BAB IV ANALISA DAN PENGUJIAN ALAT

dokumen-dokumen yang mirip
RANCANG BANGUN SISTEM MONITORING ARUS DAN TEGANGAN MULTICHANNEL MOTOR INDUKSI TIGA FASA MENGGUNAKAN MIKROKONTROLER ATmega8535

BAB III PERANCANGAN ALAT

BAB IV ANALISA DAN PENGUKURAN. 4.1 Analisa dan Pengukuran Perangkat Keras (Hardware)

BAB III PERANCANGAN DAN IMPLEMENTASI SISTEM

BAB IV ANALISA DAN PENGUJIAN ALAT

PEMBUATAN ALAT UKUR JARAK BERBASIS PC MENGGUNAKAN SENSOR GP2D12 MELALUI SERIAL PORT. Dwi Riyadi M

Rancang Bangun Alat Pengukur Tingkat Keolengan Benda Secara Digital

BAB III METODE PENELITIAN

BAB IV PENGUJIAN ALAT DAN ANALISA HASIL PENGUJIAN

BAB V PENGUJIAN DAN ANALISIS. dapat berjalan sesuai perancangan pada bab sebelumnya, selanjutnya akan dilakukan

BAB III PERANCANGAN ALAT DAN PROGRAM

BAB III PERANCANGAN SISTEM

PEMBUATAN ALAT UKUR KETEBALAN BAHAN SISTEM TAK SENTUH BERBASIS PERSONAL COMPUTER MENGGUNAKAN SENSOR GP2D12-IR

BAB III PERANCANGAN SISTEM

BAB III PERENCANAAN DAN PEMBUATAN PERANGKAT LUNAK

III. METODE PENELITIAN. dari bulan November 2014 s/d Desember Alat dan bahan yang digunakan dalam perancangan Catu Daya DC ini yaitu :

BAB IV PENGUJIAN DAN ANALISA. monitoring daya listrik terlihat pada Gambar 4.1 di bawah ini : Gambar 4.1 Rangkaian Iot Untuk Monitoring Daya Listrik

BAB IV PENGUJIAN DAN ANALISA SISTEM

BAB III PERANCANGAN ALAT

BAB IV PENGUJIAN DAN ANALISA

BAB III DESAIN DAN PERANCANGAN

III. METODE PENELITIAN. Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei Adapun tempat

BAB IV HASIL DAN UJI COBA

No Output LM 35 (Volt) Termometer Analog ( 0 C) Error ( 0 C) 1 0, , ,27 26,5 0,5 4 0,28 27,5 0,5 5 0, ,

BAB III ANALISIS DAN PERANCANGAN

BAB III PERANCANGAN SISTEM

BAB IV HASIL DAN PEMBAHASAN

BAB 3 PERANCANGAN SISTEM

SISTEM MONITORING SUHUINKUBATOR DAN BERAT BADAN PADA BAYI BERAT LAHIR RENDAH (BBLR) DI DALAM INKUBATOR BERBASIS PERSONAL COMPUTER(PC)

BAB IV PENGUJIAN DAN ANALISA

Bab IV PENGOLAHAN DATA DAN ANALISA

KIPAS ANGIN OTOMATIS DENGAN SENSOR SUHU BERBASIS MIKROKONTROLER ATMEGA 8535

BAB IV PENGUJIAN DAN SIMULASI PENGENDALIAN SUHU RUANG PENETAS TELUR

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN ALAT DAN PEMBUATAN SISTEM. kadar karbon monoksida yang di deteksi oleh sensor MQ-7 kemudian arduino

BAB IV PENGUJIAN ALAT

BAB IV ANALISA DAN PENGUJIAN ALAT

BAB II LANDASAN TEORI

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Maret 2015 sampai dengan Agustus 2015.

BAB IV PENGUJIAN DAN ANALISA

III. METODE PENELITIAN. Pelaksanaan tugas akhir ini dilakukan di Laboratorium Terpadu Jurusan Teknik Elektro

Gambar 3.1 Diagram Blok Alat

BAB III PERANCANGAN ALAT

BAB IV PENGUJIAN SISTEM. Pengujian minimum system bertujuan untuk mengetahui apakah minimum

BAB IV PENGUJIAN DAN ANALISA ALAT

III. METODE PENELITIAN. Penelitian ini dilakukan di Laboratorium Terpadu Teknik Elektro Universitas

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN. Hasil pengujian minimum sistem ditunjukkan pada tabel 4.1.

BAB III PEMBUATAN ALAT Tujuan Pembuatan Tujuan dari pembuatan alat ini yaitu untuk mewujudkan gagasan dan

BAB III PERANCANGAN SISTEM. untuk efisiensi energi listrik pada kehidupan sehari-hari. Perangkat input untuk

BAB IV PENGUKURAN DAN ANALISA

BAB IV HASIL DAN PEMBAHASAN. 1. Nama : Timbangan Bayi. 2. Jenis : Timbangan Bayi Digital. 4. Display : LCD Character 16x2. 5. Dimensi : 30cmx20cmx7cm

BAB III PERANCANGAN Bahan dan Peralatan

BAB III METODE PENELITIAN

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENERAPAN DAN ANALISA

BAB III METODOLOGI RANCANG BANGUN ALAT

BAB IV PENERAPAN DAN ANALISA

BAB IV PENGUKURAN DAN ANALISIS SISTEM. diharapkan dengan membandingkan hasil pengukuran dengan analisis. Selain itu,

PRAKTIKUM II PENGKONDISI SINYAL 1

BAB IV PEMBAHASAN. Pengujian beserta analisa yang dilakukan pada bab ini antara lain :

SEBAGAI SENSOR CAHAYA DAN SENSOR SUHU PADA MODEL SISTEM PENGERING OTOMATIS PRODUK PERTANIAN BERBASIS ATMEGA8535

BAB IV PENGUJIAN DAN ANALISA

Indikator Status Tenaga Listrik pada Pelanggan Listrik 3 Fasa Menggunakan Media Modem GSM

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan September 2014 sampai November

DQI-03 DELTA ADC. Dilengkapi LCD untuk menampilkan hasil konversi ADC. Dilengkapi Zero offset kalibrasi dan gain kalibrasi

BAB III PERANCANGAN DAN PEMBUATAN

BAB 3 PERANCANGAN DAN PEMBUATAN ALAT

BAB III METODE PENELITIAN

BAB III PERANCANGAN SISTEM

BAB II DASAR TEORI. AVR(Alf and Vegard s Risc processor) ATMega32 merupakan 8 bit mikrokontroler berteknologi RISC (Reduce Instruction Set Computer).

BAB III DESKRIPSI MASALAH

IV. HASIL PENELITIAN DAN PEMBAHASAN. menggunakan sensor optik berbasis mikrokontroler ATMega 8535 dengan

BAB III METODE PENELITIAN. mengerjakan tugas akhir ini. Tahap pertama adalah pengembangan konsep

BAB IV PENGUJIAN ALAT DAN PEMBAHASAN

Input ADC Output ADC IN

Perancangan dan Integrasi Sistem

Taufik Adi Sanjaya Website penulis :

BAB III PERANCANGAN ALAT

Komputerisasi Alat Ukur V-R Meter untuk Karakterisasi Sensor Gas Terkalibrasi NI DAQ BNC-2110

III. METODE PENELITIAN. Penelitian dan perancangan tugas akhir ini dilakukan di Laboratorium Terpadu

BAB IV PENGUJIAN ALAT DAN ANALISA

BAB IV HASIL DAN UJI COBA

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM. Dari diagram sistem dapat diuraikan metode kerja sistem secara global.

BAB III PERANCANGAN Deskripsi Model Sistem Monitoring Beban Energi Listrik Berbasis

BAB IV PENGUJIAN ALAT DAN ANALISA HASIL PENGUJIAN

BAB III METODE PENELITIAN

BAB IV PENGUJIAN PROPELLER DISPLAY

III. METODE PENELITIAN. Penelitian ini mulai dilaksanakan pada bulan April 2015 sampai dengan Mei 2015,

Menampilkan nilai dari 8 kanal ADC ke Port Serial PC oleh Modul ST-51 dan AD-0809 V2.0

BAB IV HASIL PENELITIAN

BAB IV HASIL DAN PEMBAHASAN. adalah alat Negative Pressure Wound Therapy (NPWT) berbasis mikrokontroler.

Kotak Surat Pintar Berbasis Mikrokontroler ATMEGA8535

BAB 4 HASIL UJI DAN ANALISA

BAB II LANDASAN TEORI. ACS712 dengan menggunakan Arduino Nano serta cara kerjanya.

BAB IV IMPLEMENTASI DAN EVALUASI 4. BAB II LANDASAN TEORIDASAN TEORI. dengan Microsoft Access 2000 sebagai database. Implementasi program

BAB IV HASIL DAN PEMBAHASAN

BAB 3 PERANCANGAN SISTEM

TEORI ADC (ANALOG TO DIGITAL CONVERTER)

BAB III PERANCANGAN ALAT

Transkripsi:

BAB IV ANALISA DAN PENGUJIAN ALAT Pada BAB ini, akan dibahas tentang hasil pengujian alat yang telah dirancang, dari sisi hardware dan software-nya. Pengujian hardware dan software tersebut meliputi : 1. Pengujian sensor arus CR 9580-10 dan sensor tegangan, pengujian ini dimaksudkan untuk mengetahui bahwa sensor dapat berfungsi dengan baik dengan perubahan output sensor yang mengikuti perubahan inputannya. 2. Pengujian ADC mikrokontroler ATmega8535, pengujian ini dimaksudkan untuk mengetahui respon ADC mikrokontroler ATmega8535 terhadap tegangan input ADC serta resolusi ADC-nya. 3. Pengujian sensor arus CR 9580-10 dan sensor tegangan pada komputer, dilakukan untuk menguji komunikasi serial antara sensor arus dan tegangan dengan komputer. 4. Pengujian sistem keseluruhan, dilakukan untuk mastikan program aplikasi yang telah dibuat menggunakan Borland Delphi 7 dapat berkomunikasi dengan mikrokontroler ATmega8535, menampilkan data, dan mengolah data yang dikirim mikrokontroler ATmega8535 serta menyimpannya di database Microsoftt Access. 4.1. Pengujian Sensor Arus CR 9580-10 Pengujian sensor arus CR 9580-10, dilakukan untuk mengetahui respon tegangan keluaran sensor terhadap perubahan arus di sisi primer yang di-injeksikan. Pengujian dilakukan dengan cara menghubungkan kaki output positif sensor ke kabel positif multimeter digital dan kaki output negatif sensor ke kabel negatif multimeter 42

Vout Sensor Arus CR 9580-10 (VDC) digital. Arus AC yang di-injeksikan ke sisi primer sensor arus sebesar 1-10 amper dengan kenaikan 0.5 amper. Kemudian, tegangan output sensor arus dicatat setiap kenaikan 0.5 amper. Data hasil pengujian tersebut dapat dibuat grafik hubungan antara arus (A AC) dengan tegangan output sensor arus CR 9580-10 (VDC) yang ditunjukkan pada grafik 4.1. 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 y = 0.489x - 0.031 R² = 1 0 2 4 6 8 10 Arus Primer (A AC) Grafik 4.1 Output sensor arus CR 9580-10 Berdasarkan grafik 4.1, diperoleh persamaan garis y = 0.489x 0.031, dimana x adalah nilai arus yang di-injeksikan di sisi primer sensor arus dan y adalah tegangan output sensor arus CR 9580-10. Dari grafik tersebut juga dapat diketahui bahwa kenaikan tegangan output sensor arus CR 9580-10 mengikuti kenaikan arus yang diinjeksikan di sisi primer sensor arus. 43

Vout Sensor Tegangan (VDC) 4.2. Pengujian Sensor Tegangan Pengujian sensor tegangan, dilakukan untuk mengetahui respon tegangan keluaran sensor terhadap perubahan tegangan di sisi primer yang di-injeksikan. Pengujian dilakukan dengan cara menghubungkan kaki output positif sensor ke kabel positif multimeter digital dan kaki output negatif sensor ke kabel negatif multimeter digital. Tegangan AC yang di-injeksikan ke sisi primer sensor tegangan sebesar 100-400 VAC dengan kenaikan 10 VAC. Kemudian, tegangan output sensor tegangan dicatat setiap kenaikan 10 VAC. Data hasil pengujian tersebut dapat dibuat grafik hubungan antara tegangan (VAC) dengan tegangan output sensor tegangan (VDC) yang ditunjukkan pada grafik 4.2. 6 5 4 3 2 y = 0.014x - 0.702 R² = 0.999 1 0 100 150 200 250 300 350 400 Tegangan Primer (VAC) Grafik 4.2 Output sensor tegangan Berdasarkan grafik 4.2, diperoleh persamaan garis y = 0.014x 0.702, dimana x adalah nilai tegangan AC yang di-injeksikan di sisi primer sensor tegangan dan y 44

adalah tegangan output sensor tegangan. Dari grafik tersebut juga dapat diketahui bahwa kenaikan tegangan output sensor tegangan mengikuti kenaikan tegangan AC yang di-injeksikan di sisi primer sensor tegangan. 4.3. Pengujian ADC Mikrokontroler ATmega8535 Pengujian ADC mikrokontroler ATmega8535, dilakukan untuk mengetahui respon ADC internal mikrokontroler terhadap tegangan input tyang diberikan, resolusi ADC dan komunikasi serial dengan komputer dapat berjalan dengan baik. Pengujian ini dilakukan dengan menggunakan rangkaian komunikasi serial mikrokontroler ATmega8535, dengan ditambahkan resistor variable yang dirangkai sebagai pembagi tegangan dan dihubungkan ke PA.0 serta VCC. Selain itu, tegangan referensi ADC yang digunakan adalah sebesar 5 VDC dan dihubungkan ke pin AVCC. Tegangan input ADC diatur oleh resistor variable dengan range 0-5000 mvdc dan bobot biner yang tampil di komputer dicatat sebagai bukti pengujian. Data hasil pengujian tersebut dapat dibuat grafik hubungan antara tegangan input ADC (mvdc) dengan bobot biner yang ditunjukkan pada grafik 4.3. 45

Vin ADC (mvdc) 6000 5000 4000 3000 2000 y = 4.962x - 5.481 R² = 1 1000 0 0 200 400 600 800 1000 1200 Bobot Biner Grafik 4.3 Pengujian ADC mikrokontroler ATmega8535 Berdasarkan grafik 4.3, diperoleh persamaan garis y = 4.962x 5.481, dimana x adalah nilai bobot biner yang tampil di komputer dan y adalah tegangan input ADC. Dari grafik tersebut juga dapat diketahui bahwa resolusi ADC yang diperoleh adalah 4.962 mv/bit, hasil yang diperoleh ini mendekati hitungan secara teoritis sebesar 4.88 mv/bit. 4.4. Pengujian Sensor Arus CR 9580-10 pada Komputer Pengujian ini dilakukan untuk mengetahui respon perubahan bobot biner yang ditampilkan di komputer terhadap perubahan tegangan output sensor arus CR 9580-10. Pengujian dilakukan dengan menggunakan rangkaian pengujian ADC mikrokontroler ATmega8535 dengan input ADC pada PA.0 diganti dengan dihubungkan pada kaki output positif sensor arus dan kaki ground sensor arus dihubungkan ke kaki ground mikrokontroler ATmega8535. Kemudian, arus AC di- 46

Arus (A) injeksikan ke sisi primer sensor arus dengan range 1-10 amper dan kenaikan 0.5 amper. Bobot biner yang tampil di komputer dicatat setiap kenaikan 0.5 amper. Data hasil pengujian tersebut dapat dibuat grafik hubungan antara arus AC yang diinjeksikan di sisi primer sensor arus dengan bobot biner yang tampil di komputer dan ditunjukkan pada grafik 4.4. 10 9 8 7 6 5 4 3 2 1 0 y = 0.01x + 0.072 R² = 1 90 190 290 390 490 590 690 790 890 990 Bobot Biner ADC Grafik 4.4 Pengujian sensor arus CR 9580-10 pada komputer Berdasarkan grafik 4.4, diperoleh persamaan garis y = 0.01x + 0.072, dimana x adalah nilai bobot biner yang tampil di komputer dan y adalah arus AC yang diinjeksikan di sisi primer sensor arus. Persamaan garis yang diperoleh pada pengujian ini adalah persamaan yang juga akan digunakan di Borland Delphi 7 untuk mengkonversi perubahan nilai bobot biner menjadi arus AC yang terukur sensor arus. 47

Tegangan (V) 4.5. Pengujian Sensor Tegangan pada Komputer Pengujian ini dilakukan untuk mengetahui respon perubahan bobot biner yang ditampilkan di komputer terhadap perubahan tegangan output sensor tegangan. Pengujian dilakukan dengan menggunakan rangkaian pengujian ADC mikrokontroler ATmega8535 dengan input ADC pada PA.0 diganti dengan dihubungkan pada kaki output positif sensor tegangan dan kaki ground sensor tegangan dihubungkan ke kaki ground mikrokontroler ATmega8535. Kemudian, tegangan AC di-injeksikan ke sisi primer sensor tegangan dengan range 100-400 VAC dan kenaikan 10 VAC. Bobot biner yang tampil di komputer dicatat setiap kenaikan 10 VAC. Data hasil pengujian tersebut dapat dibuat grafik hubungan antara tegangan AC yang di-injeksikan di sisi primer sensor tegangan dengan bobot biner yang tampil di komputer dan ditunjukkan pada grafik 4.5. 400 350 300 250 200 y = 0.345x + 48.58 R² = 1 150 100 50 150 250 350 450 550 650 750 850 950 1050 Bobot Biner Grafik 4.5 Pengujian sensor tegangan pada komputer 48

Berdasarkan grafik 4.5, diperoleh persamaan garis y = 0.345x + 48.58, dimana x adalah nilai bobot biner yang tampil di komputer dan y adalah tegangan AC yang di-injeksikan di sisi primer sensor tegangan. Persamaan garis yang diperoleh pada pengujian ini adalah persamaan yang juga akan digunakan di Borland Delphi 7 untuk mengkonversi perubahan nilai bobot biner menjadi tegangan AC yang terukur sensor tegangan. 4.6. Pengujian Sistem Keseluruhan Pengujian sistem keseluruhan dilakukan untuk mengetahui bahwa alat yang dibuat dari sisi hardware dan software dapat berfungsi dengan baik. Keberhasilan alat diukur dengan cara mikrokontroler ATmega8535 dapat mengkonversi perubahan tegangan output sensor menjadi data ADC kemudian mengirimkannya ke komputer dengan komunikasi serial untuk ditampikan di program Borland Delphi 7. Di Borland Delphi 7 data ADC di kalkulasi dengan menggunakan rumus yang diperoleh dari hasil uji sensor arus atau tegangan pada komputer. Kemudian hasil kalkulasi tersebut di tampilkan pada kolom edit dan dalam bentuk grafik di form monitoring. Pada form database data yang ditampilkan akan di-auto saving dengan interval 5 detik ke database Microsoftt Access dan dapat diolah ulang kembali dengan meng-eksport ke Microsoftt Excel. Jika dibutuhkan data berupa hardcopy, maka data yang ditampilkan di form database dapat diprint menggunakan printer. Pengujian sistem keseluruhan juga telah dilakukan dengan membandingkan pembacaan arus dan tegangan dari alat yang telah dibuat dengan pembacaan alat ukur standar. Untuk pembacaan nilai arus dari sensor CR 9580-10 dibandingkan dengan pembacaan dari digital power meter WT 130. Sedangkan, untuk pembacaan tegangan oleh sensor tegangan dibandingkan dengan pembacaan multimeter digital fluke 289. Grafik yang menunjukkan data perbandingan pembacaan arus dan tegangan dari alat yang dibuat dengan alat ukur standar ditunjukkan pada grafik 4.6 dan grafik 4.7. 49

Arus Sensor CR 9580-10 (A AC) 12 10 8 6 y = x R² = 1 4 2 0 0 2 4 6 8 10 12 Arus Digital Power Meter WT 130 (A AC) Grafik 4.6 Grafik perbandingan pembacaan arus dari sensor CR 9580-10 dengan digital power meter WT 130 Berdasarkan grafik 4.6, diperoleh koefisien korelasi linear r = 100%. Hal ini menunjukkan pembacaan arus oleh sensor CR 9580-10 dengan digital power meter WT 130 adalah sama. 50

Tegangan Sensor Tegangan (VAC) 400 350 300 250 200 150 100 y = 1.000x + 0.272 R² = 1 50 0 0 50 100 150 200 250 300 350 400 Tegangan Multimeter Digital Fluke 289 Grafik 4.7 Grafik perbandingan pembacaan tegangan dari sensor tegangan dengan multimeter digital fluke 289 Berdasarkan grafik 4.7, diperoleh koefisien korelasi linear r = 100%. Hal ini menunjukkan pembacaan arus oleh sensor tegangan dengan multimeter digital fluke 289 adalah sama. Pengambilan data telah dilakukan pada tanggal 31 maret 2015, yang bertempat di ruang MCC Boiler unit 5 PLTU Suralaya. Object motor induksi tiga fasa yang diukur arus dan tegangannya adalah motor mill lube oil C1 dan mill lube oil D2. Pengambilan data dimulai pukul 14:04 PM sampai pukul 14:29 PM dan diperoleh data arus dan tegangan sebanyak 260 data. Berikut ini adalah tampilan dari program aplikasi yang telah dibuat saat pengambilan data. 51

Gambar 4.1 Tampilan form monitoring saat pengambilan data Pada gambar 4.1 merupakan tampilan dari form monitoring sebelum pengambilan data dimulai. Tampilan grafik dan kolom edit belum menunjukkan data arus dan tegangan motor induksi tiga fasa yang dimonitor. Sebelum pengambilan data dimulai perlu dilakukan penentuan port komunikasi serial yang akan digunakan. Penentuan port serial tersebut dapat dilakukan dengan memilih button setting. 52

Gambar 4.2 Tampilan form database saat pengambilan data Pada gambar 4.2, terlihat data ter-record terdiri dari Tanggal, Waktu, Amp1_R, Amp1_S, Amp1_T, Volt1, Amp2_R, Amp2_S, Amp2_T dan Volt2. Pada form database dilengkapi fasilitas data kontrol yang memudahkan dalam melakukan navigasi pada database dan mengontrol jumlah data yang ter-record. Fasilitas data searching juga disediakan pada form ini yang memudahkan dalam melakukan pencarian data yang diinginkan berdasarkan Tanggal, Waktu, Amp1_R, Amp1_S, Amp1_T, Volt1, Amp2_R, Amp2_S, Amp2_T dan Volt2. 53

Gambar 4.3 Tampilan database Microsoftt Access dengan data ter-record Pada database Microsoft Access data arus dan tegangan motor induksi tiga fasa yang dimonitor di simpan di tabel motor. Interval penyimpanan data pada database ini adalah setiap 5 detik dan dapat diubah sesuai kebutuhan di form database. 54

Gambar 4.4 Tampilan Microsoft Excel dengan data ter-record Data yang ditampilan pada Microsoft Excel merupakan data yang ter-record di form database. Di Microsoft Excel data dapat diolah kembali dengan menggunakan formula matematis yang disediakan Microsoft Excel guna menunjang analisis data. 55

Gambar 4.5 Tampilan print preview data yang ter-record Dengan disediakannya fasilitas cetak pada form database, maka data yang ter-record dapat dicetak menggunakan printer. Pada gambar 4.5 menunjukkan preview laporan database dari arus dan tegangan motor induksi tiga fasa yang dimonitor dan siap untuk dicetak. 56