IDENTIFIKASI BAHAYA PADA PEKERJAAN GRINDING DI SEBUAH PERUSAHAAN MANUFAKTUR DENGAN MENGGUNAKAN PENDEKATAN SUCCESS LIKELIHOOD INDEX METHOD

dokumen-dokumen yang mirip
METODE SLIM-ANP UNTUK PENILAIAN HUMAN RELIABILITY

Analisis Probabilitas Human Error Pada Pekerjaan Grinding dengan Metode HEART dan SLIM-ANP di Perusahaan Jasa Fabrikasi dan Konstruksi

Analisis Human Error Dengan Pendekatan Cognitive Reliability And Error Analysis Method (CREAM) Pada Operator Forklift Di PT. SMART Tbk.

Faktor Kecukupan Organisasi dan Time Of Day pada Pekerjaan Manual OAW Cutting dengan Menggunakan Metode CREAM di PT. Packaging Surabaya

HUMAN RELIABILITY ANALYSIS DENGAN PENDEKATAN COGNITIVE RELIABILITY AND ERROR ANALYSIS METHOD (CREAM)

APLIKASI METODE SHERPA UNTUK MENURUNKAN POTENSI KESALAHAN OPERATOR MESIN CUT SAW

(Studi Kasus: Perusahaan Air Minum Dalam Kemasan)

Analisis Human Error Menggunakan Metode TAFEI dan SHERPA Pada Pengoperasian Turbin Gas Blok 2 Pasca Overhaul di Perusahaan Power Plant

ANALISA FAKTOR-FAKTOR YANG BERPENGARUH PADA TINDAKAN TIDAK AMAN DAN HUMAN RELIABILITY ANALYSIS (STUDI KASUS : OPERATOR FORKLIFT

APLIKASI HUMAN RELIABILITY ASSESSMENT SEBAGAI UPAYA PENINGKATAN KUALITAS PRODUK BATIK

BAB 2 TINJAUAN PUSTAKA

ANALISIS HUMAN ERROR OPERATOR DENGAN AKTIVITAS REPETITIF-MONOTON. Abstrak

BAB I PENDAHULUAN. seperti kesalahan operator, kesalahpahaman, kesalahan pengawasan. Kesalahan

BAB 1 PENDAHULUAN 1.1. Latar Belakang Masalah

Identifikasi Bahaya Pada Pekerjaan Maintenance Kapal Menggunakan Metode HIRARC dan FTA Dengan Pendekatan Fuzzy

PERANCANGAN ALAT UKUR HUMAN RELIABILITY ANALYSIS PADA PROSES ADMINISTRASI OBAT DI RUMAH SAKIT HAJI

Analisis Human Error pada Operator Harbour Mobile Crane untuk Pekerjaan Bongkar Muat dengan Metode SHERPA. (Studi Kasus : Perusahaan Bongkar Muat)

BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI

PENILAIAN SAFETY CLIMATE PEKERJA TERHADAP STATUS KARYAWAN DAN TINGKAT PENDIDIKAN. (Studi Kasus pada Pekerja Workshop Di PT PAL Indonesia)

BAB VI KESIMPULAN DAN SARAN

Evaluasi Perbaikan Safety Behavior Pekerja dengan Metode Behavior-Based Safety

BAB 1 PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN I.1 Latar Belakang

UNIVERSITAS AIRLANGGA DIREKTORAT PENDIDIKAN Tim Pengembangan Jurnal Universitas Airlangga Kampus C Mulyorejo Surabaya

Analisis Kecelakaan pada Pekerjaan Loading Unloading Overhead Crane Menggunakan Metode MORT dan CREAM

ANALISA GAP UNTUK PERANCANGAN TATA KELOLA MANAJEMEN INSIDEN TI BERDASARKAN KERANGKA KERJA ITIL 2011 PADA PT BANK ABC

BAB I PENDAHULUAN. bisa memenuhi permintaan sandang yang semakin meningkat tersebut,

BAB 6 KESIMPULAN DAN SARAN

Kata Kunci : Aplikasi E-Learning, ISO , Model Kualitas

BAB 2 TINJAUAN PUSTAKA

ANALISA KUALITAS PRODUK KANTONG KRAFT LEM AKIBAT KESALAHAN MANUSIA DI PT. X TUBAN

YustinaJoumil Aidil SZS Ngatilah Jurusan Teknik Industri FTI UPN Veteran Jawa Timur ABSTRAK

IDENTIFIKASI HUMAN EROR PADA PROSES PRODUKSI CASSAVA CHIPS DENGAN MENGGUNAKAN METODE SHERPA DAN HEART DI PT. INDOFOOD FRITOLAY MAKMUR

Muhammad

IDENTIFIKASI FAKTOR PENYEBAB KECELAKAAN di PT. X MENGGUNAKAN METODE HEART DAN PEMBUATAN SOP PADA PROYEK PEMBANGUNAN RS. SITI KHODIJAH SEPANJANG

BAB 3 PENGUMPULAN DATA

Analisis Risiko Pekerjaan Pemindahan Barang Dengan Forklift Menggunakan Metode HIRARC Dan Penentuan Risk Ranking Menggunakan Fuzzy Logic Control

ANALISA PENGARUH RENDAHNYA KUALITAS SUMBER DAYA MANUSIA TERHADAP KINERJA PROYEK DI SURABAYA

EVALUASI PENERAPAN K3 DENGAN MENGGUNAKAN INTERNATIONAL SAFETY RATING SYSTEM (ISRS) DI UNIT PRODUKSI III PT. PETROKIMIA GRESIK

Analisis Penyebab Kecelakaan Kerja Dengan Metode Human Factor Analysis and Classification System di perusahaan Fabrikator Pipa

TEKNIK IDENTIFIKASI BAHAYA DAN PENGENDALIAN RESIKO PADA PANGGUNG GAS OKSIGEN PT ANEKA GAS INDUSTRI V

BAB I PENDAHULUAN. faktor yang mengurangi kinerja, berdampak pada kondisi psikis pekerja, dan

PEMILIHAN KONTRAKTOR PERBAIKAN ROTOR DI PEMBANGKIT LISTRIK PT XYZ DENGAN MENGGUNAKAN METODE ANALYTICAL HIERARCHY PROCESS DAN GOAL PROGRAMMING

UAS REKAYASA PERANGKAT LUNAK. Software Quality Assurance HANSI ADITYA KURNIAWAN

Seminar Nasional Maritim, Sains, dan Teknologi Terapan 2016 Vol. 01 Politeknik Perkapalan Negeri Surabaya, 21 November 2016 ISSN:

BAB I PENDAHULUAN. mencapai 5,9% di bulan Agustus 2014 (International Labour Organization Key

BAB 6 KESIMPULAN DAN SARAN

PERANCANGAN MODEL PENAKSIRAN PERFORMANSI ERGONOMI KESELAMATAN DAN KESEHATAN KERJA DI PT. PAL INDONESIA

Analisa Kecelakaan Menggunakan Metode Event and Casual Factor Analysis Pada Kecelakaan Menghilangkan Waktu Kerja Studi Kasus di PT.

Analisis Human Error pada Pramudi Transjakarta dengan Pendekatan HEART dan Fault Tree Analysis

PENGARUH SISTEM KESELAMATAN DAN KESEHATAN KERJA (K3) DAN PEMBERIAN INSENTIF TERHADAP KINERJA K3 PADA PROYEK KONSTRUKSI DI SURABAYA

MENGAPA PROYEK PERANGKAT LUNAK GAGAL ( PENERAPAN MANAJEMEN RESIKO DALAM PROYEK PERANGKAT LUNAK )

TANTANGAN PUSAT LISTRIK TENAGA NUKLIR PERTAMA (PLTN I): SUMBER DAYA MANUSIA (SDM)

Analisis Hubungan Beban Kerja dan Kelelahan Terhadap Jumlah Pengangkutan Box Container Operator Head Truck di PT. Petikemas

SAT. Pengukuran Indeks Kompleksitas Produk terhadap Produk Pressed Part Berbasis Informasi Produk (Case Study: Bracket Air Box Component)

BAB I PENDAHULUAN. jenis material baik untuk konstruksi utama maupun untuk accessories tambahan

OVERVIEW KONSEP HAZARD, RISK AND CONTROL PERTEMUAN 1 FIERDANIA YUSVITA PRODI KESEHATAN MASYARAKAT, FIKES UEU

PENGUMPULAN DAN PENGOLAHAN DATA

BAB VI KESIMPULAN DAN SARAN

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print) F-306

Jurnal Ilmiah Widya Teknik Volume 16 Nomor ISSN

PERANCANGAN SISTEM PENDETEKSI ALAT PELINDUNG DIRI MENGGUNAKAN TEKNOLOGI IMAGE PROCESSING

Prosiding Seminar Nasional Manajemen Teknologi XXV Program Studi MMT-ITS, Surabaya, 30 Juli 2016

Subrata Aditama Kittie Aidon Uda 1 dan Erik Adi Gunawan 2

ANALISIS PENGUKURAN BEBAN KERJA FISIK DENGAN METODE FISIOLOGI

FIAN SYAFRUDIN ABRAHAM

Jurusan Teknik Sipil Fakultas Teknik Sipil Dan Perencanaan Institut Teknologi Sepuluh Nopember. Oleh : Taufiq Junaedi ( )

BAB 6 KESIMPULAN DAN SARAN

EVALUASI PERFORMA SUPPLIER DENGAN METODA FUZZY AHP PADA LAYANAN CATERING DI PT GARUDA INDONESIA TESIS

Analisis Kecelakaan Unit Head Truck Menggunakan Metode Event and Causal Factor Analysis dan Tier Analysis. (Studi Kasus : Perusahaan Bongkar Muat)

EVALUASI KONDISI IKLIM KERJA DI LABORATORIUM BETON TEKNIK SIPIL INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

Perancangan Kebijakan Perawatan Mesin Printer 3D CLab A01

Berty Dwi Rahmawati, Sriyanto, Wiwik Budiawan

PERHITUNGAN ENERGI EXPENDITUR, KONSUMSI ENERGI DAN PENILAIAN BEBAN KERJA PADA AKTIVITAS MANUAL MATERIAL HANDLING

BAB V ANALISA HASIL. 5.1 Analisa Hasil Pengolahan Data Analisa Histogram. Apabila dilihat dari hasil pengolahan data, berdasarkan histogram

Analisa Tingkat Keandalan Operator Inside Welding dengan Metode Human Error Assessment and Reduction Technique

Kata kunci : Manajemen risiko lingkungan, Pengelolaan lumpur B3, fuzzy AHP

Analisis Kecelakaan Kerja Untuk Meminimisasi Potensi Bahaya Menggunakan Metode Hazard and Operability dan Fault Tree Analysis (Studi Kasus Di PT X) *

PENILAIAN DAN PERANCANGAN PROTOTYPE APLIKASI KNOWLEDGE LOSS RISK PADA BIDANG PEMELIHARAAN DI PT.PJB UP GRESIK

BAB I PENDAHULUAN. International Laboir Organization (ILO) tahun 2010, diseluruh dunia terjadi

Prosiding Seminar Nasional Manajemen Teknologi XV Program Studi MMT-ITS, Surabaya 4 Pebruari 2012

STUDI HAZOP PADA SISTEM DISTRIBUSI BBM BERBASIS FUZZY LAYER OF PROTECTION ANALYSIS DI INSTALASI SURABAYA GROUP (ISG) PT. PERTAMINA TANJUNG PERAK

PENENTUAN FAKTOR-FAKTOR YANG MEMPENGARUHI PRODUKTIFITAS PADA PROYEK KONSTRUKSI DENGAN SISTEM DINAMIK

MODEL ALAT BANTU PENGAMBILAN KEPUTUSAN BERBASIS SPREADSHEET UNTUK ANALISIS RESIKO RANTAI PASOK BAHAN BAKU (Studi kasus PTEI)

APLIKASI FORMAL SAFETY ASSESSMENT (FSA) UNTUK PENILAIAN RISIKO KECELAKAAN PADA BOATLANDING FSO: STUDI KASUS FSO MT LENTERA BANGSA

ANALISA RESIKO OPERASIONAL PENGELOLAAN GEDUNG PUSAT PERBELANJAAN DI SURABAYA

BAB I PENDAHULUAN. sepanjang hari. Kehidupan manusia seolah tidak mengenal waktu istirahat. Dalam

BAB 6 KESIMPULAN DAN SARAN

DAFTAR ISI. Daftar Isi... i BAB I KONSEP PENILAIAN Bagaimana Instruktur Akan Menilai Tipe Penilaian... 1

AEB Model. To accident investigated and analysis

ABSTRAK. Universitas Kristen Maranatha

PENGUKURAN BEBAN KERJA MENTAL MASINIS KERETA API RUTE JARAK JAUH (STUDI KASUS PADA PT KAI DAOP 2)

EVALUASI PENGENDALIAN RISIKO PT. LEMBAH KARET BERDASARKAN RISK REDUCTION

(Skenario Pada PT. Trans Pasific Petrochemical Indotama)

Perbaikan Modul Training Primary Processing di PT. X

DEBRINA PUSPITA ANDRIANI, ST., M.ENG.

BAB I PENDAHULUAN. kesejahteraan pekerja dari segi keselamatan dan kesehatan kerja. Karena bila ada

ANALISA KEANDALAN PADA PERALATAN UNIT PENGGILINGAN AKHIR SEMEN UNTUK MENENTUKAN JADWAL PERAWATAN MESIN (STUDI KASUS PT. SEMEN INDONESIA PERSERO TBK.

ANALISA HUMAN ERROR DENGAN METODE SHERPA DAN HEART PADA KECELAKAAN KERJA DI PT XYZ

BAB V ANALISA DATA Tahap Analyze. Pada tahap ini penyusun akan menganalisis hambatan dan kendala yang

Transkripsi:

IDENTIFIKASI BAHAYA PADA PEKERJAAN GRINDING DI SEBUAH PERUSAHAAN MANUFAKTUR DENGAN MENGGUNAKAN PENDEKATAN SUCCESS LIKELIHOOD INDEX METHOD Ratna Ayu Ratriwardhani 1) dan Mohamad Hakam 2) 1) Jurusan Teknik Industri, Institut Teknologi Sepuluh Nopember Kampus ITS Keputih, Sukolilo, Surabaya, 60111, Indonesia e-mail: ratna.ratriwardhani@yahoo.com 2) Jurusan Teknik Keselamatan dan Kesehatan Kerja, Politeknik Perkapalan Negeri Surabaya Jl. Teknik Kimia, Kampus ITS Keputih, Sukolilo, Surabaya, 60111, Indonesia ABSTRAK Proses grinding adalah sebuah proses untuk membentuk benda kerja seperti merapikan hasil pemotongan, merapikan hasil las, membentuk lengkungan pada benda kerja yang bersudut, menyiapkan permukaan benda kerja untuk dilas, dan lain-lain. Proses ini adalah proses dimana sering terjadi kecelakaan dengan penyebab yang hampir sama, yaitu karena human error. Sehingga diperlukan upaya-upaya untuk mengurangi terjadinya kecelakaan tersebut. Salah satu upaya yang dapat dilakukan adalah dengan menggunakan skenario SLIM, dimana SLIM bertujuan untuk memperoleh nilai Human Error Probability yang didapatkan dengan mencari nilai Success Likelihood Index yang didapat dari kuesioner pembobotan dan penilaian Performance Shapping Factor yang diisi oleh para ahli. Dari hasil penelitian yang dilakukan, diketahui faktor-faktor apa saja yang menyebabkan terjadinya error, yaitu faktor prosedur, kelelahan, kerumitan, training, dan pengalaman. Dapat diketahui juga task yang nilai probabilitas errornya paling tinggi, yaitu pada task 1, sebesar 0,0005828. Sedangkan task yang nilai Human Error Probabilitynya paling rendah adalah task 2, sebesar 0,0003835. Kata kunci: SLIM (Success Likelihood Index Method), HRA (Human Reliability Analysis), Human Error, Gerinda, PSF (Performance Shapping Factor), Task Analysis. PENDAHULUAN Kasus kecelakaan banyak terjadi selama 5 tahun terakhir di PT. X, dan 16 diantaranya adalah kasus kecelakaan yang terjadi pada pekerjaan grinding. Ini berarti, kecelakaan pada proses grinding termasuk jenis pekerjaan yang mempunyai kasus kecelakaan yang paling banyak di PT. X. Pada kecelakaan-kecelakaan yang terjadi dalam proses grinding di PT. X, kasus-kasus kecelakaan tersebut terjadi berulang-ulang kali dan dengan penyebab-penyebab yang hampir sama. Sebagian besar kecelakaan-kecelakaan tersebut disebabkan karena human error. Pada setiap tahapan pekerjaan perlu dilakukan pencegahan dan pengendalian terjadinya human error, maka dari itu dibutuhkan suatu skenario untuk memprediksi dan mengurangi terjadinya human error. SLIM merupakan salah satu skenario yang dapat memprediksi dan mengurangi terjadinya human error. Tujuan dilakukan penelitian ini adalah untuk mengetahui faktor-faktor apa saja yang timbulnya error pada pekerjaan grinding di PT. X, mengetahui berapa besar probabilitas human error pada pekerjaan grinding di PT. X dengan menggunakan pendekatan SLIM untuk mengetahui task mana yang mempunyai probabilitas error yang paling tinggi agar task tersebut dapat diberikan perhatian khusus, mengetahui task apa yang mempunyai A-8-1

nilai probabilitas error paling tinggi, dan menentukan rekomendasi untuk mengurangi probabilitas human error yang terjadi pada pekerjaan grinding di PT. X. Success Likelihood Index Method (SLIM) Yaitu teknik yang digunakan dalam bidang HRA ( Human Reliability Analysis), bertujuan untuk menganalisis kemungkinan human error yang terjadi pada saat melakukan suatu pekerjaan. Dari analisis tersebut kemudian dapat diambil tindakan-tindakan untuk mengurangi kemungkinan error yang terjadi dalam suatu sistem dan dapat memberikan perbaikan dalam semua tingkat safety. SLIM digunakan untuk mengukur PSF ( Performance Shaping Factor). Faktor ini berkaitan dengan individu, lingkungan atau task yang memiliki potensi untuk kinerja para pekerja (baik secara positif maupun secara negatif). Faktor -faktor tersebut digunakan untuk memperoleh SLI ( Success Likelihood Index), yaitu suatu bentuk indeks preferensi yang dikalibrasi terhadap data yang ada untuk memperoleh hasil akhir HEP (Human Error Probability). METODA Expert judgement adalah pertimbangan atau pendapat ahli atau orang yang berpengalaman. Dalam memilih expert judgement tidak boleh sembarangan, oleh karena itu peneliti membuat beberapa kriteria untuk penentuan expert judgement. Task analysis adalah metodologi dasar pada penilaian human error dan berfungsi untuk mendeskripsikan dan menganalisa interaksi manusia dengan sistem sehingga dapat mengurangi human error. Pada penelitian ini, task analysis berfungsi untuk mengetahui tasktask (langkah-langkah kerja) yang ada pada pekerjaan gerinda di PT.X secara detail. Task analysis ini sendiri pada penelitian ini digunakan untuk pembuatan kuesioner pembobotan PSF dan kuesioner penilaian PSF. Dan pada akhirnya probabilitas error juga dihitung di setiap task dan subtasknya. Dalam pembuatan task analysis ada berbagai pihak yang dilibatkan, mulai dari EHS manager, operator gerinda, sampai para expet judgement. Task analysis pada pekerjaan ini dibuat berdasarkan work instruction pekerjaan gerinda menggunakan portable grinding machine yang telah dibuat oleh PT. X, kemudian dikembangkan dan dibuat lebih detail sehingga menjadi task analysis. Task analysis tersebut pun harus mendapatkan persetujuan dari para expert judgement. PSF adalah faktor-faktor yang probabilitas terjadinya error. Pada penellitian ini, PSF berfungsi untuk pembuatan kuesioner pembobotan PSF dan kuesioner penilaian PSF. PSF ini nantinya juga akan berfungsi untuk menghitung SLI. Dalam menentukan PSF, peneliti menentukannya berdasarkan data kecelakaan yang ada, dari data kecelakaan tersebut dapat dilihat, faktor-faktor apa sajakah yang dapat menyebabkan terjadinya error. Setelah menentukan PSF, tahapan selanjutnya adalah mendiskusikan PSF- PSF tersebut dengan expert judgement, apakah benar PSF-PSF tersebut adalah PSF-PSF yang sangat probabilitas error pada pekerjaan gerinda atau tidak. Peneliti juga meminta pendapat kepada expert judgement apakah mungkin masih ada PSF-PSF lain yang juga sangat probabilitas error pada pekerjaan gerinda atau tidak. Kuesioner pembobotan PSF bertujuan untuk mengetahui seberapa besar pengaruh tiap PSF dalam menimbulkan error pada pekerjaan gerinda dengan cara memberikan bobot terhadap masing-masing PSF di setiap task. Kuesioner ini dibuat berdasarkan task analysis yang sebelumnya telat dibuat. Kuesioner ini diberikan kepada para judges yang telah memenuhi kriteria sebagai expert judgement. Dengan syarat, para judges tersebut tidak boleh mengisi kuesioner secara bersamaan dengan judges lain. Hal ini dihindari agar para judges A-8-2

tersebut tidak saling berdiskusi mengenai nilai-nilai yang diberikan untuk kuesioner tersebut, hal ini juga dihindari supaya para judges tidak saling mencontoh nilai-nilai yang diberikan oleh judges lain. Syarat lain dan merupakan poin utama adalah mereka bersedia meluangkan waktunya di jam kerja dan mendapatkan ijin untuk melakukan penilaian ini, dan untuk dimintai informasi-informasi terkait pekerjaan grinding. Dalam memberikan bobot, terdapat skala mulai dari skala 1 sampai dengan skala 10, 10 mempunyai pengaruh terbesar dan 1 mempunyai pengaruh terkecil. Ini berarti, semakin besar angka yang diberikan, maka PSF tersebut semakin berpengaruh dalam timbulnya error pada pekerjaan gerinda di PT. X. Berbanding terbalik, semakin kecil angka yang diberikan, maka PSF tersebut tidak terlalu berpengaruh dalam timbulnya error pada pekerjaan gerinda di PT. X dibandingkan dengan PSF-PSF yang lainnya. Kuesioner ini dibuat berdasarkan task analysis yang sebelumnya telat dibuat. Kuesioner ini diberikan kepada para judges yang telah memenuhi kriteria sebagai expert judgement. Salah satu tahapan pada pendekatan SLIM adalah menilai bobot masing-masing PSF. Penentuan bobot ini bertujuan untuk mengetahui seberapa besar pengaruh tiap PSF dalam menimbulkan error pada pekerjaan gerinda. Selain itu, penentuan bobot juga digunakan untuk menghitung SLI. Dalam menentukan bobot, langkah pertama adalah bobot dari PSF ditentukan melalui hasil kuesioner pembobotan PSF yang telah diisi oleh para expert judgement. Dari 4 kuesioner yang telah didapatkan kemudian hasil pengisian bobot dari keempat judges tersebut dirata-rata. Bobotnya kemudian dinormalisasi (setiap nilai dibagi dengan total nilai keseluruhan). Total bobot normalisasi pasti 1,00. Dalam menentukan rating, ditentukan melalui hasil kuesioner penilaian PSF yang telah diisi oleh expert judgement. Dari kuesioner-kuesioner yang telah didapatkan kemudian hasil pengisian rating dari para judges tersebut dirata-rata. Nilai SLI digunakan untuk menghitung HEP. SLI dapat juga digunakan sebagai performance indicator, dan juga dapat digunakan sebagai aspek dalam memonitor sistem manajemen K3. Nilai SLI dihitung menggunakan rumus berikut ini: SLIj = RijWi... (1) (Sumber: Embrey, 1994) Keterangan: - SLIj = SLI task j - Rij = Rating task j pada PSF i - Wi = Bobot normalisasi PSF i ( Wi = 1) Pengubahan nilai SLI menjadi HEP bertujuan untuk mengetahui probabilitas human error pada pekerjaan gerinda. Dalam mengubah nilai SLI menjadi probabilitas human error (HEP), digunakan rumus berikut ini: log (HEP) = a SLI + b... (2) (Sumber: Embrey, 1994) Keterangan: - a dan b = Konstanta HASIL DAN DISKUSI Para judges terdiri dari orang-orang dari berbagai profesi yang mempunyai banyak pengetahuan mengenai pekerjaan gerinda di PT. X. Expert judgement terdiri dari group leader, EHS inspector, dan supervisor. Poin utama dari judge adalah mereka berupaya untuk melakukan penilaian dan mereka juga bersedia untuk meluangkan waktu pada jam kerja untuk dimintai informasi terkait pekerjaan gerinda, karena penilaian ini membutuhkan waktu yang tidak sedikit. A-8-3

Tabel 1 adalah hasil diskusi dengan para expert judgement tersebut. Tabel 1. Pemeriksaan PSF oleh Judges No. PSF Komentar Penulis Judge A Judge B Judge C 1 Prosedur (Procedure) No Comment No Comment No Comment 2 Kelelahan (Fatigue) No Comment No Comment No Comment 3 Penerangan No Comment Tidak terlalu Tidak terlalu (Illumination) 4 Kerumitan (Complexity) No Comment No Comment No Comment 5 Shift kerja (Work shift) Tidak terlalu Tidak terlalu Tidak terlalu PSF tambahan yang disarankan 6 Training - Training 7 - Pengalaman Pengalaman Dari hasil pemeriksaan diatas didapatkan bahwa dari 5 PSF yang ditentukan oleh peneliti, 2 PSF mendapatkan komentar dari para judges, bahwa kedua PSF tersebut tidak terlalu probabilitas terjadinya error. Judge A, B, dan C berpendapat bahwa shift kerja tidak terlalu, maka dari itu faktor shift kerja dihilangkan. Begitu juga dengan faktor penerangan tempat kerja, judge B dan C berpendapat bahwa penerangan tidak terlalu, maka dari itu faktor penerangan dihilangkan. Kemudian ada 2 PSF tambahan yang disarankan oleh para judges, yaitu faktor training dan faktor pengalaman. Faktor training dipilih oleh 2 judges, yaitu judge A dan judge C. Dan faktor pengalaman juga dipilih oleh 2 judges, yaitu judge B dan judge C. Kesimpulannya, ada 5 PSF yang berpengaruh pada pekerjaan grinding di PT. X, yaitu faktor prosedur, kelelahan, kerumitan, training, dan pengalaman. Hasil kuesioner pembobotan dapat dilihat pada Tabel 2. Tabel 2. Hasil Kuesioner Pembobotan Task PSF Prosedur Kelelahan Kerumitan Training Pengalaman 1 8,75 6,50 7 7,25 8,50 2 5,50 3,25 5 5,25 5,75 3 5,75 4,50 4 5,50 5,25 4 5,75 4 4,75 6 6,75 5 5,75 3,25 3,25 5,50 5 6 5,50 5,50 5,50 5,50 4,75 7 6,50 5,75 6,25 6 7,75 8 5,50 5,50 5,50 5,50 4,75 9 7 3,75 4,50 5 5,75 10 5,75 5 3,50 4,75 4,75 11 3,75 4 2,75 2,75 3,25 12 5,25 5,25 5,25 6,25 5 Total 70,75 56,25 57,25 65,25 67,25 Rata-rata (Bobot) 5,90 4,69 4,77 5,44 5,60 Bobot Normalisasi 0,22 0,18 0,18 0,21 0,21 A-8-4

Dari tabel tersebut, dapat diketahui bahwa dalam pekerjaan gerinda, prosedur yang tidak dijalankan dengan baik mempunyai pengaruh paling besar dalam menimbulkan error. Disusul dengan faktor pengalaman, pekerja yang kurang berpengalaman dalam menggunakan mesin gerinda tentunya mempunyai kemungkinan melakukan error yang lebih tinggi dibandingkan pekerja yang sudah sangat berpengalaman menggunakan mesin tersebut. Kemudian training, kurangnya training kepada pekerja juga dapat tingkat terjadinya kecelakaan. Faktor selanjutnya adalah faktor kerumitan, kerumitan dalam proses penggerindaan juga berpengaruh terhadap timbulnya error. Semakin rumit benda kerja atau posisi penggerindaan yang sulit, semakin besar pula peluang terjadinya error. Faktor terakhir yang tidak boleh diabaikan adalah faktor kelelahan pekerja. Jika pekerja mengalami kelelahan, maka otomatis hal itu akan menurunkan konsentrasinya, membuat ngantuk, dan lain-lain. Telah banyak kasus kecelakaan yang sudah terjadi yang disebabkan oleh faktor ini. Lima faktor tersebut adalah faktor-faktor yang paling berpengaruh dalam pekerjaan gerinda yang ada di PT. X. Hasil kuesioner penilaian PSF dapat dilihat pada Tabel 3. Tabel 3. Rating PSF PSF Task Prosedur Kelelahan Kerumitan Training Pengalaman 100 = prosedur di task ini hampir sempurna 50 = prosedur agak sempurna 0= tidak ada prosedur 100 = pekerja tidak lelah pada task ini 50 = agak lelah 0 = sangat lelah 100 = bukan task yang rumit 50 = agak rumit 0 = sangat rumit 100 = banyak training, sehingga pekerja sangat terlatih pada task ini 50 = ada beberapa training 0 = tidak ada training 100 = pekerja sangat berpengalaman pada task ini 50 = agak berpengalaman 0 = tidak berpengalaman 1 92,50 80 82,50 100 92,50 2 75 40 50 72,50 70 3 95 85 72,50 87,50 80 4 97,50 87,50 82,50 97,50 82,50 5 100 62,50 72,50 80 75 6 87,50 75 77,50 87,50 77,50 7 92,50 75 77,50 82,50 92,50 8 95 77,50 77,50 77,50 75 9 90 70 67,50 80 67,50 10 92,50 57,50 70 92,50 90 11 77,50 77,50 77,50 65 87,50 12 60 85 85 70 90 Dari hasil penilaian tersebut (contoh pada task pertama), dapat diketahui bahwa kualitas prosedur pada pekerjaan gerinda yang telah dibuat oleh perusahaan bernilai 92.5, artinya kualitas prosedur di task tersebut hampir sempurna, karena mendekati rating 100. Sedangkan untuk faktor kelelahan pada task pertama bernilai 80, artinya pada task menggunakan APD sesuai dengan yang telah ditentukan, para pekerja tidak merasa lelah pada task ini. Untuk faktor kerumitan, task pertama bukanlah task yang rumit untuk dilakukan. Kualitas training pada task pertama bernilai 100, artinya banyak training pada task tersebut, sehingga pekerja sudah sangat terlatih di task tersebut. Pada faktor pengalaman, untuk task pertama, bernilai 92.5, yang artinya para pekerja sudah sangat berpengalaman pada task ini. A-8-5

Dari nilai rating dan bobot normalisasi yang telah diketahui, maka nilai SLI di setiap task dapat diketahui pula. Berikut adalah perhitungannya: Task 1 SLI = (92,50x0,22) + (80x0,18) + (82,50x0,18) + (100x0,21) + (92,50x0,21) = 90,03 Nilai SLI telah diketahui, sedangkan untuk mengetahui nilai a dan b setidaknya probabilitas error pada 2 task harus diketahui. Nilai probabilitas error dapat diketahui dari data kecelakaan pada task 1 dan task 4, 2 task ini dipilih karena pada task-task ini terdapat kasus kecelakaan yang paling tinggi dibandingkan dengan task-task lain. Pada task 1 (task A), jumlah kecelakaan yang terjadi dikarenakan task satu tidak dijalankan adalah 5 kecelakaan dalam 5 tahun. Sedangkan jumlah kecelakaan yang terjadi dikarenakan task 4 (task B) tidak dijalankan adalah 2 kecelakaan dalam 5 tahun. Kemudian untuk perhitungan probabilitas errornya caranya adalah sebagai berikut: Task A = Jumlah kecelakaan dalam 5 tahun Jam/hari x hari/minggu x minggu/tahun x tahun = 5 = 0,0005 kejadian/jam dalam 5 tahun 8 x 5 x 50 x 5 (Dalam 2000 jam terdapat accident 1 jam) Kemudian tahapan selanjutnya adalah mencari persamaan untuk menghitung probabilitas error, caranya adalah sebagai berikut: Tentukan asumsi task A = 80 task B = 20 Untuk mencari konstanta a: Task A log (0,0005) = a80 + b Task B log (0,0002) = a20 + b -3,30103 = a80 + b -3,69897 = a20 + b 0,39794 = a60 a = 0,0066323 konstanta b: Subtitusi -3,30103 = a80 + b -3,30103 = (0,0066323) 80 + b b = -3,831614 Jadi persamaannya adalah: log (HEP) = 0,0066323 SLI 3,831614 Setelah persamaannya diketahui, maka langkah selanjutnya adalah mencari probabilitas human error di setiap task. Caranya adalah dengan memasukkan nilai SLI setiap task ke dalam persamaan diatas. Berikut adalah perhitungannya: Task 1 log (HEP) = 0,0066323 (90,03) 3,831614 HEP = 0,0005828 HEP. Tabel 4 adalah rekapan perhitungan yang telah dilakukan, yaitu perhitungan SLI dan A-8-6

Tabel 4. Rekap Nilai SLI dan HEP Task Deskripsi Task SLI HEP 1 Gunakan APD sesuai dengan yang telah ditentukan 90,03 0,0005828 2 Siapkan dokumen sesuai dengan yang telah ditentukan 62,63 0,0003835 3 Lakukan autonomous maintenance 84,43 0,000535 4 Pilih batu gerinda sesuai dengan jenis material yang 0,0005812 89,85 akan digerinda dan pekerjaan yang akan dilakukan 5 Pasang batu gerinda 78,85 0,0004913 6 Nyalakan mesin gerinda 81,35 0,0005104 7 Gerinda material 84,55 0,000536 8 Matikan mesin gerinda 80,83 0,0005064 9 Cek hasil gerinda apakah sesuai dengan dokumen 75,53 0,000467 10 Lakukan autonomous maintenance 81,63 0,0005126 11 Kembalikan gerinda ke tempat semula 76,98 0,0004805 12 Laksanakan 5S 77,40 0,0004775 SLI= 964,06 Dari Tabel 4, dapat dilihat bahwa semakin tinggi nilai SLI, maka semakin tinggi pula nilai HEP-nya. Sebaliknya, semakin rendah nilai SLI, maka semakin rendah pula nilai HEPnya. Dari perhitungan diatas, dapat dilihat task mana yang mempunyai nilai probabilitas error paling tinggi, yaitu ada pada task 1. Hasil tersebut sama dengan data kecelakaan yang menunjukkan task tersebut adalah task yang paling banyak menimbulkan error. Sedangkan task yang mempunyai HEP paling rendah adalah task 2. KESIMPULAN Faktor-faktor yang timbulnya error pada pekerjaan grinding di PT. X adalah faktor prosedur, kelelahan, kerumitan, training, dan faktor pengalaman. Besarnya probabilitas human error pada pekerjaan grinding di PT. X dengan menggunakan pendekatan SLIM ditunjukkan pada Tabel 4. Task yang mempunyai nilai probabilitas error paling tinggi ada pada task 1 (gunakan APD sesuai dengan yang telah ditentukan). Rekomendasi untuk mengurangi probabilitas human error yang terjadi pada pekerjaan grinding di PT. X adalah sebagai berikut: a. Task dan deskripsi task dalam work instruction harus lebih detail b. Memberikan sosialisasi work instruction kepada para pekerja c. Peningkatan pengawasan terhadap cara kerja pekerja d. Mengatur waktu istirahat para pekerja e. Diadakannya training rutin f. Refresh terkait dengan task g. Assessment kompetensi pekerja Dalam pemilihan expert judgement, harus benar-benar dipilih judge yang memenuhi semua kriteria yang telah ditetapkan, dan yang terpenting adalah, mereka bersedia meluangkan waktu pada jam kerja untuk dimintai informasi terkait pekerjaan grinding. Untuk penelitian selanjutnya, diharapkan task analysis dibuat lebih detail dan task-task yang dihitung probabilitas errornya lebih banyak. A-8-7

DAFTAR PUSTAKA Chiara, Leva Maria (2005). Human Errors Analysis and Safety Management Systems in Hazardous Activities, International Institute for Applied Systems Analysis. CSNI (1985). Expert Judgement of Human Reliability, OECD Nuclear Energy Agency. DiMattia, Dino G. (2004). Human Error Probability Index for Offshore Platform Musters, Ph.D s Thesis of Dalhousie University. Embrey, D. E., Humphreys, P., Rosa, E. A., Kirwan, B., dan Rea, K. (1984). SLIM-MAUD: An Approach to Assessing Human Error Probabilities Using Structured Expert Judgement, Volume I: Overview of SLIM-MAUD, United States Nuclear Regulatory Commission. Embrey, D. E., Humphreys, P., Rosa, E. A., Kirwan, B., dan Rea, K. (1984). SLIM-MAUD: An Approach to Assessing Human Error Probabilities Using Structured Expert Judgement, Volume II: Detailed Analysis of the Technical Issues, United States Nuclear Regulatory Commission. Embrey, D. E. (1994). Guidelines for Preventing Human Error in Process Safety, American Institute of Chemical Engineers, Centre for Chemical Process Safety. Embrey, D. E. (2000). Introduction to Performance Influencing Factors, Human Reliability Associates Ltd. Hollnagel, Erik (1998). Cognitive Reliability and Error Analysis Method CREAM, Elsevier Science. Kirwan, B. (1994). A Guide to Practical Human Reliability Assessment, Taylor & Francis. A-8-8