BAB II LANDASAN TEORI

dokumen-dokumen yang mirip
1.2 Tujuan Penelitian 1. Penelitian ini bertujuan untuk merancang bangun sirkit sebagai pembangkit gelombang sinus synthesizer berbasis mikrokontroler

BAB III METODE PENELITIAN

BAB IV. PEMBAHASAN dan Pengujian

BAB III PERANCANGAN DAN REALISASI ALAT. modulator 8-QAM seperti pada gambar 3.1 berikut ini: Gambar 3.1 Blok Diagram Modulator 8-QAM

Dalam sistem komunikasi saat ini bila ditinjau dari jenis sinyal pemodulasinya. Modulasi terdiri dari 2 jenis, yaitu:

PENGEMBANGAN PERANGKAT PELATIHAN PEMBANGKIT SINUSOIDAL METODE PWM dan MODULASI 8-PSK berbasis MIKROKONTROLER ATMEGA16 MODE IDEAL (1 Sinus untuk 3-bit)

BAB III PERANCANGAN SISTEM

POLITEKNIK NEGERI JAKARTA

Sistem Telekomunikasi

LAMPIRAN PEDOMAN PENGGUNAAN ALAT

PENGKONDISI SINYAL OLEH : AHMAD AMINUDIN

LABORATORIUM SISTEM TELEKOMUNIKASI SEMESTER III TH 2015/2016

BAB III PERANCANGAN DAN REALISASI. Blok diagram carrier recovery dengan metode costas loop yang

BAB IV PENGUKURAN DAN ANALISA. Pengukuran dan analisa dilakukan bertujuan untuk mendapatkan

BAB II DASAR TEORI. Modulasi adalah proses yang dilakukan pada sisi pemancar untuk. memperoleh transmisi yang efisien dan handal.

MODULATOR DAN DEMODULATOR. FSK (Frequency Shift Keying) Budihardja Murtianta

Budihardja Murtianta. Program Studi Teknik Elektro, Fakultas Teknik UKSW Jalan Diponegoro 52-60, Salatiga

BAB III METODE PENELITIAN

BAB II LANDASAN TEORI

BAB III PERANCANGAN ALAT. Pada perancangan alat untuk sistem demodulasi yang dirancang, terdiri dari

BAB IV PENGUKURAN DAN ANALISIS

BAB III PERANCANGAN ALAT

BAB I PENDAHULUAN. 500 KHz. Dalam realisasi modulator BPSK digunakan sinyal data voice dengan

MODUL PRAKTIKUM SISTEM KOMUNIKASI DIGITAL

Modulasi. S1 Informatika ST3 Telkom Purwokerto

BINARY PHASA SHIFT KEYING (BPSK)

PERANCANGAN MODULATOR QPSK DENGAN METODA DDS (DIRECT DIGITAL SYNTHESIS) BERBASIS MIKROKONTROLLER ATMEGA8535 ABSTRAK

Teknik modulasi dilakukan dengan mengubah parameter-parameter gelombang pembawa yaitu : - Amplitudo - Frekuensi - Fasa

TEKNIK MODULASI PADA KOMUNIKASI DATA

BAB II DASAR TEORI. ( ) {, isyarat masukan; dan. =, dengan adalah frekuensi isyarat pembawa. Gambar 2.1. On-Off Shift Keying (OOK).

BAB II DASAR TEORI. dan carrier (gelombang pembawa) yang sesuai dengan aplikasi yang diterapkan.

Praktikum Sistem Komunikasi

III. METODE PENELITIAN. Penelitian tugas akhir ini akan dilakukan di Laboratorium Terpadu Teknik Elektro

BAB III PERANCANGAN. Pada perancangan perangkat keras (hardware) ini meliputi: Rangkaian

BAB II DASAR TEORI. Gambar 2.1 Blok Diagram Modulator 8-QAM. menjadi tiga bit (tribit) serial yang diumpankan ke pembelah bit (bit splitter)

Perancangan Modulator dan Demodulator pada DPSK

BAB IV PENGUJIAN DAN ANALISA SISTEM

Modulasi Digital. Levy Olivia Nur, MT

Teknik Pengkodean (Encoding) Dosen : I Dewa Made Bayu Atmaja Darmawan

DAFTAR ISI. Abstrak... Abstract... Kata Pengantar... Daftar Isi... Daftar Gambar... Daftar Tabel... BAB I Pendahuluan Latar Belakang...

BAB II DASAR TEORI. Modulasi adalah pengaturan parameter dari sinyal pembawa (carrier) yang

Desain Inverter Tiga Fasa dengan Minimum Total Harmonic Distortion Menggunakan Metode SPWM

BABII TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB IV HASIL PERCOBAAN DAN ANALISA

BAB III TEORI PENUNJANG. Microcontroller adalah sebuah sistem fungsional dalam sebuah chip. Di

Modulasi adalah proses modifikasi sinyal carrier terhadap sinyal input Sinyal informasi (suara, gambar, data), agar dapat dikirim ke tempat lain, siny

BAB II DASAR TEORI 2.1. Teori Catu Daya Tak Terputus

DATA ANALOG KOMUNIKASI DATA SUSMINI INDRIANI LESTARININGATI, M.T. Transmisi Analog (Analog Transmission) Data Analog Sinyal Analog DATA ANALOG

BAB IV PENGUJIAN DAN ANALISA. Bab ini membahas tentang pengujian alat yang dibuat, adapun tujuan

Perancangan Sistim Elektronika Analog

BAB III PERANCANGAN DAN CARA KERJA SISTEM. Pada bab ini diterangkan tentang langkah dalam merancang cara kerja

BAB II DASAR TEORI. Modulasi dapat didefinisikan sebagai proses pengubahan parameter dari

MODULATOR DAN DEMODULATOR BINARY ASK. Intisari

MICROCONTROLER AVR AT MEGA 8535

Kelebihan pada sinyal sistem digital Signal digital memiliki kelebihan dibanding signal analog; yang meliputi :

RANCANG BANGUN WHIRLPOOL DENGAN MENGGUNAKAN MIKROKONTROLLER

DAFTAR ISI. ABSTRAK. i ABSTRACT.. ii KATA PENGANTAR... iii DAFTAR ISI...v DAFTAR GAMBAR...ix DAFTAR TABEL... xi

BAB 3 PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM

Pembuatan Modul Praktikum Teknik Modulasi Digital FSK, BPSK Dan QPSK Dengan Menggunakan Software

PERANCANGAN DEMODULATOR BPSK. Intisari

BAB II TINJAUAN PUSTAKA. Konverter elektronika daya merupakan suatu alat yang mengkonversikan

BAB III METODE PENELITIAN

BAB IV PENGUJIAN DAN ANALISA. serta pengujian terhadap perangkat keras (hardware), serta pada bagian sistem

Teknik Telekomunikasi

BAB III PERANCANGAN DAN REALISASI ALAT

STMIK AMIKOM YOGYAKARTA. Oleh : Nila Feby Puspitasari

ROBOT OMNI DIRECTIONAL STEERING BERBASIS MIKROKONTROLER. Muchamad Nur Hudi. Dyah Lestari

BAB II DASAR TEORI. Gambar 2.1.(a). Blok Diagram Kelas D dengan Dua Aras Keluaran. (b). Blok Diagram Kelas D dengan Tiga Aras Keluaran.

III. METODOLOGI PENELITIAN. Penelitian dan perancangan tugas akhir ini telah dimulai sejak bulan Juli 2009

BAB III PERANCANGAN DAN REALISASI SISTEM. Dalam tugas akhir ini dirancang sebuah modulator BPSK dengan bit rate

BAB III PERANCANGAN SISTEM

BAB III KEGIATAN PENELITIAN TERAPAN

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB II TINJAUAN PUSTAKA

BAB III PERANCANGAN SISTEM

BAB II LANDASAN TEORI. tergantung pada besarnya modulasi yang diberikan. Proses modulasi

BAB III PERANCANGAN ALAT

BAB II LANDASAN TEORI

TEKNIK TELEKOMUNIKASI DASAR. Kuliah 6 Modulasi Digital

BAB II DASAR TEORI. 2.1Amplitude Modulation and Demodulation

BAB II LANDASAN TEORI

BAB II SISTEM KOMUNIKASI

Arie Setiawan Pembimbing : Prof. Ir. Gamantyo Hendrantoro, M. Eng, Ph.D.

BAB IV SINYAL DAN MODULASI

Desain dan Implementasi Catu Daya Searah Berarus Besar Bertegangan Kecil

A SIMULATION TO GENERATE BPSK AND QPSK SIGNALS

Perancangan Sistem Modulator Binary Phase Shift Keying

ANALISIS KINERJA MODULASI ASK PADA KANAL ADDITIVE WHITE GAUSSIAN NOISE (AWGN)

Desain dan Implementasi Catu Daya Searah Berarus Besar Bertegangan Kecil

Sistem Modulator dan Demodulator BPSK dengan Costas Loop

BAB III PERANCANGAN SISTEM

BAB 3 PERANCANGAN SISTEM

Sistem Transmisi Modulasi & Multiplexing

PENGERTIAN GELOMBANG RADIO

DAC - ADC Digital to Analog Converter Analog to Digital Converter

BAB II TINJAUAN TEORITIS

TEKNIK MODULASI. Kelompok II

BAB IV HASIL PENGUJIAN DAN PEMBAHASAN

MODULASI. Adri Priadana. ilkomadri.com

Transkripsi:

BAB II LANDASAN TEORI 2.1 Definisi PWM Sinyal PWM pada umumnya memiliki amplitudo dan frekuensi dasar yang tetap, namun, lebar pulsanya bervariasi. Lebar pulsa PWM berbanding lurus dengan amplitudo sinyal asli yang belum termodulasi (dalam hal ini adalah sinus). Dengan kata lain sinyal PWM, frekuensi gelombangnya adalah konstan (tetap) namun duty cycle bervariasi (antara 0% hingga 100%), menurut amplitudo sinyal aslinya. Sinyal PWM ditunjukkan Gambar 2.1 di bawah ini: V0 Periode Tetap W1 W2 W3 0 T Waktu (T) 2T 3T Gambar 2.1 Sebuah gelombang PWM [1] Karena hanya ada 2 kondisi amplitudo sinyal PWM (yaitu Low dan High) maka dapat juga dikatakan bahwa sinyal PWM adalah sinyal yang informasinya terletak pada lebar pulsa. Gambar 2.2 Tegangan rata-rata suatu PWM [2] 23

Gambar 2.2 menunjukan perubahan duty cycle akan merubah tegangan DC rata-rata. Jika gelombang PWM yang dihasilkan merupakan dari sintesis gelombang sinus maka tegangan DC rata-rata akan menunjukan sinyal sinus. Gelombang PWM yang difilter dapat digunakan untuk mengendalikan perangkat analog, dan menjadikan rangkaian pemfilter sebagai suatu digitalto-analog converter (DAC). Ada beberapa alasan untuk memilih PWM: 1. Dalam pembangkitan PWM hanya butuh 1 bit dari mikrokontroler (bila di bandingkan dengan DAC konvensional butuh 8bit, bahkan ada yang 10 bit). 2. Pada hakikatnya sinyal PWM merupakan sinyal yang ON dan OFF, driver-nya dapat dibangun dengan rangkaian BJT sedangkan DAC dibutuhkan rangkaian driver lebih komplek.. 3. PWM lebih sering dipakai dalam dunia industri. 2.2 Pembangkitan sinyal PWM Sinyal PWM dapat dihasilkan dengan berbagai cara, antara lain dengan metode comparator dan mikrokontroler. 2.2.1 Pembangkitan sinyal PWM dengan Comparator Dasar pembangkitan sinyal PWM adalah membandingkan tegangan V(+) non-inverting dengan tegangan V(-) inverting dengan menggunakan rangkaian comparator. Rangkaian comparator ditunjukkan seperti Gambar 2.3 di bawah ini: Comparator R1 R2 + _ Vdd Vss Gambar 2.3. Rangkaian comparator Prinsip kerja pada rangkaian comparator diatas adalah bila tegangan noninverting V(+) lebih besar dari pada tegangan inverting V(-) maka keluaran pembanding akan mendekati Vdd. 24

Sebaliknya, apabila tegangan inverting V(-) lebih besar dari tegangan non-inverting V(+) maka tegangan keluaran pembanding akan mendekati Vss. Bila diberikan input pada pin inverting berupa sinus dengan frekuensi tertentu, sedangkan pada input non-inverting berupa gelombang segitiga (berfungsi sebagai gelombang carrier) dengan frekuensi yang lebih tinggi (misal 10x frekuensi sinus) maka akan dihasilkan sinyal gelombang PWM. Sinyal Sinus R1 Comparator + Vdd Output = Sinyal PWM Sinyal Segitiga R2 _ Vss Gambar 2.4 Blok diagram pembangkitan PWM Blok diagram pembangkitan sinyal PWM dari rangkaian comparator adalah seperti terlihat pada Gambar 2.4. 2.2.2 Pembangkitan sinyal PWM dengan mikrokontroler Mengingat bahwa hanya ada 2 kondisi amplitudo sinyal PWM (yaitu low dan high) sedang informasi PWM terletak pada perubahan lebar pulsanya, maka sinyal ini dapat di bangkitkan dengan mikrokontroler, yaitu dengan membuat suatu program yang menghasilkan sinyal seperti sinyal PWM. Penjelasan yang detail tentang pembangkitan sinyal PWM dengan mikrokontroler di bahas dalam bab 3. 2.3 Pemfilteran/ rekonstruksi sinyal sinus dari sinyal PWM Pengkonversian sinyal PWM ke sinyal analog dapat dilakukan dengan menggunakan filter low pass. Ada dua macam low pass filter yang dibahas pada rangkaian ini yang pertama RC low pass filter yang kedua LC low pass filter yang akan digunakan untuk mengkonversi sinyal PWM menjadi gelombang sinus. Blok diagram pembangkitan sinyal sinusoidal dari sinyal PWM adalah sebagai berikut ini: 25

Sinyal PWM Filter LPF Sinyal Sinus L1 C1 Gambar 2.5. Blok diagram pemfilteran Pada rangkaian filter ini menggunakan second order ( menggunakan rangkaian LC ). Nilai LC ini harus memenuhi persamaan berikut ini [3]: f c1 = (P2.1) Sebagai contohnya jika dilakukan perancangan filter yang memfilter suatu sinyal dengan frekuensi carier 8 khz, maka penentuan nilai LC-nya adalah sebagai berikut: L1 C1 = Anggap nilai kapasitansi yang dipakai adalah L = 1 mh, sehingga C1 = C1 = 390 nf Maka pasangan nilai LC yang dipakai untuk memfilter frekuensi carier 8 khz adalah L=1 mh dan C= 390 nf. Untuk frekuensi carier 80 Hz, maka penentuan nilai LC nya adalah sebagai berikut: f c2 = (P2.2) Di karenakan fc1 = 100 fc2 maka f c2 = sehingga, f c2 = dengan demikian diperoleh bahwa L2 = 100 L1 = 100 mh dan C2 = 100 C1 = 39 uf, maka pasangan nilai LC yang dipakai untuk memfilter frekuensi carier 80 Hz adalah L=100 mh dan C= 39 uf. 26

2.4 Perancangan modulator 8-PSK Modulasi dibagi menjadi 2 macam: modulasi analog dan modulasi digital. Ada 3 tipe dasar teknik modulasi digital, yaitu: Amplitude-Shift Keying (ASK), Frequency - Shift Keying (FSK), Phase-Shift Keying (PSK). Pada ASK, amplitudo sinyal carrier di ubah berdasarkan respon informasi dan yang lainnya dijaga tetap. Bit 1 di transmisikan dengan sebuah sinyal carier dengan suatu amplitude tertentu. Pada FSK, kita mengubah respon frekuensi ke informasi, suatu frekuensi tertentu untuk nilai 1 dan frekuensi yang lain untuk nilai 0. Dalam PSK, kita mengubah fasa sinus untuk mengindikasikan informasi. Ada bermacam modulasai PSK diantara nya adalah BPSK, QPSK dan 8-PSK. Pada modulasi 8-PSK sinyal informasi terletak pada fasa sinus. Tiap fasa mengindikasikan suatu data biner tertentu. Fasa dalam kontek ini adalah sudut start dimana sinyal sinus mulai, sehingga dalam perancangan modulator 8-PSK dibutuhkan rangkaian penggeser fasa, selain rangkaian penggeser fasa, juga dibutuhkan pendeteksi zero cross ( hardware dan software ), generator 3-bit (software), juga perancangan pensaklaran (hardware dan software). 2.4.1 Phase shifter / penggeseran fasa Metode yang digunakan dalam penggeseran fasa adalah dengan membuat simulasi penggeseran fasa melalui program bantu simulator Multisim versi 8. Seperti diketahui bahwa rangkaian L dan C dapat mengubah fasa sinyal sinus, namun untuk merancang suatu penggeser fasa dengan menjadikan L atau C sebagai variabel penggesernya dirasa kurang praktis di karenakan tidak setiap nilai L maupun C yang dibutuhkan tersedia di pasar, oleh sebab itu digunakan variabel R yang dikombinasikan dengan L dan C, untuk menggeser fasa sesuai yang dibutuhkan. Tabel 2.1 menjelaskan bahwa jika R dikombinasikan dengan L maupun C maka dapat berpengaruh pada pergeseran fasa. Pada kolom Transfer Function terlihat bahwa nilai R merupakan variabel yang mempengaruhi Vout. 27

Table 2.1 Rangkaian dasar penggeser fasa dengan R sebagai variabel Komponen Skema Tranfer No Pembentuk Rangkaian Function 1 R L seri 2 R C seri Fasa-fasa yang digeser adalah fasa 0, 30, 45, 60, 90, 120, 135, 150, 180, 210, 225, 240, 270, 300, 315 dan 330. Mengingat bahwa penggeseran fasa-fasa yang besar dapat direkayasa dari fasa yang lebih kecil, maka tidak semua fasa dibuat. Penjelasannya adalah sebagai berikut: fasa 330 dapat dibentuk dari 300 digeser 30. Tabel 2.2 menjelaskan bahwa hanyalah fasa 0, 30, 45, 60 -lah yang bisa digunakan untuk semua penggeseran fasa. Table 2.2 Pembentukan fasa Fasa Fasa Pembentuk 0 0 30 30 45 45 60 60 90 60 + 30 120 90 + 30 135 90 + 45 150 90 + 60 180 150 + 30 210 180 + 30 225 180 + 45 240 180 + 60 270 240 + 30 300 270 + 30 315 270 + 45 330 270 + 60 28

Sehingga cukup fasa fasa kecil yang di simulasikan dan dirancang yaitu fasa 30, 45, 60, selebihnya dibangun dari fasa fasa ini mengikuti alur pikiran yang telah di jelaskan pada Table 2.2. 2.4.2 Pendeteksian fasa /pendeteksian zero cross. Pendeteksian zero cross merupakan salah satu point penting dalam perancangan hardware. Hal ini karena zero cross merupakan informasi yang mewakili titik dimana sinyal sinus melalui sumbu x sehingga jika ini diketahui maka dimulailah pensaklaran (switching). Cara kerja rangkaian zero cross adalah dengan konsep comparator yaitu membandingkan input pada pin non inverting dengan input pada pin inverting. Pada pin Non-inv diberi tegangan sinus, sedangkan pada pin inv di beri tegangan nol. Karena tegangan sinus bolak balik antara +5V ke -5V maka setelah melalui rangkaian comparator akan dihasilkan sinyal kotak seperti Gambar 2.6. +5V 0V R3 + Vdd Vdd periode -5V sinyal sinus (yang dibandingkan) R1 sinyal DC 0V (yang membandingkan) R1=R2 rangkaian zero cross detector +5V -5V _ Vss 0V Vss start trigger end trigger sinyal terdeteksi zero cross Gambar 2.6 Rangkaian Zero cross Hal terpenting dengan diketahuinya titik zero cross ini adalah bahwa pada saat fasa 0 melalui sumbu X, maka mikrokontroler harus mengirimkan sinyal 8-PSK (mikrokontroler melakukan pensaklaran untuk menghasilkan sinyal 8- PSK). 2.4.3 Pen-saklar-an (switching). Yang di maksud dengan pen-saklar-an (switching) adalah pemodulasian 8-PSK. Modulasi 8-PSK yang di buat dalam penelitian ini adalah 8 Gray-PSK, 29

artinya urutan biner gray code dimodulasikan dengan fasa yang bersesuaian, sesuai dengan Tabel 2.3. Tabel 2.3 Input dan out modulasi 8 Gray-PSK Urutan Input Modulator Output Modulator Biner Gray Code fasa sinus 0 000 exp(0) 1 001 exp(jπ/4) 2 011 exp(jπ/2) = exp(j2π/4) 3 010 exp(j3π/4) 4 110 exp(jπ) = exp(j4π/4) 5 111 exp(j5π/4 6 101 exp(j3π/2) = exp(j6π/4) 7 100 exp(j7π/4) Gambar 2.7 Fasor 8 Gray-PSK Peng-kode-an Gray merupakan teknik yang sering digunakan dalam skema modulasi multilevel guna meminimalisir bit error rate dengan mengatur simbol modulasi sedemikian rupa, sehingga simbol representasi biner yang berdekatan hanya berbeda 1 bit. Tabel 2.3, memperjelas bahwa keseluruhan efek subsistem ini merupakan pemetaan kode Gray yang ditunjukkan Gambar 2.7. Perhatikan bahwa angka pada kolom kedua dari Tabel 2.3, terlihat dengan urutan berlawanan jarum jam. 30

Dengan demikian Tabel 2.3 merupakan dasar yang dipakai dalam pensaklaran 8 Gray-PSK. 2.5 Mikrokontroler Atmega16 Mikrokontroler Atmega16 merupakan mikrokontroler produksi Atmel, spesifikasi umumnya adalah : Memori: 16K Bytes of In-System Self-Programmable Flash 512 Bytes EEPROM 1K Byte Internal SRAM Port Input output 32 Programmable port input output 40-pin PDIP, 44-lead TQFP, and 44-pad MLF Deskripsi pin mikrokontroler tersebut adalah: VCC merupakan pin tegangan suply. GND merupakan pin ground. Port A (PA7..PA0) Port A menyediakan input analog bagi A/D Converter. Port A juga menyediakan port input-output 8-bit bi-directional, jika A/D Converter tidak dipakai. Port A berada dalam kondisi tri-state saat reset terjadi, meskipun clok tidak berjalan. Port B (PB7..PB0) Port B merupakan port input-output 8-bit bi-directional dengan resistor pull-up internal. Port B berada dalam kondisi tri-state saat reset terjadi, meskipun clok tidak berjalan. Port C (PC7..PC0) Port C merupakan port input-output 8-bit bi-directional dengan resistor pull-up internal. Port D (PD7..PD0) Port D merupakan input-output internal. 8-bit bi-directional dengan resistor pull-up RESET Merupakan input reset. Tegangan low pada pin ini akan membangkitkan reset meskipun clock tidak berjalan. 31