Perancangan Alat Proses. Abdul Wahid Surhim

dokumen-dokumen yang mirip
NAJA HIMAWAN

PIPELINE STRESS ANALYSIS PADA ONSHORE DESIGN JALUR PIPA BARU DARI CENTRAL PROCESSING AREA(CPA) JOB -PPEJ KE PALANG STATION DENGAN PENDEKATAN CAESAR

ANALISA RANCANGAN PIPE SUPPORT PADA SISTEM PERPIPAAN DARI POMPA MENUJU PRESSURE VESSE DAN HEAT EXCHANGER DENGAN PENDEKATAN CAESARR II

Ikatan Ahli Teknik Perminyakan Indonesia

BAB IV ANALISA DAN PERHITUNGAN

BAB III METODE PENELITIAN. Diagram alir studi perencanaan jalur perpipaan dari free water knock out. Mulai

Indonesia Regulation & Pipelines International Standardd &

2.10 Caesar II. 5.10Pipe Strees Analysis

4. HASIL DAN PEMBAHASAN

Review Desain Condensate Piping System pada North Geragai Processing Plant Facilities 2 di Jambi Merang

BAB III DATA DESAIN DAN HASIL INSPEKSI

MANAJEMEN RISIKO 1 (INDONESIAN EDITION) BY IKATAN BANKIR INDONESIA

BAB III DATA PEMODELAN SISTEM PERPIPAAN

UNIVERSITAS SUMATERA UTARA

BAB V METODOLOGI. Mulai

Nama Alat : Drill Pipe Fungsi : - memberikan rangkaian panjang pipa bor, sehingga dapat menembus formasi yang lebih dalam.

Pipa air Pengertian Pipa PVC

Topi Anda akan membutuhkan untuk melakukan langkah-langkah ini adalah 1. A Windows 98 CD 2. A Komputer dengan CD-ROM akses

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

Informasi Data Pokok Kota Surabaya Tahun 2012 BAB I GEOGRAFIS CHAPTER I GEOGRAPHICAL CONDITIONS

BAB IV ANALISA DAN PEMBAHASAN. melakukan perancangan sistem perpipaan dengan menggunakan program Caesar

SUKSES BERBISNIS DI INTERNET DALAM 29 HARI (INDONESIAN EDITION) BY SOKARTO SOKARTO

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

Exercise 1c Menghitung efisiensi

ANALISIS KERUGIAN HEAD PADA SISTEM PERPIPAAN BAHAN BAKAR HSD PLTU SICANANG MENGGUNAKAN PROGRAM ANALISIS ALIRAN FLUIDA

ANALISA KEKUATAN FLANGE PADA SISTEM PEMIPAAN PRIMER REAKTOR TRIGA 2000 BANDUNG

PERANCANGAN ULANG FIRE PROTECTION SYSTEM

ANALISIS CAPAIAN OPTIMASI NILAI SUKU BUNGA BANK SENTRAL INDONESIA: SUATU PENGENALAN METODE BARU DALAM MENGANALISIS 47 VARIABEL EKONOMI UNTU

PRIMA Volume 3, Nomor 6, November 2006 ISSN

ANALISA PRESSURE DROP DALAM INSTALASI PIPA PT.PERTAMINA DRILLING SERVICES INDONESIA DENGAN PENDEKATAN BINGHAM PLASTIC

SISTEM TRANSPORTASI FLUIDA (Sistem Pemipaan)

ASME B31.3: Chapter 1

SPRINKLER DI GUDANG PERSONAL WASH PT. UNILEVER INDONESIA TBK. Wisda Mulyasari ( )

LAPORAN TUGAS AKHIR PEMBUATAN SISTEM SIRKULASI AIR PENDINGIN KONDENSOR PERALATAN PIROLISIS SAMPAH PLASTIK

BAB I PENDAHULUAN. kini, misalnya industri gas dan pengilangan minyak. Salah satu cara untuk

Analisa Laju Erosi dan Perhitungan Lifetime Terhadap Material Stainless Steel 304, 310, dan 321

BAB IV ANALISA DAN PEMBAHASAN. dalam tugas akhir ini adalah sebagai berikut : Document/Drawing Number. 2. TEP-TMP-SPE-001 Piping Desain Spec

PENDAHULUAN PERUMUSAN MASALAH. Bagaimana pengaruh interaksi antar korosi terhadap tegangan pada pipa?

DECANTER (D) Sifat Fisis Komponen Beberapa sifat fisis dari komponen-komponen dalam decanter ditampilkan dalam tabel berikut.

PENGEMBANGAN PERANGKAT LUNAK WAKTU-NYATA SIMULASI SISTEM PEMBANGKIT KENDALI ELEVATOR N PADA ENGINEERING FLIGHT SIMULATOR

Rahasia Cermat & Mahir Menguasai Akuntansi Keuangan Menengah (Indonesian Edition)

BAB III PERENCANAAN SISTEM HYDRANT

TUGAS BROWSING. Diajukan untuk memenuhi salah satu tugas Eksperimen Fisika Dasar 1. Di susun oleh : INDRI SARI UTAMI PEND. FISIKA / B EFD-1 / C

BAB VI PEMBAHASAN DAN HASIL

Metode Seleksi Material pada Pengilangan Minyak dan Gas Menggunakan Neraca Massa dan Energi dan Diagram Alir Proses

BAB III ANALISA DAN PEMBAHASAN

PERANCANGAN DAN ANALISA SISTEM PERPIPAAN PROCESS PLANT DENGAN METODE ELEMEN HINGGA

10/2/2012 TANK SYSTEM AQUACULTURE ENGINEERING

ANALISA KONFIGURASI PIPA BAWAH LAUT PADA ANOA EKSPANSION TEE

ANALISIS TEBAL LAPIS TAMBAHAN (OVERLAY) PADA PERKERASAN KAKU (RIGID PA VEMENT) DENGAN PROGRAM ELCON DAN METODE ASPHALT INSTITUTE TESIS

PERHITUNGAN KESTABILAN LUBANG BUKAAN PADA TEROWONGAN HEADRACE PLTA SINGKARAK MENGGUNAKAN ANALISIS BALIK TESIS MAGISTER

ANALISA PELETAKAN BOOSTER PUMP PADA ONSHORE PIPELINE JOB PPEJ (JOINT OPERATING BODY PERTAMINA PETROCHINA EAST JAVA)

Oleh : Luthfan Riandy*

FULL DEVELOPMENT OF PIPELINE NETWORKING AT X FIELD

Lampiran A: Gambar Bagian- bagian dari Alat Penukar Kalor Berdasarkan Standar TEMA

MANAJEMEN RISIKO 1 (INDONESIAN EDITION) BY IKATAN BANKIR INDONESIA

6 KERANJANG 7 LANGKAH API (INDONESIAN EDITION) BY LIM TUNG NING

PANDUAN PERHITUNGAN TEBAL PIPA

JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: ( Print) 1

BAB II LANDASAN TEORI

BAB IV DATA SISTEM PERPIPAAN HANGTUAH

Analisa Aliran Control Valve HCB BAB IV ANALISA FLOW CONTROL VALVE HCB UNTUK STEAM PADA PT POLICHEM INDONESIA TBK

SEPARATOR. Nama Anggota: PITRI YANTI ( } KARINDAH ADE SYAPUTRI ( ) LISA ARIYANTI ( )

KESASTRAAN MELAYU TIONGHOA DAN KEBANGSAAN INDONESIA: JILID 2 FROM KPG (KEPUSTAKAAN POPULER GRAMEDIA)

PERANCANGAN KONDENSOR KOMPAK PADA UNTAI UJI BETA ABSTRAK

DESAIN DAN ANALISIS TEGANGAN SISTEM PERPIPAAN MAIN STEAM (HIGH PRESSURE) PADA COMBINED CYCLE POWER PLANT

Sumber : Brownell & Young Process Equipment design. USA : Jon Wiley &Sons, Inc. Chapter 3, hal : Abdul Wahid Surhim

ABSTRAK ABSTRACT KATA PENGANTAR

JUTAAN UMKM PAHLAWAN PAJAK: URUS PAJAK ITU SANGAT MUDAH (INDONESIAN EDITION) BY CHANDRA BUDI

ANALISIS KASUS UPHEAVAL BUCKLING PADA ONSHORE PIPELINE

DAFTAR SNI PRODUK/PERALATAN SUB BIDANG MINYAK DAN GAS BUMI

Dosen Pembimbing: 1. Ir. Imam Rochani, M.Sc. 2. Ir. Handayanu, M.Sc., Ph.D.

Analisa Rancangan Pipe Support Sistem Perpipaan dari Pressure Vessel ke Air Condenser Berdasarkan Stress Analysis dengan Pendekatan CAESAR II

MISTERI PEMBUNUHAN DI KAKEK BODO (INDONESIAN EDITION) BY S. MARA GD.

MODULE 1 GRADE XI VARIATION OF EXPRESSIONS

BAB III 1 METODE PENELITIAN

Existing : 790 psig Future : 1720 psig. Gambar 1 : Layout sistem perpipaan yang akan dinaikkan tekanannya

Studi Pemanfaatan Condensate Outlet Steam Trap Sebagai Air Umpan Boiler di Pabrik Amoniak Pusri-IB

BAB III. PERENCANAAN BAGIAN BAGIAN UTAMA CHEMICAL INJECTION PACKAGE DAN PERHITUNGAN PERENCANAAN

Bab III Data Perancangan GRP Pipeline

Abstrak. Kata kunci: Hydrotest, Faktor Keamanan, Pipa, FEM ( Finite Element Method )

BASIC THERMODYNAMIC CONCEPTS

Pengecoran logam. Pengecoran (casting)

Abstrak Kata Kunci :

APA SAJA PEKERJAAN PROCESS DESIGN ENGINEER? Oleh: Fadhli Halim Anggota Milis Migas Indonesia

JURUSAN TEKNIK SISTEM PERKAPALAN FAKULTAS TEKNOLOGI KELAUTAN UNIVERSITAS DARMA PERSADA JAKARTA

BAB I PENDAHULUAN. Plant, Nuclear Plant, Geothermal Plant, Gas Plant, baik di On-Shore maupun di. Offshore, semuanya mempunyai dan membutuhkan Piping.

TERM OF REFERENCE ( T O R ) KONTRAK PAYUNG HOT INSULATION SERVICES

Gambar 1.1 Sistem perpipaan steam 17 bar

Addition of beneficiary for other currency than INR

KESESUAIAN PENGGUNAAN CAMPURAN ASPAL MINYAK DAN ASBUTON MIKRO DENGAN PEN. 40 SEBAGAI BAHAN PENGIKAT DALAM HOT ROLLED SHEET

Analisa Rancangan Pipe Support pada Sistem Perpipaan High Pressure Vent Berdasarkan Stress Analysis dengan Pendekatan Caesar II

4 BAB IV PERHITUNGAN DAN ANALISA

ANALISIS MID-POINT TIE-IN PADA PIPA BAWAH LAUT

DESAIN BASIS DAN ANALISIS STABILITAS PIPA GAS BAWAH LAUT

32-bit and 64-bit Windows: Frequently asked questions

Saher System. English. indonesia. Road Safety 996

THESIS. OPTIMASI PEMILIHAN KOMBINASI ALAT BERAT DENGAN APLIKASI REKURSIF DYNAMIC PROGRAMMING Studi Kasus : PT. VICO INDONESIA

POLITEKNOLOGI VOL. 15 No. 3 SEPTEMBER 2016 ABSTRACT ABSTRAK

Bab 4 Pemodelan Sistem Perpipaan dan Analisis Tegangan

Transkripsi:

Sistem Perpipaan Perancangan Alat Proses Abdul Wahid Surhim

PIPING SYSTEM Piping Fundamentals What is that? Concept Layout Development Piping Components & their access requirement. Straight length requirements. Orientation of various tapings, components, etc. Piping Drains & Vents Insulation. Material & Sizing Critical piping system consideration. Pipe Stress Analysis. Pipe Supports

Rujukan Noname. Piping Basics (PPS Form) Raswari. 1987. Sistem Perpipaan. UI Press Escoe, A. Keith. 2006. Piping and Pipeline Assessment Guide. Elsevier Inc. All rights reserved Ellenberger, J. Phillip. 2014. Piping and Pipeline Calculations Manual. Second Edition. Elsevier Inc. All rights reserved Devki Energy Consultancy Pvt. Ltd. 2006. BEST PRACTICE MANUAL: FLUID PIPING SYSTEMS

Piping Fundamentals Let us first Discuss about WHAT IS PIPE! It is a Tubular item made of metal, plastic, glass etc. meant for conveying Liquid, Gas or any thing that flows. It is a very important component for any industrial plant. And it s engineering plays a major part in overall engineering of a Plant. In next few pages we shall try to familiarize about pipe and it s components.

Piping dan Pipeline PIPING: in-plant piping ~ inside a plant facility process piping, utility piping, etc PIPELINE: a long pipe running over distances transporting liquids or gases often extend into process facilities

In any plant various fluids flow through pipes from one end to other. Now let us start with a plant where we see three tanks. Tank-1, Tank-2 and Tank-3 We have to transfer the content of Tank no. 1 to the other two tanks. We will need to connect pipes to transfer the fluids from Tank-1 to Tank-2 and Tank-3 LET US BRING THE PIPES.

To solve these problems we need the pipe components, which are called We have just brought the pipes, now we need to solve some more problems. Pipes are all straight pieces. PIPE FITTINGS We need some branch connections We need some bend connections

These are the pipe fittings, There are various types of fittings for various purposes, some common types are - Elbows/Bends, Tees/Branches, Reducers/Expanders, Couplings, Olets, etc. Anyway, the pipes and fittings are in place, but the ends are yet to be joined with the Tank nozzles. We now have to complete the end connections. These, in piping term, we call TERMINAL CONNECTIONS.

So far this is a nice arrangement. But there is no control over the flow from Tank-1 to other tanks. We need some arrangement to stop the flow if needed These are flanged joints This is a welded joint To control the flow in a pipe line we need to fit a special component. That is called - VALVE

There are many types of valves, categorized based on their construction and functionality, Those are - Gate, Globe, Check, Butterfly, etc. Other than valves another important line component of pipe line is a filter, which cleans out derbies from the flowing fluid. This is called a STRAINER

Valve (Katup) 1. Butterfly valve 2. Globe valve 3. Gate valve 4. Ball valve 5. Check valve 6. Diaphragm valve 7. Knife Gate valve 8. Plug valve 9. Spool Valve 10.Pressure Relief Valve 11.Pressure Safety Valve (PSV) 12.Control valve

Here we see a more or less functional piping system, with valves and strainer installed. Let us now investigate some aspects of pipe flexibility. If this tank nozzle expands, when the tank is hot. In such case we need to fit a flexible pipe component at that location, which is called an EXPANSION JOINT

When some fluid is flowing in a pipe we may also like know the parameters like, pressure, temperature, flow rate etc. of the fluid. Expansion Joint Manufacturers Association (EJMA) To know these information we need to install INSTRUMENTS in the pipeline.

Next we shall look into how to SUPPORT the pipe/and it s components. There are various types instruments to measure various parameters. Also there are specific criteria for installation of various pipe line instruments.

Here are some of the pipe supporting arrangements. There can be numerous variants. All depend on piping designer s preference and judgement. Let us see some OTHER types of supports

We have just completed a pipe line design. We shall rewind and check how it is really done in practice. First the flow scheme is planned, 1) What, 2) From what point, 3) To which point Pipe sizes are selected, pipe material and pipe wall thickness are selected. Types of Valves are planned Also the types of instruments required are planned We represent the whole thing in a drawing which is called Piping and Instrumentation Drawing, in short P&ID. For P&ID generation we use SPP&ID software. By this time you have already come to know that while we prepare P&IDs in SPP&ID, we enter all the pipe lines system information in the drawing. So the SPP&ID drawing is an Intelligent drawing which under it s surface carries all the information about a pipe like, Pipe size, Flowing Fluid, etc. Let us see a P&ID prepared in SPP&ID

This is screen picture of P&ID made by SPP&ID If we click on any line it will show the Data embedded.

After the P&ID is ready we start the layout work. Here we carryout pipe routing / layout in Virtual 3D environment. We use PDS 3D software to route piping in the Plant virtual 3D space. We call this as piping modeling or physical design. While development of piping layout we have to consider the following Piping from source to destination should be as short as possible with minimum change in direction. Should not hinder any normal passage way. Also should not encroach any equipment maintenance space. Not Preferable Preferable

While carrying out pipe routing we also need to consider the following Valves, strainers, instruments on the pipe should be easily accessible. If needed separate ACCESS PLATFORMS to be provided to facilitate these. Desired location and orientation of valves / instruments and other pipe components are to be checked and maintained, like some valves or strainers can only be installed in horizontal position. Specific requirements for instrument installation to be checked, like temperature gauge can not be installed in pipe which is less than 4 inch in size. Specific requirements of STRAIGHT LENGTH of pipe for some components to be maintained, like for flow orifice we need to provide 15 times diameter straight pipe length at upstream of orifice and 5 times diameter straight at down stream of orifice. Example of Straight length requirement for Flow Orifice

For Pipeline which shall carry liquid, we have to make sure that all air is allowed to vent out of the line when the line is filled with liquid. To achieve this a VENT connection with Valve is provided at the top most point of the pipeline. Also arrangement is kept in the pipeline so that liquid can be drained out if required. To achieve this a DRAIN connection with Valve is provided at the lowest point of the pipeline Pipes are also slopped towards low points. Let us look into typical Vent and Drain arrangement in a pipeline

This is a 3D model of Feed water line along with pumps and other accessories Let us have a look into a piping model done by PDS 3D

INSULATION - When hot fluid flows through pipe then generally pipe is insulated. There are two primary reasons for insulating the pipe carrying hot fluid. Containing the heat inside the pipe. Insulation preserves the heat of the fluid. It is called Hot Insulation Personnel safety, so that people do not get burn injury by touching hot surface of pipe. It is called Personnel Protection Insulation Cold pipes are also insulated Cold or chilled fluid carrying pipes are insulated to prevent heating of cold fluid from outside. It is called Cold Insulation. Some times cold pipes are insulated to prevent condensation of atmospheric water vapor on pipe surface. It is called Anti-Sweat Insulation. Other types of Insulation When gas flows through pipes at high velocity, it creates noise. In such cases pipes are insulated to reduce noise. It is called Acoustic Insulation. Some times pipe and it s content are heated from outside, by heat tracing element. In that case pipe along with heat tracing element are insulated to conserve the heat of the tracer. It is called Heat Tracing Insulation.

INSULATION MATERIAL - The insulating material should be bad conductor of heat. There are two basic categories 1) Fibrous Material, which has large voids full of air between fibers - Cork, Glass Wool, Mineral Wool, Organic Fibers. Note stagnant air is a bad conductor. 2) Cellular Material, which has closed void cells full or air - Calcium Silicate, Cellular Glass (Foam Glass), Polyurethane Foam (PUF), Polystyrene (Thermocol), etc. Some times Cast material like Cement Plaster or Plaster of Paris are also used. INSULATION CLADDING - Insulation materials are generally soft or fragile. So the outer surface of insulation are protected with Aluminum sheet or GI sheet cladding. Have a look at how pipes are insulated, and general components of insulation

H h. A. T T h a H = Heat loss, Watts h = Heat transfer coefficient, W/m 2 -K T a = Average ambient temperature, K T h = Hot surface temperature (for hot fluid piping), ºC & cold surface temperature for cold fluids piping) For horizontal pipes: h A 0. 005 T h T a For vertical pipes: h B 0. 009 T h T a

1 1 1 ln r t r t r E k k tk E tk = Equivalent thickness of insulation for pipe k = Thermal conductivity of insulation at mean temperature of T m, W/m-C t k = Thickness of insulation, mm r 1 = Actual outer radius of pipe, mm r 2 = (r 1 + t k ) T s = Desired/actual insulation surface temperature, ºC Rs= Surface thermal resistance = 1/h, ºC-m 2 /W R l = Thermal resistance of insulation = t k /k, ºC-m 2 /W k R t k t R h H T T R H T T R R R T T H l k k l a h s a h l s l a h. 1 2 s h m T T T

PIPE MATERIAL SELECTION - to select appropriate pipe material based on flowing fluid property. Find out type of Fluid flowing Find out Fluid Temp. & Pressure Check Pipe life Expectancy Select suitable Material per practice (Note-1) Check Mat. Listed in Design Code YES Pipe Material OK Note-1 : Material is selected per past experience with cost in mind and per material listed in design code. If material is not listed in code we may select next suitable material listed. NO See Note-1 PIPE SIZING CALCULATION - to select required pipe diameter based on velocity and pressure drop. Find out Flow volume per second Check Velocity Allowable per second Calc. flow area required and Pipe size Calc. Press. Drop for that Pipe size Check Press. Drop meets Press. Budget YES Pipe Size OK NO \ Increase Pipe Size PIPE THICKNESS SELECTION - to select appropriate pipe thickness based on flowing fluid property. Select Mat. & Diameter as above Find out Fluid Temp. & Pressure Decide on Corrosion allowance Calc. Pipe Thickness per Code

Batasan Operasi Ada dua batasan untuk penentuan DIAMETER PIPA: 1. Kecepatan gas 10 60 fps (umumnya, rinciannya lihat API RP 14E) 2. Jatuh tekanan

Penentuan Kecepatan Gas MAKSIMUM Penentuan DIAMETER PIPA sangat dipengaruhi oleh KECEPATAN GAS Batas maksimum kecepatan gas: kecepatan yang menyebabkan terjadinya erosi pada pipa atau disebut EROSIONAL VELOCITY (v e ) menggunakan API RP 14E untuk layanan kontinyu: 100 v e 0.5 G Erosi pipa terjadi jika kecepatan gas melebihi v e Kecepatan gas yang direkomendasikan: 40 50% dari v e (Mohitpouret al., 2002)

Kecepatan Minimum Jika mungkin, kecepatan minimum pada jaringan dua fasa (gas-cair): 10 fps Tujuan: meminimisasi pembentukan lumpur pada peralatan separasi Hal ini penting khususnya pada jaringan pipa panjang dengan perubahan ketinggian (API RP 14E hlm. 23)

Contoh Berikut ini adalah data-data bagian pipa dari sebuah jaringan pipa transmisi gas: Q = 25.7 MMSCFD, T a = 90 o F, P 1 = 425 psia, P = 9 psia, L = 8280 ft, SG = 0.7, Z a = 0.925, MW udara = 28.96, R = 10.731, E = 1.0, viskositas gas diabaikan. a) Hitung tekanan rata-rata (P a ) menggunakan rumus Campbell: b) Pilihlah diameter pipa yang sesuai menggunakan rumus Panhandle A: T s 2 2 0.5 2.619 403.09 EP P D Q SG P s T Z L 0.5397 0. 0793 c) Hitung erosional velocity (v e ) sebagai batas maksimum kecepatan gas melalui pipa menggunakan persamaan API RP 14E untuk layanan kontinyu: v e = 100/( G ) 0.5 (ingat rumus P a V G =nrt a Z a ) d) Hitung kecepatan gas (v G ) menggunakan laju alir aktual: 0.4603 a a 1 Apakah diameter pipa yang didapatkan memenuhi kriteria v e > v G? 2 G P a 2 3 Ps Ta Qa Q Z P a T s P 1P2 P 1 P2 a P1 P 2

Jawaban Q 25.7MMSCFD 25700000CFD Ta 90oF 550.67oR P1 425psia DP 9psia P2 416psia L 8280ft 1.568182mil SG 0.7 Za 0.925 MWudara 28.96 R 10.731 E 1 Pa 420.5psia Ts 15oC 59oF 519.67oR Ps 1atm 14.7psia D 11.847inch ==> PILIH NPS 12 SCH 40 ID 11.938INCH MWgas 20.272 rho G = massa G/Vol G = Pa.Mwgas/(RTZ) 1.560lb/cft ve 80.1fps Qa 880589.2574cfd 10.19201cfs vg =4Qa/(pi.D^2) 13.1fps < ve OK

Kode dan Standar Pipa (US) 1. ASME B31.1, Power Piping ~ governs piping in the power industries (e.g., power plants). 2. ASME B31.2, Fuel Gas Piping. 3. ASME B31.3, Chemical Plant and Petroleum Refinery Piping ~ governs piping systems used in the chemical and petroleum industry. 4. ASME B31.4, Liquid Petroleum Transportation Piping Systems ~ governs liquid hydrocarbons and other liquids in pipeline systems. 5. ASME B31.5, Refrigeration Piping and Heat Exchanger Components. 6. ASME B31.7, Nuclear Piping was withdrawn after two editions and the respon-sibility was assumed by ASME B&PV Code, Section III, Subsections NA, NB, NC, and ND

Kode dan Standar Pipa (US) 7. ASME B31.8, Gas Transmission and Distribution Systems ~ governs gas pipelines. 8. ASME B31.8S, Managing System Integrity of Gas Pipelines is a recently published book 9. ASME B31.9, Building Services Piping. 10.ASME B31.11, Slurry Piping Systems is another transportation pipeline code that mostly applies to buried piping systems that transport slurries 11.ASME B31.12, Hydrogen Piping System this is a new code. It is in the final stages of first development

BIAYA SISTEM PERPIPAAN 1. Bahan 30% 2. Fittings 10% 3. Installation labor 25% 4. Installation equipment 10% 5. Supports 10% 6. P&G 10% 7. Others 5% Miranda & Lopez, 2011. Piping Design: The Fundamentals. Presented at Short Course on Geothermal Drilling, Resource Development and Power Plants, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, January 16-22, 2011.

In Power plant there are some piping which carries steam at high pressure and temperature. And also there are piping which carries water at High pressure. These pipes carries the main cycle steam and water of the steam power plant. These pipelines are call the CRITICAL PIPING. Very special care are taken for design of these piping. First the pipe material selection for such piping is very important as it has to withstand the high pressure and may be also high temperature. As these pipes carry the main system fluid of the power plant, they are given the right of way, and routed at beginning of the overall plant layout. Steam pipes run at very high temperature and the hot pipes expand. We have to built in flexibility in the high temperature pipe routing so that the expansion force is absorbed within the piping. Also there should be enough flexibility in these pipe routing so that high loads are not transferred to the nozzles of Turbine or Pumps There are many recognized international codes which lay down guide lines and mandatory requirements for design of such piping. The most important codes used by power plant piping engineers are ASME ANSI B31.1- Power Piping Code & IBR - the Indian Boiler Regulation

Pipe Stress Analysis We have already seen that some of the pipes are subjected to high pressure and high temperature. Also pipes carry the load of the flowing fluid. We need to check and confirm the pipe is not going to fail with these loading. This process of checking the stress developed in the piping due to various loading is called Pipe Stress Analysis/Flexibility analysis. In the process of Analysis we apply various postulated loading on the pipe and find out the stress resulted from these loading. Then we check with governing codes if those stresses generated are acceptable or not. We check support load & movement for various loading condition. We also check out the terminal point loading generated from pipe to the equipment connected to the pipe. This loading are to be within acceptable limits of the equipment suggested by the vendors. We also find out the pipe growth due to change in temperature and need to keep the movement of pipe within acceptable limits. Pipe Stress Analysis is an Interactive and Iterative process. Each step is checked If a check fails we have to go back, modify the layout and restart the analysis.

Inputs Geometric layout of Pipe Pipe supporting configuration Pipe Diameter and Thickness Pressure inside Pipe Cold and Hot temperatures of Pipe Weight of Pipe and insulation Weight of carrying Fluid Pipe material Property (Young s Modulus, Thermal Expansion Coefficient) Thrust on pipe due to blowing wind. Thrust on pipe due to earthquake Load of Snow on pipe Any transient loading like Steam Hammer load Any other load on the piping PIPE STRESS ANALYSIS Tools we use PIPSYS - is an integrated pipe stress analysis module of PLADES 2000 CEASER - Commercial Piping analysis software There are many other commercial software available Outputs Stress of the pipe at various loading conditions Load at various supports and restrains. Movement of pipe at support locations Pipe terminal point loading. Codes and Standards In general Power Plant Piping have to comply stipulations of ASME ANSI B31.1 In India Power cycle Piping to comply IBR code requirements.

Rigid Hanger Rigid Support Types of Pipe Supports In the beginning of this discussion we talked about various types of pipe supports. Here is some elaboration Constant Load Spring There are three general types Rigid type (no flexibility in the direction of restrain) Variable Spring Spring type (Allows pipe movement in direction of loading) Dynamic Support (Degree of restrain depends on acceleration of load) There are two types of spring support Variable load type, here support load changes as the pipe moves. Constant load support, the load remains constant within some range of movement. Dynamic Support, Snubber Rigid Support

Some Special Considerations for Piping When pipes are routed UNDER GROUND (Buried) following points to be kept in mind: Minimum pipe size to be routed under ground shall be not less than1 inch. Avoid flange joint in U/G piping. Keep in mind if pipe leaks U/G, it will be difficult to detect, so avoid U/G routing of pipe carrying hazardous fluid. Pipe to be laid below Frost Zone at areas where ambient temperature goes below freezing. U/G, Buried piping should be properly protected from corrosion. Pipe may be properly wrapped and coated to prevent corrosion. Or U/G piping be protected by using Cathodic protection. Freeze Protection of outdoor Piping: In the areas where the ambient temperature goes below freezing there is a possibility that the liquid content of pipe may freeze while the plant is under shut down. For similar case pipes are wrapped with heat tracing elements to maintain the content temperature above freezing (around 4 deg. C) even when the ambient temp. is below freezing. Electric Heat tracing is done by wrapping electric coil around pipe, which turns on as the ambient temperature goes down. Pipes are insulated over the heat tracing coils. Heat tracing can also be done by winding Steam tubes around main pipes.

Jenis Pipa 1. Pipa tanpa sambungan (tanpa sambungan pengelasan) 2. Pipa denga sambungan

Bahan Pipa (Umum) 1. Carbon steel 2. Carbon moly 3. Galvanees 4. Ferro nikel 5. Stainless steel 6. PVC 7. Chromen moly

Bahan Pipa (Khusus) 1. Viber glass 2. Alumunium 3. Wrought iron (besi tanpa tempa) 4. Copper (tembaga) 5. Red brass (kuningan merah) 6. Nickel copper = monel (timah tembaga) 7. Nickel chrome iron = inconel (tembaga timah krom)

Jenis-jenis Pipa: Berdasarkan MATERIALnya 1. Pipa logam Pipa besi tuang Ductile cost iron pipe (DCIP) Galvanized iron pipe (GIP) Cast iron pipe (CIP) Pipa logam campuran (metal/alloy)

2. Pipa non logam Pipa beton (tanpa tulangan, dengan tulangan) Pipa PVC (poly vinyl chloride) Pipa fiber glass (GRP = Glass fiber reinforced pipe) Pipa asbes semen Jenis-jenis Pipa: Berdasarkan MATERIALnya Pipa PE (poly ethylene)

Jenis-jenis Pipa: Berdasarkan Bentuk Melintangnya Pipa bulat Digunakan untuk air minum Pipa bulat telur (elips) 0 Digunakan untuk air buangan

Flanged end pipe (pipa ujung flens) Terbuat dari baja dan memiliki diameter yang besar. Bell and plain pipe (pipa ujung bell dan spigot) Biasanya jenis PVC (poly vinyl chloride) atau DCIP (ductile cost iron pipe). Screwed end pipe (pipa ujung ulir) Biasanya jenis GIP (galvanized iron pipe) dan memiliki diameter yang kecil. Double plain end pipe (pipa ujung rata) Ujung rata biasa Ujung rata dengan lidah Ujung rata dengan takikan Jenis-jenis Pipa: Berdasarkan Bentuk Ujungnya

Seamless Drawing Steel Pipe Seamless Brown Pipe Lap Welded Steel Pipe Electric Resistence Welded Steel Pipe Pipa dari Timah Hitam Pipa Galvanis

Pemilihan Bahan Pipa Sesuai standar ASTM dan ANSI 1. Perpipaan untuk pembangkit tenaga 2. Perpipaan untuk industri bahan gas 3. Perpipaan untuk penyulingan minyak mentah 4. Perpipaan untuk pengangkutan minyak 5. Perpipaan untuk proses pendinginan 6. Perpipaan untuk tenaga nuklir 7. Perpipaan untuk transmisi dan distribusi gas

Tipe Sambungan Cabang Sambungan langsung (stub in) Sambungan dengan menggunakan fittings Sambungan dengan menggunakan flanges

Diameter Pipa Terdapat tiga istilah diameter untuk pipa bulat: Inside diameter (ID) Outside diameter (OD) Nominal diameter (ND) Dalam standar ISO, ukuran pipa dinyatakan dalam satuan millimeter (mm) Nominal diameter (ND) digunakan dalam istilah perdagangan atau sebagai petunjuk spesifikasi pipa Dimensional standards, materials of construction, and pressure ratings of pipiing for chemical plants and petroleum refineries are covered by ANSI Piping Code B31.3 which is published by the ASME, latest issue 1980.

Diameter, Ketebalan dan Schedule Schedule pipa dikelompokkan menjadi 1. Schedule : 5, 10, 20, 30, 40, 60, 80, 100, 120, 160 2. Schedule standar 3. Schedule extra strong (XS) 4. Schedule double extra strong (XXS) 5. Schedule spesial

Manfaat Perbedaan Schedule Menahan tekanan dalam dari aliran Kekuatan dari meterial itu sendiri Mengatasi karat Mengatasi kegetasan pipa

Ketebalan Dinding Pipa

Ketebalan Dinding Pipa

Pemasangan Pipa Ada tiga kelompok: 1. Pipa di atas tanah Pipa kolom dan vessel, HE, pompa dan turbin, kompresor, utilitas 2. Pipa di bawah tanah Pipa proses dan utilitas 3. Pipa di dalam air

Pipa Transmisi dan Distribusi Gas Sistem Perpipaan Transmisi Pipa transmisi adalah pipa yang dipasang dengan tujuan untuk menyalurkan gas dari sebuah sumber suplai gas kepada satu atau lebih pusat distribusi dan konsumen dengan kebutuhan gas yang besar. Pada umumnya, pipa transmisi beroperasi pada tekanan lebih dari 16 bar. Sistem ini biasanya digunakan pada gas/steam power palnt atau industri besar

Pipa Transmisi dan Distribusi Gas Sistem Perpipaan Distribusi Pipa distribusi adalah pipa yang dipasang dengan tujuan untuk menyalurkan gas dari sumber suplai gas yang berasal dari pipa transmisi kepada konsumen. Pada sistem distribusi dikenal istilah pipa utama dan pipa sektor. Pipa utama adalah pipa yang digunakan untuk mengantarkan gas ke beberapa konsumen dalam suatu rute. Sedangkan pipa sektor adalah pipa dari percabangan pipa utama yang mengantarkan gas ke alat metering atau peralatan konsumen yang membutuhkan gas tersebut. Diameter pipa yang sering digunakan sebagai pipa utama adalah 40 mm 180 mm. Sedangkan untuk pipa sektor, pipa yang digunakan berdiameter 13 mm 20 mm. Pipa dengan diameter yang lebih besar biasanya digunakan untuk keutuhan komersial dan industri

Perbedaan Sistem Perpipaan Transmisi dan Distribusi

Kondisi Standar

Standar Teknis Standar teknis adalah spesifikasi teknis atau hal-hal yang terkait dengan aspek teknis dalam perancangan dan operasional kegiatan keteknikan yang disusun dan dibakukan berdasarkan konsensus semua pihak terkait dengan mempertimbangkan aspek keamanan, keselamatan, kesehatan, lingkungan, perkembangan ilmu pengetahuan dan teknologi, serta berdasarkan pengalaman, perkembangan masa kini dan masa yang akan datang untuk memperoleh manfaat yang sebesarbesarnya

Standar Teknis 1. ANSI B 31.8 2. DNV OS F-101 3. Pemasangan Pipa Baja 4. Perencanaan dan Pemasangan Pipa PE 5. Standard Lainnya

ANSI B 31.8 ANSI B 31.8 merupakan standar yang digunakan untuk sistem pipa transmisi dan distribusi gas bumi (Gas Transmission and Distribution Piping System) yang dikeluarkan oleh badan standar nasional Amerika (American National Standards Institute). Standar ini juga digunakan di Indonesia dan saat ini telah diadopsi menjadi Standar Pertambangan Migas SPM No. 50.54.2, Sistem Perpipaan Transmisi dan Distribusi Gas

DNV OS F-101 DNV OS F-101 merupakan standar yang digunakan untuk Submarine Pipeline Systems, yang dikeluarkan oleh DNV (Del Norske Verilas), suatu badan sertifikasi dan verifikasi di Norwegia. Standar ini digunakan untuk perencanaan pipa minyak dan gas serta pipa fluida lain yang melintasi perairan dan laut, baik berupa pipa proses dan pipa transportasi serta struktur bangunan. Standar ini baru dikeluarkan pada tahun 2000, merupakan pengembangan dari standar DNV 1996, Rules for Submarine Pipeline Systems dan digunakan secara luas oleh perusahaan eksplorasi dan produksi migas di dunia terutama di Laut Utara

Pemasangan Pipa Baja Pemasangan pipa gas yang menggunakan material baja standar mengacu pada standar SPM 5D.54.0, Pengelasan Saluran Pipa dan Fasilitas yang terkait. Standar ini diadopsi dari standar API 11.04 dari American Pipeline Institute

Perencanaan dan Pemasangan Pipa PE Perencanaan dan pemasangan pipa gas yang menggunakan material plastik polyethylene (PE) mengacu pada standar SNI 13-3507-1994. Standar ini merupakan hasil adopsi standar Inggris BG/PS/Dis 5.3 Part A & B serta standar SNI 13-3502- 1994

Standar Lain Standar lain yang merupakan pendukung dan referensi dalam perancangan teknis diantaranya adalah standar pipa (API 51), standar kerangan (API 6D), standar material (ASTM), standar pengujian (ASME) dan lain-lain

Persamaan Aliran Gas 1. Persamaan Panhandle A 2. Persamaan Panhandle B 3. Persamaan Weymouth 4. Persamaan Polyflow 5. Persamaan Poles 6. Persamaan Moody 7. Persamaan AGA 8. Persamaan IGT 9. Persamaan Darcy-Weisbach 10.Persamaan Beggs-Brill 11.Persamaan Eaton

Perhitungan Heat Loss (h f ) flu h f 2gd 2 Re ud f = faktor friksi dari grafik L = panjang pipa (m) u = kecepatan aliran melalui pipa (m/s) g = gravitasi, 9.81 m/s 2 d = diameter dalam pipa (m) Re = Reynold number = densitas fluida (kg/m 3 ) d = diameter dalam pipa (m) µ = Dynamic viscosity (Pa s)

Estimation of friction factor

The absolute roughness of pipes

Contoh 2 Pipa dengan diameter 4 (100 mm) mengalirkan alir dengan laju alir 50 m 3 /jam sepanjang 100 m. Bahan pipanya cast iron dengan kekasaran absolutnya 0.26 mm Hitung heat loss-nya

Jawaban u Q A 50 36003. 140. 1 4 1 77 2. / m/s Re ud Relative roughness 10001. 70. 1 0. 001 Sesuai dengan grafik, maka f = 0.025 h f flu 2gd 2 177000 absolute roughness internal diameter 0. 0251001. 77 29. 810. 1 2 k d 0. 26 100 0. 0026 4 m per 100 m pipa

Minor Loss Coefficient h minorloss ku 2 2g

Pressure Drop

Tekanan Rata-rata P 1 tekanan gas masuk pipa P 2 tekanan gas keluar pipa 2 1 2 1 2 1 3 2 P P P P P P P a

Pipa PE (Poly-Ethylene) Ketebalan pipa PE dihitung berdasarkan nilai SDR (Standard Dimension Ratio):

Tekanan Operasi PE MOP 2MRS SDR 1Hd MOP = Tekanan operasi maksimum atau Maximum Operating Pressure (Mpa) MRS = Minimum Required Strength (Mpa), dapat dilihat dari daftar physical properties dari material PE yang ditawarkan SDR = Standard Dimention Ratio (nominal diameter luar/nominal ketebalan dinding yang dispesifikasikan) Hd = Rasio menahan abrasi pipa PE terhadap pipabaja, nilainya sama dengan 4 (empat)

Simulator Sistem Perpipaan Pipesim Pipephase OLGA Pipe Flow Expert

Contoh 3 (PIPESIM) Jaringan A Jaringan B

Pipe Sizing Rules of Thumb NO Type of LIne Pressure Drop (psi/100 ft) Velocity (fps) Average Maximum 1 2 3 4 5 6 7

Pemodelan Pipa Distribusi dengan Pilih NEW Network PIPESIM

Setup: Unit dan Komposisi

Drag: Source, Junction dan Sink

Pipa Percabangan (Branch)

Setup Komposisi Blok komponen Klik

Setup SOURCE Suhu Tekanan Laju alir

Trial 1: Panjang dan ID Pipa

RUN (Harus Disimpan Dulu)

Hasil Simulasi Terlalu tinggi karena PIPA terlalu KECIL

Trial 2: Diameter Pipa OK

Trial 3: Panjang Pipa Maksimum Panjang Maks: 50 km (kecepatan < 60 fps)

Plot Penurunan Tekanan

TUGAS 2 Berdasarkan gambar jaringan pipa gas: 1. Hitung diameter pipa jaringan gas sesuai dengan tekanan operasinya: CS (menengah) 2. Jenis pipa PE dengan SDR berapa yang seharusnya digunakan? Kenapa? 3. Hitung panjang maksimum pipa 4. Hitung kapasitas maksimum pipa Gunakan ketiga software (Pipesim, Pipeline Toolbox dan Pipe Flow Expert) Data pipa PE dapat menggunakan hdpe-pipe-specifications

JARINGAN GAS 700m P = 2 Barg Jaringan A 500m Tapping Point (Titik Pasikan Gas) P = 10 Barg F = 3.25 MMSCFD P = 2 Barg Tapping Point (Titik Pasikan Gas) P = 6 Barg F = 2.37 MMSCFD Jaringan B