BAB II PEMILIHAN DAN DESKRIPSI PROSES. Paraldehida merupakan senyawa polimer siklik asetaldehida yang

dokumen-dokumen yang mirip
II. DESKRIPSI PROSES. (2007), metode pembuatan VCM dengan mereaksikan acetylene dengan. memproduksi vinyl chloride monomer (VCM). Metode ini dilakukan

II. DESKRIPSI PROSES

DESKRIPSI PROSES. pereaksian sesuai dengan permintaan pasar sehingga layak dijual.

BAB II DESKRIPSI PROSES

BAB II. DESKRIPSI PROSES

BAB II PEMILIHAN DAN URAIAN PROSES

BAB II URAIAN PROSES. Benzil alkohol dikenal pula sebagai alpha hidroxytoluen, phenyl methanol,

II. DESKRIPSI PROSES. Proses produksi Metil Akrilat dapat dibuat melalui beberapa cara, antara

BAB II URAIAN PROSES. Benzil alkohol dikenal pula sebagai alpha hidroxytoluen, phenyl methanol,

BAB II DESKRIPSI PROSES. adalah sistem reaksi serta sistem pemisahan dan pemurnian.

II. PEMILIHAN DAN URAIAN PROSES

PEMILIHAN DAN URAIAN PROSES

II. DESKRIPSI PROSES. Tahap-tahap reaksi formaldehid Du-Pont untuk memproduksi MEG sebagai

PEMILIHAN DAN URAIAN PROSES. teknologi proses. Secara garis besar, sistem proses utama dari sebuah pabrik kimia

BAB II. DISKRIPSI PROSES. bahan baku yang bervariasi. Berdasarkan bahan baku ada 2 proses komersial

PRARANCANGAN PABRIK ACRYLAMIDE DARI ACRYLONITRILE MELALUI PROSES HIDROLISIS KAPASITAS TON/TAHUN BAB II DESKRIPSI PROSES

BAB II DESKRIPSI PROSES

BAB II DISKRIPSI PROSES. 2.1 Spesifikasi Bahan Baku, Bahan Pendukung dan Produk. Isobutanol 0,1% mol

BAB II DESKRIPSI PROSES. Rumus Molekul : C 3 H 4 O 2

Prarancangan Pabrik Nitrogliserin dari Gliserin dan Asam Nitrat dengan Proses Biazzi Kapasitas Ton/ Tahun BAB II DESKRIPSI PROSES

BAB II PEMILIHAN PROSES DAN URAIAN PROSES. Potassium karbonat memiliki beberapa nama lain yaitu : kalium karbonat, carbonate

BAB II DESKRIPSI PROSES. Rumus Molekul

II. PEMILIHAN DAN URAIAN PROSES

BAB II DESKRIPSI PROSES. Titik didih (1 atm) : 64,6 o C Spesifik gravity : 0,792 Kemurnian : 99,85% Titik didih (1 atm) : -24,9 o C Kemurnian : 99,5 %

BAB II DESKRIPSI PROSES

II. PEMILIHAN DAN URAIAN PROSES

Prarancangan Pabrik Metil Salisilat dari Asam Salisilat dan Metanol dengan Kapasitas Ton/Tahun BAB I PENGANTAR

BAB II TINJAUAN PUSTAKA

BAB II DISKRIPSI PROSES

LAMPIRAN B PERHITUNGAN NERACA ENERGI

II. DESKRIPSI PROSES

Prarancangan Pabrik Etil Akrilat dari Asam Akrilat dan Etanol Kapasitas ton/tahun BAB II DESKRIPSI PROSES. Rumus molekul : C2H5OH

BAB II DESKRIPSI PROSES

II. DESKRIPSI PROSES Hidrasi langsung α-pinene dengan menggunakan katalis Chloroacetic

BAB II DESKRIPSI PROSES. Kalsium hidroksida adalah senyawa kimia dengan rumus kimia Ca(OH)2. Dalam

BAB III PERANCANGAN PROSES. bahan baku Metanol dan Asam Laktat dapat dilakukan melalui tahap-tahap sebagai

LAMPIRAN A HASIL PERHITUNGAN NERACA MASSA

BAB II DESKRIPSI PROSES

BAB II. DESKRIPSI PROSES

SKRIPSI PRA RANCANGAN PABRIK KIMIA

II. DESKRIPSI PROSES NC-(CH 2 ) 4 -CN + 4 H 2 O. Reaksi menggunakan katalisator dari komponen fosfor, boron, atau silica gel.

BAB I PENDAHULUAN. salah satunya adalah pembangunan industri kimia di Indonesia.

Katalis Katalis yang digunakan adalah Rhodium (US Patent 8,455,685).

DESKRIPSI PROSES. Untuk pembuatan gipsum terdiri dari tiga jenis proses, yaitu: Penghancuran batu-batuan ini dengan menggunakan alat primary crusher

BAB II DISKRIPSI PROSES

II. DESKRIPSI PROSES. Pada proses pembuatan asam salisilat dapat digunakan berbagai proses seperti:

Dosen Pembimbing 1. Dr. Ahmad M. Fuadi. 2. M. Mujiburohman Ph.D

Prarancangan Pabrik Metil Salisilat dari Metanol dan Asam Salisilat Kapasitas Ton/Tahun BAB II DESKRIPSI PROSES. : jernih, tidak berwarna

II. PEMILIHAN DAN URAIAN PROSES. dalam alkohol (Faith and Keyes,1957).

Prarancangan Pabrik Sikloheksana dengan Proses Hidrogenasi Benzena Kapasitas Ton/Tahun BAB II DESKRIPSI PROSES

BAB I PENDAHULUAN. desinfektan, insektisida, fungisida, solven untuk selulosa, ester, resin karet,

Tugas Perancangan Pabrik Kimia Prarancangan Pabrik Amil Asetat dari Amil Alkohol dan Asam Asetat Kapasitas ton/tahun BAB I PENGANTAR

BAB II DESKRIPSI PROSES

BAB I PENDAHULUAN. 1 Prarancangan Pabrik Dietil Eter dari Etanol dengan Proses Dehidrasi Kapasitas Ton/Tahun Pendahuluan

BAB II DISKRIPSI PROSES

II. DESKRIPSI PROSES

PENGANTAR TEKNIK KIMIA JOULIE

Jurnal Tugas Akhir Teknik Kimia

BAB II PEMILIHAN DAN URAIAN PROSES. teknologi proses. Secara garis besar, sistem proses utama dari sebuah pabrik kimia

BAB II PEMILIHAN DAN URAIAN PROSES. Ada dua proses pembuatan epichlorohydrin, yaitu:

TUGAS AKHIR PRARANCANGAN PABRIK VINYL ACETATE DARI ACETYLENE DAN ACETIC ACID KAPASITAS TON/TAHUN

II. PEMILIHAN PROSES DAN URAIAN PROSES. produk fotosintesis) dalam jangka panjang (Kimball, 1983)

LAMPIRAN A. : ton/thn atau kg/jam. d. Trigliserida : 100% - ( % + 2%) = 97.83% Tabel A.1. Komposisi minyak jelantah

Pendahuluan BAB I PENDAHULUAN

PEMILIHAN DAN URAIAN PROSES

BAB II TINJAUAN PUSTAKA

BAB II DISKRIPSI PROSES

BAB II TINJAUAN PUSTAKA

PRARANCANGAN PABRIK N-BUTIL OLEAT DARI ASAM OLEAT DAN N-BUTANOL KAPASITAS TON / TAHUN

Prarancangan Pabrik n-butiraldehid dengan Proses Hidroformilasi Propilen Kapasitas Ton/Tahun BAB II DESKRIPSI PROSES

II. PEMILIHAN DAN URAIAN PROSES

PRARANCANGAN PABRIK DIBUTYL PHTHALATE DARI PHTHALIC ANHYDRIDE DAN N-BUTANOL KAPASITAS TON/TAHUN BAB I PENDAHULUAN

PRARANCANGAN PABRIK N-BUTIL METAKRILAT DARI ASAM METAKRILAT DAN BUTANOL DENGAN PROSES ESTERIFIKASI KAPASITAS TON/TAHUN

BAB II DESKRIPSI PROSES

PRA RANCANGAN PABRIK KIMIA SODIUM LAURYL SULFAT DARI LAURYL ALKOHOL, ASAM SULFAT DAN NATRIUM HIDROKSIDA KAPASITAS TON/TAHUN EXECUTIVE SUMMARY

II. DESKRIPSI PROSES

Prarancangan Pabrik Kloroform dari Sodium hidroksida, Klorin, dan Aseton dengan Kapasitas ton/tahun BAB I PENDAHULUAN

BAB II TINJAUAN PUSTAKA

II. PEMILIHAN DAN URAIAN PROSES

II. TINJAUAN PUSTAKA. Polyethylene terephthalate dibuat melalui dua tahapan proses, yaitu proses esterifikasi

PRARANCANGAN PABRIK ETIL ASETAT DARI ASAM ASETAT DAN ETANOL DENGAN PROSES KONTINYU KAPASITAS TON PER TAHUN

II. DESKRIPSI PROSES

NASKAH PUBLIKASI PRARANCANGAN PABRIK DIBUTYL PHTHALATE DARI PHTHALIC ANHYDRIDE DAN N-BUTANOL KAPASITAS TON/TAHUN

BAB III PERANCANGAN PROSES

NASKAH PUBLIKASI PRARANCANGAN PABRIK DIBUTYL PHTHALATE DARI PHTHALIC ANHYDRIDE DAN N-BUTANOL DENGAN KATALIS ASAM SULFAT KAPASITAS 12.

Prarancangan Pabrik Amil Asetat dari Amil Alkohol dan Asam Asetat Kapasitas Ton / Tahun BAB I PENDAHULUAN

KATA PENGANTAR. Yogyakarta, September Penyusun,

NASKAH PUBLIKASI PRARANCANGAN PABRIK KLOROFORM DARI ASETON DAN KAPORIT KAPASITAS TON/TAHUN

TUGAS AKHIR PRARANCANGAN PABRIK N-BUTIL AKRILAT DARI ASAM AKRILAT DAN N-BUTANOL MENGGUNAKAN DISTILASI REAKTIF KAPASITAS 60.

LAMPIRAN A PERHITUNGAN NERACA MASSA

PRARANCANGAN PABRIK NATRIUM DIFOSFAT HEPTAHIDRAT DARI NATRIUM KLORIDA DAN ASAM FOSFAT KAPASITAS TON / TAHUN

BAB II PEMILIHAN PROSES DAN URAIAN PROSES

BAB I PENDAHULUAN. Prarancangan Pabrik Sodium DodekilBenzena Sulfonat Dari DodekilBenzena Dan Oleum 20% dengan Kapasitas ton/tahun.

Prarancangan Pabrik Sodium Dodekilbenzena Sulfonat dari Dodekilbenzena dan Oleum 20% Kapasitas Produksi ton/tahun BAB I PENDAHULUAN

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

PRARANCANGAN PABRIK ETIL ASETAT DARI ASAM ASETAT DAN ETANOL DENGAN KATALIS ASAM SULFAT KAPASITAS TON PER TAHUN

Jalan Raya. Sungai. Out. Universitas Sumatera Utara

II. DESKRIPSI PROSES. MEK mulai dikembangkan pada tahun 1980-an sebagai pelarut cat. Dalam pembuatan

BAB II DESKRIPSI PROSES. Kemurnian : minimal 99% : maksimal 1% propana (CME Group) Density : 600 kg/m 3. : 23,2 % berat dari udara.

Transkripsi:

BAB II PEMILIHAN DAN DESKRIPSI PROSES A. Macam-macam Proses Paraldehida merupakan senyawa polimer siklik asetaldehida yang dihasilkan dengan mereaksikan katalis asam dengan asetaldehida. Beberapa jenis katalis yang digunakan pada proses pembuatan paraldehida yaitu : 1. Katalis Homogen Katalis homogen yang biasa digunakan pada proses polimerisasi asetaldehida menjadi paraldehida adalah katalis asam. Katalis asam yang digunakan yaitu katalis asam kuat, asam lemah, dan katalis campuran. Katalis asam kuat yang dapat digunakan pada proses polimerisasi asetaldehida menjadi paraldehida adalah asam sulfat. Penggunaan asam sulfat dalam proses polimerisasi ini menyebabkan laju reaksi lebih cepat dan menghasilkan konversi yang besar yaitu 97%. Tetapi penggunaan katalis ini menyebabkan terbentuk beberapa produk

11 samping yang dapat mencemari polimer dan membentuk plug pada pipa. Katalis asam lemah yang biasa digunakan pada proses ini adalah asam fosfat. Penggunaan asam fosfat dalam proses ini menghasilkan produk samping yang lebih sedikit tetapi laju reaksi pembentukan paraldehida berjalan lambat, sehingga tidak di anjurkan untuk dipakai pada skala industri. Katalis campuran ini terdiri dari asam sulfat dan asam fosfat. Penggunaan katalis campuran ini menghasilkan laju reaksi yang cepat serta dapat meminimalkan terbentuknya produk samping. Konversi yang dihasilkan dari penggunaan kedua katalis ini sebesar 93%. Ditinjau dari kelebihan dan kekurangan katalis-katalis diatas maka dapat ditarik kesimpulan bahwa katalis homogen yang paling tepat dan efisien untuk digunakan pada proses pembuatan paraldehida dari polimerisasi asetaldehida adalah katalis campuran asam sulfat dengan asam fosfat. (US Patent 2864827, 2014) 2. Katalis Heterogen Selain menggunakan katalis homogen Paraldehida dapat di produksi menggunakan katalis heterogen antara lain : Allassion CS, Amberlite IR 120, Dowex 50, Duolite C20, Duolite C25, Lewatit S100 atau Lewatit S115 atau acid forms. Reaktor yang digunakan adalah reaktor fix bed dengan acidic cation exchangger. Pada proses ini

12 karena penggunaan katalis yang berbeda fasa dengan reaktan, maka tidak diperlukan proses pemisahan antara katalis dengan produk yang terbentuk, sehingga keluaran dari reaktor dapat langsung masuk ke distilasi dengan konversi yang dihasilkan sebesar 75%. (US Patent 2479559, 2011) B. Mekanisme Reaksi

13 C. Tinjauan Ekonomi Tinjauan ekonomi ini bertujuan untuk mengetahui keuntungan yang dihasilkan oleh pabrik per kg produk yang dihasilkan pada masing-masing proses yang akan digunakan. Berikut perbandingan keuntungan yang diperoleh melalui kedua proses di atas : 1. Penggunaan katalis homogen BM : CH 3 CHO = 44,05 kg/kmol C 6 H 12 O 3 = 132,16 kg/ kmol CH 3 CHO (Asetaldehida) H2SO4, H3PO4 (Paraldehida) C 6 H 12 O 3 Diketahui kapasitas produksi Paraldehida 21.000 ton/tahun Mol Paraldehida = 21.000.000 kg/thn : 132,16 kg/kmol = 158.898.305 mol/thn Konversi = 3CH 3 CHO Mula-mula : 512574,48 H2SO4, H3PO4 C 6 H 12 O 3 Reaksi : 476.694,91 158.898.30 Sisa : 35.879,58 158.898.30

14 Konversi = 0,93 =., Mol reaktan mula-mula =.,, = 512.574,48 kmol/tahun Massa rektan mula-mula = 512.574,48 kmol/tahun * 44,05 kmol/kg = 22.578.905,84 kg/tahun Harga reaktan mula-mula = 22.578.905,84 kg/thn *$ 1/kg = $ 22.578.905,84/thn Massa produk = 158.898.305 mol/thn * 132,16 g/mol = 21.000.0000.000 g/thn = 21.000.000 kg/thn Harga produk = 21.000.000 kg/thn * $ 6/kg = $ 126.000.000 /thn Maka keuntungan produksi paraldehida = Harga produk Harga Reaktan mula-mula = $ 126.000.000 /thn - $ 22.578.905,84 /thn

15 Keuntungan produksi paraldehida = $ 103.421.094,2/thn 2. Penggunaan katalis heterogen BM : CH 3 CHO = 44,05 kg/kmol C 6 H 12 O 3 = 132,16 kg/ kmol CH 3 CHO (Asetaldehida) Amberlite (Paraldehida) C 6 H 12 O 3 Diketahui kapasitas produksi Paraldehida 21.000 ton/tahun Mol Paraldehida = 21.000.000 kg/thn : 132,16 kg/kmol = 158.898.305 mol/thn Konversi = Mula-mula : 635.593,2 3CH 3 CHO C 6 H 12 O 3 Reaksi : 476.694,91 158.898.30 Sisa : 158.898,3 158.898.30 Konversi =

16 0,75 =., Mol reaktan mula-mula =.,, = 635.593,2 kmol/tahun Massa rektan mula-mula = 635.593,2 kmol/tahun * 44,05 kmol/kg = 27.997.880,46 kg/tahun Harga reaktan mula-mula = 27.997.880,46 kg/thn *$ 1/kg = $ 27.997.880,46/thn Massa produk = 158.898.305 mol/thn * 132,16 g/mol = 21.000.0000.000 g/thn = 21.000.000 kg/thn Harga produk = 21.000.000 kg/thn * $ 6/kg = $ 126.000.000 /thn Maka keuntungan produksi paraldehida = Harga produk Harga Reaktan mula-mula = $ 126.000.000 /thn - $ 27.997.880,46 /thn Keuntungan produksi paraldehida = $ 98.002.119,54/thn

17 D. Kelayakan Teknis a. Panas reaksi ( H R ) Tinjauan secara termodinamika ditujukan untuk mengetahui sifat reaksi (endotermis/eksotermis) dan reaksi berlangsung secara spontan atau tidak. Penentuan sifat reaksi eksotermis atau endotermis dapat ditentukan dengan perhitungan panas pembentukan standart ( H f ) pada P= 1 atm dan T = 298,15 K. Pada proses pembentukan paraldehida terjadi reaksi sebagai berikut: 1. Penggunaan katalis homogen Tabel 2.1 Nilai ( H f ) 298 bahan baku dan produk Komponen ( Hº f )kj/mol CH 3 CHO (l) -165,48 C 6 H 12 O 3 (l) -645,3 H Rx = H R + H Rx(298) o + H p... (2.6) H = R ni dt... (2.7) H = ΔCpmh x Δt... (2.8) = A + BT + (4T T T ) +... (2.9) ΔH R o (298) = ΔH o f produk - ΔH o f reaktan... (2.10) T = 310 K T =310 K ΔH 1 ΔH 2 T = 298 K T = 298 K ΔH R 298

18 H R = H 1 + H o R + H 2 Sehingga panas untuk masing - masing reaksi untuk suhu T, K dapat dihitung dengan persamaan: Dari persamaan reaksi (2.1) ΔH R o (298 o K) = ΔHf o C 6 H 12 O 3(l) - ΔHf o CH 3 CHO (l) = -645,3 kj/kmol (-165,48kj/kmol) = -479,82 kj/kmol H 1 = ΔCpmh x ΔT Δ CH 3 CHO = 1,54. 10 + ( -4,58.10-2 x 304) + (( 2,09.10-5 /3) x ((4x304 2 ) -(298x310))) Δ CH 3 CHO = -165,99 J/kmol ΔC pmh CH 3 CHO H CH 3 CHO H 1 = -1.380,05 J/kmol K = -16.560,63 J/kmol = -16,56 kj/kmol H 2 = ΔCpmh x Δt Δ Δ C 6 H 12 O 3 C 6 H 12 O 3 = -6,12.10 2 + (-1,34.10-01 x 304) + ((7,37. 10-05 /3) x (( 4 x 304 2 ) (298 x 310)) = -645,91 J/mol ΔC pmh C 6 H 12 O 3 ΔH C 6 H 12 O 3 H 2 = -5370,13 J/mol K = -64.441,56J/mol = -64,41 kj/mol = -64,41 kj/kmol

19 H R = H 1 + H R o + H 2 H R = -16,56 kj/mol +(-479,82 kj/kmol) + (-64,41kJ/mol) H R = -560,79 kj/mol 2. Penggunaan katalis heterogen Tabel 2.2 Nilai ( H f ) 298 bahan baku dan produk Komponen ( Hº f )kj/mol CH 3 CHO (l) -165,48 C 6 H 12 O 3 (l) -645,3 H Rx = H R + H Rx(298) o + H p... (2.6) H = R ni dt... (2.7) H = ΔCpmh x Δt... (2.8) = A + BT + (4T T T ) +... (2.9) ΔH R o (298) = ΔH o f produk - ΔH o f reaktan... (2.10) T = 323 K T =323 K ΔH 1 ΔH 2 T = 298 K T = 298 K ΔH R 298

20 H R = H 1 + H o R + H 2 Sehingga panas untuk masing - masing reaksi untuk suhu T, K dapat dihitung dengan persamaan: Dari persamaan reaksi (2.1) ΔH R o (298 o K) = ΔHf o C 6 H 12 O 3(l) - ΔHf o CH 3 CHO (l) = -645,3 kj/kmol (-165,48kj/kmol) = -479,82 kj/kmol H 1 = ΔCpmh x ΔT Δ CH 3 CHO = 1,54. 10 ((4x310,5 2 ) -(298x323))) + ( -4,58.10-2 x 310,5) + (( 2,09.10-5 /3) x Δ CH 3 CHO = -166,21 J/kmol ΔC pmh CH 3 CHO H CH 3 CHO H 1 = -1381,89 J/kmol K = -34547,29 J/kmol = -34,55 kj/kmol H 2 = ΔCpmh x Δt Δ C 6 H 12 O 3 = -6,12.10 2 + (-1,34.10-01 x 310,5) + ((7,37. 10-05 /3) x (( 4 x 310,5 2 ) (298 x 323)) Δ C 6 H 12 O 3 = -646,50 J/mol ΔC pmh C 6 H 12 O 3 ΔH C 6 H 12 O 3 H 2 = -5374,98 J/mol K = -134.374,55 J/mol = -134,37 kj/mol = -134,37 kj/kmol H R = H 1 + H R o + H 2

21 H R = -34,55 kj/mol +(-479,82 kj/kmol) + (-134,37kJ/mol) H R = -648,74 kj/mol Karena harga H R negatif, maka reaksi bersifat eksotermis. b. Energi Bebas Gibbs ( G) Perhitungan energi bebas gibbs ( G) digunakan untuk meramalkan arah reaksi kimia cenderung spontan atau tidak. ΔG o bernilai positif (+) menunjukkan bahwa reaksi tersebut tidak dapat berlangsung secara spontan, sehingga dibutuhkan energi tambahan dari luar yang cukup besar. Sedangkan ΔG o bernilai negatif ( -) menunjukkan bahwa reaksi tersebut dapat berlangsung secara spontan dan hanya sedikit membutuhkan energi. ΔG o (298 o K) = ΔG o produk - ΔG o reaktan... (2.10) ΔG = ΔH TΔS... (2.11) G o R( T) H o Rx H T o R(298) G T 298 o R(298) R T2 T1 CpdT R R T T2 T1 Cp... dt (2.12) R T Biasanya kelayakan teknik terhadap suatu reaksi kimia yang di tinjau adalah energi bebas gibbs ( G). Untuk reaksi isotermal : G Reaksi = Gº f Produk Gº f Reaktan Berikut data energi bebas gibbs pembentukan ( Gº f ) dan panas pembentukan standar ( Hº f ) pada keadaan standar (T=298 K) :

22 Tabel 2.3 Nilai ( G f ) 298 bahan baku dan produk Komponen ( Gº f )kj/mol CH 3 CHO (l) -136,40 C 6 H 12 O 3 (l) -410,38 Untuk pembentukan paraldehida : G Reaksi = Gº f Produk Gº f Reaktan = -410,38 kj/mol (-136,40 kj/mol) = -273,98 kj/mol 1. Penggunaan katalis homogen ΔG = ( 273,98) 304 x 273,98 + 479,82 298 + (0,0433 ( 0,018) = 205.304,79 kj/kmol 2. Penggunaan katalis heterogen ΔG = ( 273,98) 310,5 x 273,98 + 479,82 298 + (0,0879 ( 0,0366) = 210.825,01 kj/kmol Tabel 2.4. Perbandingan proses pembuatan paraldehida No Keterangan Katalis homogen Katalis heterogen Suhu operasi ( o C) 1 37-47 o C 40-50 o C Katalis Asam sulfat dan Amberlite I 2 asam fosfat 3 Harga katalis/kg Rp 7.826/kg Rp 1.250.000/kg

23 4 Konversi (%) 93% 75% 5 Jenis reaktor CSTR Fixed bed 6 H (kj/kmol) -560,79 kj/mol -648,74 kj/mol 7 Keuntungan per tahun $ 103.421.094,2/thn $ 98.002.119,54/thn E. Uraian Proses Proses pembuatan paraldehida dapat dibagi dalam empat tahap yaitu : 1. Tahap penyimpanan bahan baku 2. Tahap penyiapan bahan baku 3. Tahap pembentukan produk 4. Tahap pemurnian produk 1. Tahap penyimpanan bahan baku Bahan baku pembuatan paraldehida yaitu asetaldehida, katalis asam sulfat dan asam fosfat disimpan dalam fase cair. 2. Tahap penyiapan bahan baku Asetaldehid dari tangki penyimpanan (ST-103) diumpankan ke mix point (MP-102) untuk dicampur dengan asetaldehida hasil recycle yang berasal dari menara distilasi (MD -301). Kemudian keluaran mix point 1 dipanaskan dalam heater 102 (HE-102) hingga suhu 43 o C sebelum diumpankan ke reaktor (RE-201).

24 Katalis asam sulfat dari tangki penyimpanan (ST-101) diumpankan ke mix point (MP-101) untuk dicampur dengan katalis asam fosfat yang berasal dari tangki penyimpanan (ST -102). Kemudian keluaran mix point 1 dipanaskan dalam heater 101 (HE-101) hingga suhu 43 o C sebelum diumpankan ke reaktor (RE-201). 3. Tahap pembentukan produk Reaksi dalam reaktor ini berlangsung secara eksotermis dalam fasa cair. Konversi asetaldehida membentuk paraldehida sebesar 93 %. Reaksi yang terjadi dapat dituliskan dengan persamaan reaksi sebagai berikut : 3 CH 3 CHO ===> C 6 H 12 O 3 Asetaldehida, katalis asam sulfat, dan asam fosfat dari tangki bahan baku (ST-101, ST-102, ST-103) dialirkan ke dalam reaktor alir tangki berpengaduk (RE-201 dan RE-202) yang beroperasi pada temperatur 43 C dan tekanan 3 atm. Komposisi Asam sulfat sekitar 0,05 1 % dari berat umpan masuk (asetaldehida). 4. Tahap pemurnian produk Produk keluaran dari reaktor diumpankan ke netralizer (NE -301), untuk dicampurkan dengan natrium hidroksida yang berasal dari tangki (ST - 301). Fungsi dari natrium hidroksida ini adalah untuk menetralisir asam yang telah ditambahkan pada proses sebelumnya. Produk neutralizer difraksinasi dalam dekanter (D E-301) sehingga terbentuk 2 lapisan atas

25 dan bawah. Fase berat dari dekanter dialirkan ke unit pengolah limbah sedangkan fase ringan yang keluar dari dekanter diumpankan ke dalam menara distilasi (DC -301) untuk memisahkan sisa asetaldehida dari paraldehida. Hasil atas menara distilasi yang berupa asetaldehida direcycle ke dalam Reaktor dan hasil bawahnya adalah produk Paraldehida 99 % ditampung ke dalam tangki produk (ST-302).