KAJIAN EKSPERIMENTAL KELAYAKAN DAN PERFORMA ALAT PENUKAR KALOR TIPE SHELL AND TUBE SINGLE PASS DENGAN METODE BELL DELAWARE

dokumen-dokumen yang mirip
UJI EKSPERIMENTAL OPTIMASI LAJU PERPINDAHAN KALOR DAN PENURUNAN TEKANAN PENGARUH JARAK BAFFLE

BAB II TINJAUAN PUSTAKA


PENINGKATAN UNJUK KERJA KETEL TRADISIONAL MELALUI HEAT EXCHANGER

BAB I PENDAHULUAN I.1.

BAB II LANDASAN TEORI

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

BAB 1 PENDAHULUAN. untuk proses-proses pendinginan dan pemanasan. Salah satu penggunaan di sektor

BAB II LANDASAN TEORI

BAB I PENDAHULUAN. pendinginan untuk mendinginkan mesin-mesin pada sistem. Proses pendinginan

STUDI EKSPERIMENTAL PENGARUH VARIASI PITCH COILED TUBE TERHADAP NILAI HEAT TRANSFER DAN PRESSURE DROP PADA HELICAL HEAT EXCHANGER ALIRAN SATU FASA

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1

BAB II TINJAUAN PUSTAKA

ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TABUNG SEPUSAT ALIRAN BERLAWANAN DENGAN VARIASI PADA FLUIDA PANAS (AIR) DAN FLUIDA DINGIN (METANOL)

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) B-192

Karakteristik Perpindahan Panas dan Pressure Drop pada Alat Penukar Kalor tipe Pipa Ganda dengan aliran searah

Perancangan Termal Heat Recovery Steam Generator Sistem Tekanan Dua Tingkat Dengan Variasi Beban Gas Turbin

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) B-198

BAB V KESIMPULAN DAN SARAN

ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG DUA LALUAN TABUNG SEBAGAI PENDINGINAN OLI DENGAN FLUIDA PENDINGIN AIR

ALAT PENUKAR KALOR PERANCANGAN DAN SIMULASI 3D ALAT PENUKAR KALOR TIPE SELONGSONG DAN TABUNG

ANALISIS EFEKTIFITAS ALAT PENUKAR KALOR SHELL & TUBE DENGAN MEDIUM AIR SEBAGAI FLUIDA PANAS DAN METHANOL SEBAGAI FLUIDA DINGIN

PENYUSUNAN PROGRAM KOMPUTASI PERANCANGAN HEAT EXCHANGER TIPE SHELL & TUBE DENGAN FLUIDA PANAS OLI DAN FLUIDA PENDINGIN AIR

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

Ditulis Guna Melengkapi Sebagian Syarat Untuk Mencapai Jenjang Sarjana Strata Satu (S1) Jakarta 2015

SKRIPSI ALAT PENUKAR KALOR

ANALISA KINERJA ALAT PENUKAR KALOR JENIS PIPA GANDA

TUGAS AKHIR ANALISIS PENGARUH KECEPATAN ALIRAN FLUIDA TERHADAP EFEKTIFITAS PERPINDAHAN PANAS PADA HEAT EXCHANGER JENIS SHELL AND TUBE

Analisa Unjuk Kerja Secondary Superheater PLTGU Dan Evaluasi Peluang Peningkatan Effectiveness Dengan Cara Variasi Jarak, Jumlah dan Diameter Tube

Tugas Akhir. Perancangan Hydraulic Oil Cooler. bagi Mesin Injection Stretch Blow Molding

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) B-91

BAB III METODE PENELITIAN

PENERAPAN PERANGKAT LUNAK KOMPUTER UNTUK PENENTUAN KINERJA PENUKAR KALOR

Pengaruh Pemilihan Jenis Material Terhadap Nilai Koefisien Perpindahan Panas pada Perancangan Heat Exchanger Shell-Tube dengan Solidworks

31 4. Menghitung perkiraan perpindahan panas, U f : a) Koefisien konveksi di dalam tube, hi b) Koefisien konveksi di sisi shell, ho c) Koefisien perpi

VERIFIKASI ULANG ALAT PENUKAR KALOR KAPASITAS 1 kw DENGAN PROGRAM SHELL AND TUBE HEAT EXCHANGER DESIGN

STUDI EKSPERIMENTAL PENGARUH PITCH

BAB II LANDASAN TEORI

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian

BAB II TINJAUAN PUSTAKA

ANALISIS KINERJA COOLANT PADA RADIATOR

BAB II LANDASAN TEORI

Analisis Koesien Perpindahan Panas Konveksi dan Distribusi Temperatur Aliran Fluida pada Heat Exchanger Counterow Menggunakan Solidworks

BAB IV ANALISA DAN PERHITUNGAN

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2016

PENGARUH BAFFLE CUT TERHADAP UNJUK KERJA TERMAL DAN PENURUNAN TEKANAN PADA ALAT PENUKAR KALOR SHELL AND TUBE SUSUNAN TABUNG SEGIEMPAT TESIS OLEH

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK

BAB II LANDASAN TEORI

Pengaruh Penggunaan Baffle pada Shell-and-Tube Heat Exchanger

BAB I PENDAHULUAN. mendirikan beberapa pembangkit listrik, terutama pembangkit listrik dengan

PERANCANGAN HEAT EXCHANGER

BAB II TINJAUAN PUSTAKA

Evaluasi Performa Lube Oil Cooler pada Turbin Gas dengan Variasi Surface Designation dan Reynolds Number

Re-design dan Modifikasi Generator Cooler Heat Exchanger PLTP Kamojang Untuk Meningkatkan Performasi.

Studi Eksperimental Efektivitas Penambahan Annular Fins pada Kolektor Surya Pemanas Air dengan Satu dan Dua Kaca Penutup

KAJIAN EXPERIMENTAL KOEFISIEN PERPINDAHAN PANAS KONVEKSI DENGAN NANOFLUIDA Al2SO4 PADA HEAT EXCHANGER TIPE COUNTER FLOW

Karakteristik Perpindahan Panas pada Double Pipe Heat Exchanger, perbandingan aliran parallel dan counter flow

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

KATA PENGANTAR. Assalamu alaikum warohmatullah wabarokatuh. dapat menyelesaikan Skripsi ini. Pada kesempatan ini penulis menyampaikan

Sujawi Sholeh Sadiawan, Nova Risdiyanto Ismail, Agus suyatno, (2013), PROTON, Vol. 5 No 1 / Hal 44-48

BAB II TINJAUAN PUSTAKA

ANALISIS EFEKTIFITAS ALAT PENUKAR KALOR SHELL & TUBE DENGAN AIR SEBAGAI FLUIDA PANAS DAN FLUIDA DINGIN

TUGAS AKHIR PERCOBAAN KUALITAS ETHYLENE DAN AIR PADA ALAT PERPINDAHAN PANAS DENGAN SIMULASI ALIRAN FLUIDA

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik SUHERI SUSANTO NIM

BAB lll METODE PENELITIAN

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat

EFEKTIVITAS FUEL OIL HEATER PADA PEMBANGKIT LISTRIK TENAGA UAP

STUDI EKSPERIMENTAL PENGARUH PERUBAHAN DEBIT ALIRAN PADA EFISIENSI TERMAL SOLAR WATER HEATER DENGAN PENAMBAHAN FINNED TUBE

Bab 1. PENDAHULUAN Latar Belakang

I. PENDAHULUAN. Mesin pengering merupakan salah satu unit yang dimiliki oleh Pabrik Kopi

BAB II TINJAUAN PUSTAKA

DOSEN PEMBIMBING : PROF. Dr. Ir. DJATMKO INCHANI,M.Eng. oleh: GALUH CANDRA PERMANA

PENUKAR PANAS GAS-GAS (HXG)

INVESTIGASI KARAKTERISTIK PERPINDAHAN PANAS PADA DESAIN HELICAL BAFFLE PENUKAR PANAS TIPE SHELL AND TUBE BERBASIS COMPUTATIONAL FLUID DYNAMICS (CFD)

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iv. DAFTAR ISI... vi. DAFTAR GAMBAR... xi. DAFTAR GRAFIK...xiii. DAFTAR TABEL... xv. NOMENCLATURE...

ANALISA DESAIN DAN PERFORMA KONDENSOR PADA SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL PERIKANAN

DOUBLE PIPE HEAT EXCHANGER. ALAT DAN BAHAN - Alat Seperangkat alat Double Pipe Heat Exchanger Heater Termometer - Bahan Air

LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN

PENUKAR PANAS GAS-GAS (HXG)

BAB III METODE PENELITIAN. Waktu penelitian dilakukan setelah di setujui sejak tanggal pengesahan

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan

EFEKTIVITAS PENUKAR KALOR TIPE PLATE P41 73TK Di PLTP LAHENDONG UNIT 2

Seminar Nasional Tahunan Teknik Mesin (SNTTM) VIII

Numerical Study of Shell-And-Tube Heat Exchanger Characteristicsin Laminar Flow with Single Segmental Baffle

ANALISIS PENGARUH KECEPATAN FLUIDA PANAS ALIRAN SEARAH TERHADAP KARAKTERISTIK HEAT EXCHANGER SHELL AND TUBE. Nicolas Titahelu * ABSTRACT

JURNAL TEKNIK POMITS Vol. 2, No. 3, (2013) ISSN: ( Print) B-409

RANCANG BANGUN HEAT EXCHANGER TUBE NON FIN SATU PASS, SHELL TIGA PASS UNTUK MESIN PENGERING EMPON-EMPON

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

I. PENDAHULUAN II. LANDASAN TEORI

Rancang Bangun Perangkat Lunak untuk Desain Alat Penukar Panas Tipe Shell dan Tube

BAB II TINJAUAN PUSTAKA Alat Penukar Kalor Selongsong dan Tabung. Alat penukar kalor selongsong dan tabung di disain untuk dapat melakukan

DESAIN DAN ANALISIS ALAT PENUKAR KALOR TIPE CES

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi. Syarat Memperoleh Gelar Sarjana Teknik BINSAR T. PARDEDE NIM DEPARTEMEN TEKNIK MESIN

Taufik Ramuli ( ) Departemen Teknik Mesin, FT UI, Kampus UI Depok Indonesia.

BAB II TINJAUAN PUSTAKA

JURNAL TEKNIK POMITS 1

ANALISA HEAT EXCHANGER JENIS SHEEL AND TUBE DENGAN SISTEM SINGLE PASS

LAPORAN TUGAS AKHIR ANALISA PERHITUNGAN ALAT PENUKAR PANAS TIPE SHEEL & TUBE PADA INDUSTRI ASAM SULFAT

STUDI EKSPERIMENTAL KOEFISIEN PERPINDAHAN KALOR MODEL WATER HEATER KAPASITAS 10 LITER DENGAN INJEKSI GELEMBUNG UDARA

Transkripsi:

B.9. Kajian eksperimental kelayakan dan performa... (Sri U. Handayani, dkk.) KAJIAN EKSPERIMENTAL KELAYAKAN DAN PERFORMA ALAT PENUKAR KALOR TIPE SHELL AND TUBE SINGLE PASS DENGAN METODE BELL DELAWARE Sri Utami Handayani *1), Didik Ariwibowo **1), Fauzi Kusuma NH 2) 1) PSD III Teknik Mesin Fakultas Teknik Universitas Diponegoro Jl. Prof. Soedarto, SH, Tembalang Semarang 2) PT. Bukit Makmur Mandiri Utama, Kalimantan *) Email : handayani@undip.ac.id, **) Email : ariwibowo_d@yahoo.com Abstrak Peranan Alat Penukar Kalor dalam industri sangat besar, misalnya dipergunakan pada industri makanan, pembangkit tenaga listrik, perminyakan, transportasi, pendingin dan pemanas, dll. Pada umumnya Alat Penukar Kalor berperan dalam peningkatan efisiensi sistem. Penelitian ini bertujuan untuk mengetahui performa Alat Penukar Kalor tipe Shell and Tube Aliran Tunggal dengan Metode Bell Delaware. Penelitian dilakukan di Lab Konversi Energi PSD III Teknik Mesin Undip secara ekperimental dengan laju aliran pada shell sebesar 5 lpm dan laju aliran pada tube sebesar 10 lpm. Dari hasil perhitungan data diperoleh hasil bahwa nilai effectiveness peralatan adalah berkisar antara 0,4 0,5. Sedangkan nilai koefisien perpindahan kalor total alat penukar kalor 132,618 W/m 2 K. Kata kunci: penukar kalor, shell and tube single pass, bell delaware PENDAHULUAN Alat Penukar Kalor berfungsi untuk mengubah temperatur dan fasa suatu jenis fluida dengan memanfaatkan proses perpindahan panas dari fluida bersuhu tinggi menuju fluida bersuhu rendah atau sebaliknya. Peranan Alat Penukar Kalor sangat besar, misalnya dipergunakan pada industri proses, makanan, pembangkit tenaga listrik, perminyakan, transportasi, pendingin dan pemanas, dll. Pada umumnya Alat Penukar Kalor berperan dalam peningkatan efisiensi sistem. Contohnya melalui heater yaitu alat penukar kalor yang berfungsi memanaskan feed water sebelum masuk ke boiler menggunakan panas dari exhaust steam (uap sisa turbin) atau gas yang telah diekspansikan di turbin gas Dengan mempertimbangkan pentingnya Alat Penukar Kalor (APK) dalam industri, maka keberadaannya sebagai alat peraga pendidikan menjadi sangat penting. Penelitian ini bertujuan untuk mengetahui kelayakan dan performa Alat Penukar Kalor yang dibuat di Lab Konversi Energi PSD III Teknik Mesin FT Undip sebagai salah satu alat peraga pendidikan yang dipergunakan pada Praktikum Konversi Energi. Parameter untuk menentukan performa alat penukar kalor adalah efektivitas thermal, pressure drop dan kecenderungan terjadinya pengotoran (fouling). Pemilihan Alat penukar kalor umumnya didasarkan pada kriteria tertentu seperti : memiliki efektivitas thermal yang tinggi, pressure drop rendah, kehandalan dan umur pakai yang lama serta kualitas produk serta keamanan ( Kuppan, 2000) Ada berbagai macam jenis alat penukar kalor seperti and tube, flat tube, continuous plate fins, fin tube, dll. Dari berbagai jenis tersebut yang paling banyak dipakai adalah jenis and tube (Kern, 1950) Hal ini disebabkan karena beberapa faktor. Antara lain karena jenis and tube memberikan rasio antara luas perpindahan kalor dan volume atu berat fluida yang cukup besar. Jenis ini juga mudah dibuat dalam berbagai ukuran, handal, mudah dibersihkan,serta dapat dimodifikasi untuk permasalahan khusus (TEMA, 1978) METODOLOGI Peralatan Peralatan yang digunakan untuk penelitian ini adalah Alat Penukar Kalor tipe shell dan tube dengan satu lintasan aliran, tipe aliran adalah menyilang berlawanan arah dengan skema sebagai berikut : B.48 ISBN 978-602-99334-1-3

Keterangan : 1. Bak air 2. Pompa 3. Flowmeter 4. Water Heater 5. Pipa bypass 6. Pipa air panas 7. Pipa air dingin Gambar 1. Skema aliran fluida Pada alat penukar kalor yang dipergunakan terdapat dua siklus air, yaitu air panas dan air dingin, keduanya merupakan siklus terbuka. Dari bak air, air dingin dipompa sebagian masuk ke tube dengan melewati flow meter terlebih dahulu. Setelah keluar dari tube air dibuang. Sebagian air dialirkan ke heater dan keluar pada temperatur yang lebih tinggi dan kemudian dialirkan ke bagian shell. Setelah keluar dari pada temperatur yang lebih rendah kemudian air dibuang. Adapun peralatan yang dipergunakan adalah sebagai berikut (lihat Gambar 1 dan Tabel 1): Gambar 2. Gambar Peralatan Keterangan : 1. Body 2. Header 3. Manometer 4. Thermometer 5. Bak air 6. Pompa Air 7. Water heater 8. Katup ventilasi 9. Body 10. Header 11. Manometer 12. Thermometer 13. Bak air 14. Pompa Air 15. Water heater 16. Katup ventilasi 17. Flowmeter Prosedur Pengambilan Data Dalam penelitian ini prosedur yang dilakukan untuk pengambilan data adalah sebagai berikut : Pompa dinyalakan, dan kemudian heater dinyalakan dengan cara menyambungkan heater dengan tabung gas, heater akan menyala secara otomatis. Alat penukar kalor diisi secara penuh, baik pada sisi shell maupun tube. Kemudian dilakukan pengaturan laju aliran air yang menuju ke shell maupun tube dengan menggunakan katup. Sedangkan temperatur air panas diatur dengan mengatur tombol pada heater. Setelah semua variabel yang diinginkan telah sesuai, hasil pengukuran pada manometer, flowmeter dan termometer dicatat. Untuk mendapatkan data pada suhu dan laju alir yang lain, dapat disesuaikan dengan mengatur tombol pada heater dan katup baik yang menuju ke sisi shell maupun ke sisi tube. Pada penelitian ini data diambil dalam rentang waktu 20 menit, dengan interval waktu tiap data 2 menit. Prosiding SNST ke-3 Tahun 2012 Fakultas Teknik Universitas Wahid Hasyim Semarang B.49

B.9. Kajian eksperimental kelayakan dan performa... (Sri U. Handayani, dkk.) Tabel 1. Spesifikasi alat No Deskripsi Notasi Nilai Satuan 1 Diameter inside D s 254 Mm 2 Diameter outside tube D t,o 19,05 Mm 3 Diameter inside tube D t,i 17,05 Mm 4 Koefisien konduksi pipa k t 40,5 W/mK 5 Jarak pitch tube L tp 25,4 Mm 6 Sudut konfigurasi tube Ө tp 90 7 Panjang tube L ti 1500 Mm 8 Jumlah tube N t 52 Buah 9 Jumlah baffle 6 Buah 10 Tinggi baffle cut L bch 51 mm 11 Baffle cut B c 20,0787 % 12 Jarak antar baffle L bc 214,376 mm 13 Densitas air r 1000 kg/m 3 14 Laju alir volume sisi shell V s 5 ltr/min 15 Laju alir massa sisi shell 0,08333 kg/s 16 Temperatur masuk shell T s,i 47 17 Temperatur keluar shell T s,o 37,6 18 Laju alir volume sisi tube V t 2,4,6,8, 10 ltr/min 19 Laju alir massa sisi tube 0,133 kg/s 20 Temperatur masuk tube T t,i 31,5 21 Temperatur keluar tube T t,o 37,7 22 Jumlah pass shell N t,o 1 23 Jumlah pass tube N tp 1 24 Clearance dan bundel L bb 25,4 mm 25 Viskositas dinamik air m s 0,00065 N/sm 2 26 Panas spesifik air shell Cp s 4,179 kj/kg.k 27 Konduktivitas air shell k a,s 0,631 W/mK 28 Bilangan Prandtl shell Pr s 4,34 29 Panas spesifik air tube Cp t 4,179 kj/kg.k 30 Konduktivitas air tube k a,t 0,631 W/mK 31 Bilangan Prandtl tube Pr t 5,20 32 Viskositas dinamik air tube m t 0,00077 Ns/m 2 o Analisa Hasil Penelitian Data yang diperoleh kemudian dianalisa dengan menggunakan persamaan-persamaan untuk memperoleh koefisien perpindahan kalor serta nilai kalor yang dipindahkan.ada beberapa persamaan yang bisa digunakan untuk perhitungan tersebut, diantaranya adalah dengan metode Kern (Kern, 2000), namun pada persamaan ini tidak memperhitungkan pengaruh kebocoran dan aliran bypass pada sisi shell. Pada penelitian ini alat penukar kalor yang digunakan memiliki baffle yang dipotong 20%, sehingga aliran yang terbentuk adalah seperti pada gambar 3. Dengan model aliran ini, metode yang lebih sesuai adalah metode Bell Delaware, (Serna and Jimenez, 2005). B.50 ISBN 978-602-99334-1-3

Gambar 3. Aliran fluida ketika melintasi baffle Metode Bell Delaware Persamaan dasar untuk menghitung koefisien perpindahan kalor rata-rata adalah : h o = h ideal ( J c J 1 J b J s J r ) (1) dengan h si adalah koefisien perpindahan kalor untuk aliran silang dengan tube bundle ideal, J c, J 1, J b, J r, dan J s adalah faktor koreksi untuk sekat yang dipotong, kebocoran pada sekat, aliran bypass pada sekat, aliran laminar dan ketidaksamaan jarak sekat pada sisi inlet dan outlet. Koefisien perpindahan kalor untuk aliran silang dengan tube bundle ideal adalah sebagai berikut : dimana, Nu adalah bilangan Nusselt, k konduktifitas termal fluida dalam pada temperatur rata-rata, Dt diameter luar tube, a dan m konsatanta korelasi yang ditentukan berdasar harga bilangan Reynolds dan susunan tube, Re bilangan Reynold dan Pr bilangan Prandtl. Sebelum menghitung faktor-faktor koreksi di atas, sebaiknya harus diketahui besarnya kebocoran serta luas aliran yang ada pada sisi. Kalkulasi ini meliputi : perhitungan besarnya segmen sekat yang dipotong (jendela sekat), luas aliran jendela sekat, diameter ekivalen hidrolis, jumlah efektif baris tube, jumlah sekat, besarnya by-pass, luas bocoran -baffle, luas bocoran tubebaffle, luas area bundel yang melintang. Persamaan-persamaan yang digunakan telah dituliskan oleh Thome, 2004. HASIL DAN PEMBAHASAN Berdasarkan metode kalkulasi seperti diatas, performa alat penukar kalor dapat digambarkan pada grafik-grafik berikut ini. (2) (3) Gambar 4. Temperatur pada sisi inlet shell, sisi outlet shell, sisi inlet tube dan sisi outlet tube Prosiding SNST ke-3 Tahun 2012 Fakultas Teknik Universitas Wahid Hasyim Semarang B.51

B.9. Kajian eksperimental kelayakan dan performa... (Sri U. Handayani, dkk.) Dari gambar 4 diatas terlihat bahwa temperatur air panas pada sisi inlet shell masih kurang stabil. Hal ini dikarenakan heater yang digunakan memiliki sistem on off otomatis setiap 20 menit, sehingga pada awal dan akhir penyalaan heater temperaturnya menjadi tidak stabil. Data pada awal dan akhir penyalaan heater sebenarnya telah dihilangkan namun pengaruhnya masih terlihat pada data yang lain. Ketidakstabilan temperatur inlet menyebabkan ketidakstabilan temperatur pada sisi keluar dan temperature inlet dan outlet tube. Gambar 5. Perbandingan antara nilai kalor yang ditransfer oleh fluida sisi shell dengan nilai perubahan energi kalor fluida sisi tube. Gambar 6. Perbedaan perubahan energi kalor pada fluida sisi shell dan fluida sisi tube Gambar 7. Perbandingan antara nilai NTU terhadap effectiveness heat exchanger. B.52 ISBN 978-602-99334-1-3

Nilai kalor yang dipindahkan dengan variabel laju alir sisi shell 5 lpm dan sisi tube 10 lpm dalam rentang 20 menit proses berjalan berkisar antara 3258 4906 W. Dari kurva pada gambar 5 terlihat bahwa nilai kalor yang dipindahkan memiliki selisih yang cukup besar terhadap nilai kalor pada sisi tube. Hal ini menunjukkan adalnya kerugian kalor yang timbul pada sisi shell akibat pertukaran kalor dengan lingkungan. Untuk menghindari pertukaran kalor dengan lingkungan maka harus dilakukan isolasi pada sekeliling atau perubahan konfigurasi aliran, dimana fluida panas ditempatkan di sisi tube. Nilai kalor perubahan energi yang terjadi memiliki kisaran 1955-2960 W. Nilai perubahan energi cenderung menurun, nilai pada menit ke 8 lebih tinggi dari pada menit ke 18. Hal ini menunjukan bahwa semakin lama waktu heat exchanger beroperasi, nilai kalor yang ditransfer semakin besar. Nilai effectiveness heat exchanger, yaitu dalam rentang 0.4 0.5. Sedangkan menurut grafik 4.9, dengan berpatokan hubungan antara NTU dan Cmixed/Cunmixed diperoleh nilai effectiveness heat exchanger sekitar 0.2. Hal ini menunjukan bahwa heat exchangeri yang didesain memiliki kualitas yang baik karena nilai effectiveness yang dihasilkan lebih tinggi dari nilai effectiveness teoritis. KESIMPULAN 1. Nilai koefisien perpindahan kalor total adalah sebesar 132.618 W/m 2 K. 2. Bila dilihat dari nilai effectiveness, alat penukar kalor ini memiliki kualitas yang baik dan layak untuk dipergunakan sebagai alat peraga pendidikan. 3. Nilai kalor yang dipindahkan memiliki selisih yang cukup besar terhadap nilai kalor pada sisi tube, hal ini menunjukkan adanya kerugian kalor 4. Untuk meningkatkan unjuk kerja alat penukar kalor sebaiknya dilakukan beberapa modifikasi seperti perubahan konfigurasi aliran, pemasangan isolator pada sekeliling dan penambahan sensor untuk mengatur kestabilan temperature heater. DAFTAR PUSTAKA Hewitt,G.F,et all, 1994, Process Heat Transfer. CRC Press.USA Incropera, Fundamental of Heat and Mass Transfer Kern,D.Q, 1950, Process Heat Transfer, Mc Graw Hill Kohaguka, New York Kuppan, 2000, T, Heat Exchanger Design Handbook, Marcel Dekker, Inc. NewYork, Sitompul,T.M, 1993, Alat Penukar Kalor, PT. Raja Grafindo Persada. Jakarta Serna, M and Jimenez, A, 2005, A compact formulation of the Bell-Delaware method for heat exchanger design and optimization, Institution of Chemical Engineers, Trans IChemE Part A May 2005, 83(A5): 539 550 Thome, JR, 2004, Engineering Data Book III, Wolverine Tube, Inc, Lausanne, Swistzerland Tubular Exhange Manufacturers Association, 1978, Standard of the Tubular Exchange Manufacturers Association, 6th ed.,, New York, Wolverine Tube, Inc., 2001, Wolverine Tube Heat Transfer Data Book, Wolverine Tube, Inc, Prosiding SNST ke-3 Tahun 2012 Fakultas Teknik Universitas Wahid Hasyim Semarang B.53