yang komplek dapat dipermudah dengan adanya Sistem Informasi Geografi (Pandey et al, ). Analisa run off harian dengan metode curve number yang dikembangkan oleh USDA NRCS (Natural Resources Conservation Servive) didasarkan pada parameter retensi, S, initial abstractions, I a dan hujan harian, R d (hujan harian). Secara umum initial abstractions, I a adalah parameter yang berhubungan dengan jenis tanah dan kondisi penutupan lahan. Rasio initial abstraction, λ dalam metode curve number yang disarankan adalah, (USDA SCS, ). Landasan Teori Limpasan permukaan terjadi ketika laju hujan lebih besar dari pada laju infiltrasi dan persamaan limpasan permukaan selalu dikembangkan berdasarkan pada kondisi tersebut (USDA, ). Limpasan permukaan akan mengalir melalui saluran atau parit-parit kecil dan akhirnya sampai ke sungai. Pada kenyataanya bahwa sebelum terjadi limpasan permukaan, sebagian hujan menjadi abstraksi awal (initial abstraction, I a ). Initial abtraction, I a adalah kehilangan sebelum limpasan terjadi yang meliputi air yang tertahan di permukaan, air yang terintersepsi oleh vegetasi, evaporasi dan infiltrasi (USDA NRCS, ). Dengan demikian hujan, P d yang berkontribusi terhadap limpasan permukaan, Q d adalah hujan yang dikurangi oleh initial abstraction. Initial abstraction, I a merupakan variabel yang komplek tapi secara umum (USDA NRCS, ), yang dapat didekati dengan berhubungan dengan tanah dan penutupan lahan persamaan empiris sebagai berikut : Ia =, S () Parameter, adalah rasio initial abstraction dan dinyatakan dengan simbol λ (lamda). Variabel λ selalu berubah dari hujan ke hujan lainya dan dari tempat ke tempat lain. Dengan demikian variabel ini harus dikalibrasi untuk mendapatkan hasil yang optimal pada suatu area dan waktu tertentu. Untuk menghitung limpasan permukaan harian persamaan yang digunakan adalah sebagai berikut : Q d = ( Pd - λs ) ( P - λs + S ) d () Dengan persamaan () di atas maka limpasan permukaan akan terjadi jika P d lebih besar dari I a. Parameter retensi, S, adalah variabel yang tergantung pada jenis tanah, tataguna lahan dan kelembaban tanah. Persamaan yang digunakan

Forum Teknik Sipil No. XVIII/-Januari 8 69 untuk menentukan nilai S menurut (USDA NRCS, ) adalah sebagai berikut : S =.4 () CN Dalam menentukan nilai CN juga harus memperhatikan kondisi kelembaban tanah sebelumnya atau biasa disebut antecedent moisture conditions (AMC). Tanah dengan kondisi jenuh air akan memberikan potensi limpasan langsung yang besar dan tanah dengan kondisi kering akan memberikan potensi limpasan langsung yang kecil. Kondisi AMC dibagi menjadi tiga yaitu AMC I, AMC II dan AMC III. AMC I mewakili kondisi tanah kering sehingga potensi terjadi limpasan langsung kecil. Kondisi ini terjadi pada saat musim kering atau kemarau. AMC II adalah kondisi tanah normal. AMC III adalah kondisi tanah basah yang memungkinkan potensial limpasan langsung besar. Kondisi ini terjadi pada saat musim penghujan. Tabel nilai CN yang diberikan oleh SCS adalah pada kondisi normal. Untuk mencari nilai CN(I) dan CN(III) US Soil Conservation Service (SCS), membuat suatu persamaan sebagai berikut : 4.CN(II) CN(I) = (4).8CN(II) CN(II) CN(III) = () +.CN(II) METODOLOGI PENELITIAN DAN PEMBAHASAN Data Debit dan Hujan Pada penelitian ini mengambil studi kasus di DAS Code yang terletak di wilayah Propinsi Daerah Istimewa Yogyakarta. Batas hilir DAS Code berlokasi di AWLR Kaloran. Data debit yang tersedia adalah data debit rata-rata harian tahun 997. Komponen hidrograf aliran sungai yang berupa runtut waktu yang panjang dipisah dengan prosedur filtering yang umumnya digunakan untuk analisis tanggapan DAS terhadap kejadian hujan dalam waktu yang panjang (Furey et al, ). Persamaan yang dikembangkan adalah sebagai berikut : qb,i = ( γ)qb,i + γ(c c)(q qb,i d ) dengan q b,i, q b,i saat i-, b,i d...(6) = debit aliran dasar pada saat i dan N S. Code W E S Batas DAS Code D I Y AWLR KALORAN Sta Hujan Gambar. Lokasi DAS Code

696 Puji Harsanto, Bambang Agus K., Bambang Triatmodjo, Analisis Limpasan Langsung Qq b,i-d- = debit aliran pada saat i-d-, q b,i-d- = debit baseflow pada saat i-d-, d = waktu delay diambil nol, c, c = koefisien overland flow dan groundwater recharge, -γ = konstanta resesi. Furey et al (), melakukan penelitian untuk menetukan parameter filter dengan menggunakan data selama pengukuran selama 9 tahun dan luas DAS 44. km dan menghasilkan nilai konstanta resesi -γ sama dengan.97 dan c /c sama dengan,. Debit pengamatan dan baseflow (cara filtering) AWLR Kaloran DAS Code seperti ditunjukan pada Gambar. Model Distribusi dan Komposit Perhitungan limpasan permukaan dalam penelitian ini ada dua jenis yaitu perhitungan limpasan permukaan dengan metode distribusi dan perhitungan limpasan permukaan dengan metode komposit. Model distribusi adalah perhitungan volume limpasan dengan parameter DAS yaitu curve number, CN dan hujan terdistribusi di seluruh DAS. Hujan terdistribusi ke seluruh DAS berdasarkan poligon Thiessen. Sedangkan model komposit adalah perhitungan volume limpasan dengan membuat komposit nilai CN dan hujan dibuat hujan rerata DAS (hujan area). Nilai komposit dari curve number (CN) pada suatu DAS ditentukan menggunakan persamaan sebagai berikut : CNiAi + CN A... CN na n CN = (7) i+ i+ + + n i= A dan untuk menghitung hujan rerata DAS persamaan yang digunakan adalah sebagai berikut: i AR + A R +... + A n R n R = (8) A + A +... + A dengan : CN : curve number R : hujan rerata DAS, R, R,..., R n : curah hujan di tiap stasiun, A, A,..., A n : luas area yang dipengaruhi oleh tiap stasiun. Hujan area dengan cara poligon Thiessen seperti ditunjukan pada Gambar. n 6 4 //997 //997 9//997 //997 6//997 //997 6//997 9/4/997 /4/997 7//997 //997 4/6/997 8/6/997 /7/997 6/7/997 /7/997 /8/997 7/8/997 /9/997 4/9/997 8//997 //997 //997 9//997 //997 7//997 //997 Debit (m /detik) Debit Opak (m/s) Debit aliran dasar (m/s) Waktu (hari) Gambar. Debit rerata harian dan baseflow AWLR Kaloran tahun 997. 7. tinggi hujan (mm) 6.. 4..... //97 //97 //97 4//97 //97 6//97 7//97 8//97 9//97 //97 //97 //97 Gambar. Hujan area DAS Code tahun 997.

Forum Teknik Sipil No. XVIII/-Januari 8 697 Nilai CN Data tekstur tanah untuk DAS Code hydrology soil groups dapat dikelompokkan dalam satu jenis yaitu regosol dengan tekstur pasir, kesuburan sedang, berasal dari bahan induk material volkanis (kelompok A) yaitu tanah dengan potensi total limpasan permukaan yang rendah sebab tanah kelompok ini mempunyai permeabilitas tinggi. Tabel adalah nilai CN untuk tiap tipe penutupan lahan berdasar USDA TR- (986). Limpasan Langsung distribusi adalah sebesar,6, sedangkan untuk model komposit diperoleh,6. Gambar 4 adalah grafik debit hasil simulasi model distribusi dengan model komposit yang dibandingkan dengan data pengamatan. Pada model distribusi rerata kesalahan adalah sebesar.9 %, setelah dibuat komposit maka rerata kesalahan menjadi 6,7 % sehingga terjadi kenaikan kesalahan,76 %. Kedekatan hasil simulasi dengan pengamatan dapat dilihat ploting data hasil simulasi model distribusi dan komposit dengan data pengamatan seperti ditunjukan pada Gambar a dan b. Dari hasil simulasi bulan Januari diperoleh parameter rasio intial abstraction untuk model Tabel. Nilai CN berdasar USDA No. Tataguna lahan Luas Persentase Faktor CN (I) CN (III) (m CN (II) CN (I) CN (III) ) (%) pembobot komposit komposit Hutan 9677. 9.47.9 8.94 9.4 Padang rumput 448.9.4. 49 9.98 69.6 Perkebunan 7644. 4..4 4 4. 6.67 4 Permukiman 4444.8 4.4. 77 8.9 89.7 Sawah 767784.88 4.4.4 6 4 6.7 78. 6 Tanah kosong 6876.4.4. 77 8. 89.6 7 Tegalan 88987.9.7.6 48 8.9 68.88 Jumlah 48498.6 4 78 Keterangan : CN(I) adalah CN untuk musim kering, CN(II) adalah nilai CN kondisi normal (Tabel USDA) dan CN(III) adalah nilai CN untuk musim basah. debit ( m /detik) 4 7 9 Simulasi bulan Januari 997 7 9 7 9 hujan distribusi pengamatan komposit hujan (mm) Gambar 4. Debit hasil simulasi bulan Januari.

698 Puji Harsanto, Bambang Agus K., Bambang Triatmodjo, Analisis Limpasan Langsung, R =,789,,,,,,, (a) distribusi,, R =,69,,,,,,, (b) komposit Gambar. Coefficient of determination simulasi bulan Januari. Dengan melihat grafik coefficient of determination maka model distribusi menghasilkan keluaran yang lebih baik dibandingkan dengan model komposit dikarenakan model disribusi menghasilkan nilai R yang lebih mendekati angka yaitu sebesar,8, sedangkan setelah dibuat komposit nilai R menjadi lebih lebih kecil yaitu sebesar,6. Kualitas model juga dapat dilihat dari pola atau fluktuasi debit hasil simulasi, yang biasa dinyatakan oleh indek korelasi. Indek korelasi ini dibuat untuk pasangan data hasil simulasi model distribusi dengan data pengamatan dan pasangan data hasil simulasi model komposit dengan data pengamatan. Pada bulan Januari diperoleh bahwa indek korelasi model distribusi dengan data pengamatan adalah sebesar,76 dan indek korelasi model komposit dengan data pengamatan adalah sebesar,6. Dengan melihat indek korelasi tersebut bia dikatakan bahwa model distribusi lebih baik dengan model komposit. Secara keseluruhan hasil simulasi model distribusi dan model komposit ditunjukan pada Gambar 6 sampai dengan Gambar 8. debit (m /detik) 4 8 6 4 Simulasi Februari 997 4 hujan (mm) 7 9 7 9 7 hujan distribusi pengamatan komposit Gambar 6. Debit hasil simulasi bulan Februari.

Forum Teknik Sipil No. XVIII/-Januari 8 699 8, 6, 4, R =,8,, 4, 6, 8,,, 8, 6, R =, 4,,, 4, 6, 8,, (a) distribusi (b) komposit Gambar 7. Coefficient of determination simulasi bulan Februari. debit (m /detik) 4 Simulasi bulan Maret 997 6 9 8 7 9 7 9 7 9 hujan distribusi pengamatan komposit Gambar 8. Debit hasil simulasi bulan Maret.,,, R =,69.,,, R =,64,,, (a) distribusi,,, (b) komposit Gambar 9. Coefficient of determination simulasi bulan Maret.

7 Puji Harsanto, Bambang Agus K., Bambang Triatmodjo, Analisis Limpasan Langsung debit (m /detik), 4,,,, Simulasi bulan April 7 9 7 9 7 9 hujan distribusi komposit pengamatan Gambar. Debit hasil simulasi bulan April., R =,9,,,,,,,,, R =,9,,,,,,, (a) distribusi (b) komposit Gambar. Coefficient of determination simulasi bulan April. No. Bulan Tabel. Hasil simulasi model distribusi dan komposit Rasio initial abstraction, λ Parameter kesesuaian Rerata kesalahan Coefficient of determination, R Faktor korelasi, σ xy Distribusi Komposit Distribusi Komposit Distribusi Komposit Distribusi Komposit Januari,6,6,9 6,7,8,6,76,6 Februari,6,7 9,6 4,6,,,6,46 Maret,, 7,9,7,66,6,78,8 4 April,, 4,8,,6,9,7,77 Rata-rata,,4,7,,,44,7,66 Rekapitulasi secara keseluruhan hasil simulasi model distribusi dan model komposit dapat dilihat pada Tabel. Dari hasil sumulasi secara keseluruhan diperoleh dengan membuat komposit model distribusi akan menaikan rerata kesalahan sebesar 4,4 %, menurunkan coefficient of determination, R rata-rata sebesar,8 dan menurunkan faktor korelasi rata-rat sebesar,6. Nilai rata-rata parameter rasio initial abstraction, λ untuk model distribusi adalah, dan untuk model komposit adalah,4. Dari hasil tersebut dapat dilihat bahwa model distribusi menghasilkan data keluaran yang lebih baik dibandingkan dengan model komposit. Hal ini disebabkan perhitungan pada model distribusi secara konseptual memdekati kondisi nyata. Nilai rasio initial abstraction, λ dari model distribusi cenderung lebih besar dibandingkan dengan model komposit.

Forum Teknik Sipil No. XVIII/-Januari 8 7 KESIMPULAN Dari hasil penelitan dapat ditarik kesimpulan sebagai berikut:. Dari runtut waktu kejadian hujan nilai rasio abstraksi awal, λ untuk model distribusi bervariasi yaitu berkisar antara, sampai dengan,6. Dengan rata-rata berkisar,, sedangkan untuk model komposit diperoleh nilai rasio abstraksi awal, λ bervariasi yaitu berkisar antara, sampai dengan,7 dengan rata-rata,4.. Model terdistribusi memberikan hasil yang lebih baik dibanding dengan model tidak terdistribusi, hal ini dapat dilihat dari: Besarnya faktor rerata kesalahan yaitu untuk model distribusi berkisar 7,9 % sampai dengan 9,6 % dengan rata-rata adalah,7 %. Sedangkan untuk model komposit antara,7 sampai dengan 4,6 % dengan rata-rata, %. Besarnya coefficient of determination, R yaitu untuk model distribusi berkisar antara, dan,66 dengan rata-rata,, sedangkan untuk model komposit berkisar antara, sampai dengan.6 dengan ratarata,44. Besarnya angka korelasi yaitu untuk model distribusi berkisar antara,6 dan,78 dengan rata-rata,7, sedangkan untuk model komposit berkisar antara,46 sampai dengan,8 dengan rata-rata,66. Dengan melihat rerata dari faktor rerata kesalahan, coefficient of determination, R, dan angka korelasi maka model distribusi lebih baik dibandingkan dengan model komposit. DAFTAR PUSTAKA Asdak C., 4, Hidrologi dan Pengelolaan Daerah Aliran Sungai, Gadjah Mada University Press. Furey PR dan Gupta VK.,, A Physically Based Filter For Separating Base Flow From Streamflow Time Series, Water Resources Research, Vol. 7, No., Hal. 79 7, November, University of Colorado, USA. Pandey A, Chowdary V.M., Mal B.C. dan Dabral P.P.,, Estimation of runoff for agricultural watershed using SCS Curve Number and Geographic Information System, MAP India Conference, Department of Agricultural Engineering India. Smadi M., 998, Incorporating Spatial and Temporal Variation of Watershed Response in a Gis-Based Hydrologic Model, Tesis, Virginia Polytechnic Institute and State University. United States Department of Agriculture, 986, Urban Hydrology for Small Watersheds TR-, Washington. USDA NRCS,, National Engineering Handbook Section 4: Hydrology, Washington, DC, U.S.A.