Variasi Lokal Dalam Visibilitas Hilaal: Observasi Hilaal di Indonesia Pada

dokumen-dokumen yang mirip
HASIL OBSERVASI BULAN SABIT JANUARI 2007 JANUARI 2008 RUKYATUL HILAL INDONESIA

Penentuan Parameter Fisis Hilal Sebagai Usulan Kriteria Visibilitas di Wilayah Tropis

PENENTUAN PARAMETER FISIS HILAL SEBAGAI USULAN KRITERIA VISIBILITAS DI WILAYAH TROPIS

KRITERIA VISIBILITAS HILAL RUKYATUL HILAL INDONESIA (RHI) (KONSEP, KRITERIA, DAN IMPLEMENTASI)

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah

1 ZULHIJJAH 1430 HIJRIYYAH DI INDONESIA Dipublikasikan Pada Tanggal 11 November 2009

KONSEP BEST TIME DALAM OBSERVASI HILAL MENURUT MODEL VISIBILITAS KASTNER

BAB I PENDAHULUAN Latar Belakang Masalah

ANALISIS PEMIKIRAN KRITERIA IMKAN AR-RUKYAH. MOHD. ZAMBRI ZAINUDDIN dan APLIKASI di INDONESIA

IMKAN RUKYAT: PARAMETER PENAMPAKAN SABIT HILAL DAN RAGAM KRITERIANYA (MENUJU PENYATUAN KALENDER ISLAM DI INDONESIA)

LAMPIRAN FOTO 1. : Wakil Ketua Majelis Tarjih Tajdid PP. Muhammadiyah

BAB III PEMIKIRAN MUH. MA RUFIN SUDIBYO TENTANG KRITERIA VISIBILITAS HILAL RHI

Abdul Rachman dan Thomas Djamaluddin Peneliti Matahari dan Antariksa Lembaga Penerbangan dan Antariksa Nasional (LAPAN)

PENENTUAN AWAL BULAN QOMARIAH DI INDONESIA BERDASARKAN DATA PENGAMATAN HILAL BMKG

BAB III METODE PENELITIAN

BAB IV ANALISIS SISTEM HISAB AWAL BULAN QAMARIAH DR. ING. KHAFID DALAM PROGRAM MAWAAQIT. A. Analisis terhadap Metode Hisab Awal Bulan Qamariah dalam

Hisab dan Rukyat Setara: Astronomi Menguak Isyarat Lengkap dalam Al-Quran tentang Penentuan Awal Ramadhan, Syawal, dan Dzulhijjah

OBSERVASI HILĀL DI INDONESIA DAN SIGNIFIKANSINYA DALAM PEMBENTUKAN KRITERIA VISIBILITAS HILĀL

BAB IV ANALISIS KONSEP MUH. MA RUFIN SUDIBYO TENTANG KRITERIA VISIBILITAS HILAL RHI. A. Kriteria Visibilitas Hilal RHI Perspetif Astronomi

Abdul Rachman dan Thomas Djamaluddin Peneliti Matahari dan Antariksa Lembaga Penerbangan dan Antariksa Nasional (LAPAN)

Kapan Idul Adha 1436 H?

Tugas Penulisan Karya Tulis Ilmiah (Materi : Batasan dan Ragam KTI)

KAJIAN ALGORITMA MEEUS DALAM MENENTUKAN AWAL BULAN HIJRIYAH MENURUT TIGA KRITERIA HISAB (WUJUDUL HILAL, MABIMS DAN LAPAN)

USULAN KRITERIA VISIBILITAS HILAL DI INDONESIA DENGAN MODEL KASTNER CRITERIA OF HILAL VISIBILITY IN INDONESIA BY USING KASTNER MODEL

PREDIKSI KEMUNGKINAN TERJADI PERBEDAAN PENETAPAN AWAL RAMADHAN 1433 H DI INDONESIA. Oleh : Drs. H. Muhammad, MH. (Ketua PA Klungkung)

Proposal Ringkas Penyatuan Kalender Islam Global

IMPLEMENTASI KALENDER HIJRIYAH GLOBAL TUNGGAL

Awal Ramadan dan Awal Syawal 1433 H

Imkan Rukyat: Parameter Penampakan Sabit Hilal dan Ragam Kriterianya (MENUJU PENYATUAN KALENDER ISLAM DI INDONESIA)

Ketajaman Mata Dalam Kriteria Visibilitas Hilal

Hisab dan rukyat - Wikipedia bahasa Indonesia, ensiklop...

BAB I PENDAHULUAN. menggunakan metode yang berbeda dalam menetapkan awal bulan hijriyah.

BAB II TEORI VISIBILITAS HILAL

ASTRONOMI MEMBERI SOLUSI PENYATUAN UMMAT

BAB III METODE PENELITIAN

INFORMASI HILAL SAAT MATAHARI TERBENAM TANGGAL 2 JUNI 2011 M PENENTU AWAL BULAN RAJAB 1432 H

Prosiding Seminar Nasional Sains Antariksa Homepage: http//

INFORMASI ASTRONOMIS HILAL DAN MATAHARI SAAT MATAHARI TERBENAM TANGGAL 8 DAN 9 SEPTEMBER 2010 PENENTU AWAL BULAN SYAWWAL 1431 H

BAB IV ANALISIS PERBANDINGAN PENENTUAN KETINGGIAN HILAL PERSPEKTIF ALMANAK NAUTIKA DAN EPHEMERIS

INFORMASI HILAL SAAT MATAHARI TERBENAM TANGGAL 23 JANUARI 2012 M PENENTU AWAL BULAN RABI UL AWAL 1433 H

ANALISIS VISIBILITAS HILAL PENENTU AWAL RAMADHAN DAN SYAWAL 1433 H DENGAN MODEL FUNGSI VISIBILITAS KASTNER

HISAB RUKYAT DALAM ASTRONOMI MODERN. T. Djamaluddin 1

Modul Pelatihan HISAB - RUKYAT AWAL BULAN HIJRIYAH

LEBARAN KAPAN PAK?? Oleh : Mutoha Arkanuddin Koord. Rukyatul Hilal Indonesia (RHI)

BAB IV ANALISIS PEMIKIRAN SUSIKNAN AZHARI TENTANG UNIFIKASI KALENDER HIJRIAH DAN PROSPEKNYA MENUJU UNIFIKASI KALENDER HIJRIAH DI INDONESIA

BAB I PENDAHULUAN. dan hari raya Islam (Idul fitri dan Idul adha) memang selalu diperbincangkan oleh

BAB I PENDAHULUAN. hal yang penting dalam ketepatan penentuannya. Hal ini dikarenakan pada

PENGERTIAN DAN PERBANDINGAN MADZHAB TENTANG HISAB RUKYAT DAN MATHLA'

BAB IV KELAYAKAN PANTAI PANCUR ALAS PURWO BANYUWANGI SEBAGAI TEMPAT RUKYAH DALAM PENENTUAN AWAL BULAN KAMARIAH

BAB IV ANALISIS KELAYAKAN BUKIT WONOCOLO BOJONEGORO SEBAGAI TEMPAT RUKYAT DALAM PENENTUAN AWAL BULAN KAMARIAH

INFORMASI HILAL SAAT MATAHARI TERBENAM SABTU, 18 AGUSTUS 2012 M PENENTU AWAL BULAN SYAWWAL 1433 H

INFORMASI HILAL SAAT MATAHARI TERBENAM RABU, 24 SEPTEMBER 2014 M PENENTU AWAL BULAN DZULHIJJAH 1435 H

BAB IV PERBEDAAN DAN PERSAMAAN DALAM PENENTUAN AWAL BULAN SYAWAL 1992, 1993, 1994 M DAN AWAL ZULHIJAH 2000 M ANTARA NAHDLATUL ULAMA DAN PEMERINTAH

Mengkaji Konsep Kalender Islam Internasional Gagasan Mohammad Ilyas

INFORMASI HILAL SAAT MATAHARI TERBENAM RABU, 7 AGUSTUS 2013 M PENENTU AWAL BULAN SYAWWAL 1434 H

INFORMASI HILAL SAAT MATAHARI TERBENAM RABU, 14 NOVEMBER 2012 M PENENTU AWAL BULAN MUHARRAM 1434 H

INFORMASI HILAL SAAT MATAHARI TERBENAM SELASA, 16 OKTOBER 2012 M PENENTU AWAL BULAN DZULHIJJAH 1433 H

INFORMASI HILAL SAAT MATAHARI TERBENAM SENIN, 8 JULI 2013 M PENENTU AWAL BULAN RAMADHAN 1434 H

VISIBILITAS HILAL DALAM MODUS PENGAMATAN BERBANTUAN ALAT OPTIK DENGAN MODEL KASTNER YANG DIMODIFIKASI

INFORMASI HILAL SAAT MATAHARI TERBENAM SABTU, 5 OKTOBER 2013 M PENENTU AWAL BULAN DZULHIJJAH 1434 H

INFORMASI HILAL SAAT MATAHARI TERBENAM KAMIS, 29 MEI 2014 M PENENTU AWAL BULAN SYA BAN 1435 H

INFORMASI HILAL SAAT MATAHARI TERBENAM KAMIS, 19 JULI 2012 M PENENTU AWAL BULAN RAMADHAN 1433 H

INFORMASI HILAL SAAT MATAHARI TERBENAM SELASA, 12 MARET 2013 M PENENTU AWAL BULAN JUMADIL ULA 1434 H

INFORMASI HILAL SAAT MATAHARI TERBENAM SELASA, 13 OKTOBER 2015 M PENENTU AWAL BULAN MUHARRAM 1437 H

Inilah Hisab 1 syawal 1430 dan prediksi 1 Syawwal 1430 H diperbagai negara «MUSLI...

INFORMASI HILAL SAAT MATAHARI TERBENAM JUMAT DAN SABTU, 27 DAN 28 JUNI 2014 M PENENTU AWAL BULAN RAMADLAN 1435 H

INFORMASI HILAL SAAT MATAHARI TERBENAM AHAD, 10 FEBRUARI 2013 M PENENTU AWAL BULAN RABI UTS TSANI 1434 H

INFORMASI HILAL SAAT MATAHARI TERBENAM AHAD, 16 SEPTEMBER 2012 M PENENTU AWAL BULAN DZULQO DAH 1433 H

INFORMASI HILAL SAAT MATAHARI TERBENAM SABTU, 1 MARET 2014 M PENENTU AWAL BULAN JUMADAL ULA 1435 H

INFORMASI HILAL SAAT MATAHARI TERBENAM SELASA, 29 APRIL 2014 M PENENTU AWAL BULAN RAJAB 1435 H

BAB II RUKYAT AL-HILAL AWAL BULAN KAMARIAH. Rukyat al-hilal terdiri atas dua kata bahasa Arab, yakni rukyat dan

Penentuan Awal Bulan Qamariyah & Prediksi Hisab Ramadhan - Syawal 1431 H

INFORMASI HILAL SAAT MATAHARI TERBENAM RABU DAN KAMIS, 10 DAN 11 APRIL 2013 M PENENTU AWAL BULAN JUMADITS TSANIYAH 1434 H

INFORMASI HILAL SAAT MATAHARI TERBENAM JUMAT, 31 JANUARI 2014 M PENENTU AWAL BULAN RABI UL AKHIR 1435 H

INFORMASI HILAL SAAT MATAHARI TERBENAM SENIN, 4 NOVEMBER 2013 M PENENTU AWAL BULAN MUHARRAM 1435 H

INFORMASI HILAL SAAT MATAHARI TERBENAM SELASA, 3 DESEMBER 2013 M PENENTU AWAL BULAN SHAFAR 1435 H

INFORMASI HILAL SAAT MATAHARI TERBENAM SENIN, 22 DESEMBER 2014 M PENENTU AWAL BULAN RABI UL AWAL 1436 H

INFORMASI HILAL SAAT MATAHARI TERBENAM SABTU, 15 AGUSTUS 2015 M PENENTU AWAL BULAN DZULQO DAH 1436 H

INFORMASI HILAL SAAT MATAHARI TERBENAM AHAD, 10 DAN SENIN, 11 JANUARI 2016 M PENENTU AWAL BULAN RABI UL AKHIR 1437 H

DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR LAMPIRAN DAFTAR LAMBANG DAN SINGKATAN

INFORMASI HILAL SAAT MATAHARI TERBENAM AHAD, 19 APRIL 2015 M PENENTU AWAL BULAN RAJAB 1436 H

INFORMASI HILAL SAAT MATAHARI TERBENAM JUMAT, 20 DAN SABTU, 21 MARET 2015 M PENENTU AWAL BULAN JUMADAL AKHIRAH 1436 H

INFORMASI HILAL SAAT MATAHARI TERBENAM KAMIS, 16 DAN JUMAT, 17 JULI 2015 M PENENTU AWAL BULAN SYAWAL 1436 H

INFORMASI HILAL SAAT MATAHARI TERBENAM SELASA, 16 DAN RABU, 17 JUNI 2015 M PENENTU AWAL BULAN RAMADLAN 1436 H

BAB IV ANALISIS PERHITUNGAN ARAH KIBLAT DENGAN MENGGUNAKAN AZIMUT PLANET. A. Algoritma Penentuan Arah Kiblat dengan Metode Azimut Planet

INFORMASI HILAL SAAT MATAHARI TERBENAM RABU DAN KAMIS, 1 DAN 2 JANUARI 2014 M PENENTU AWAL BULAN RABI UL AWAL 1435 H

BAB IV UJI AKURASI AWAL WAKTU SHALAT SHUBUH DENGAN SKY QUALITY METER. 4.1 Hisab Awal Waktu Shalat Shubuh dengan Sky Quality Meter : Analisis

JADWAL IMSAKIYAH RAMADHAN 1433 H (2012 M)

MAKALAH ISLAM. Fenomena Gerhana 2014

Kaedah imaging untuk cerapan Hilal berasaskan Charge Couple Device (CCD) Hj Julaihi Hj Lamat,

INFORMASI ASTRONOMIS HILAL DAN MATAHARI SAAT MATAHARI TERBENAM TANGGAL 8 OKTOBER 2010 PENENTU AWAL BULAN DZULQO DAH 1431 H

INFORMASI HILAL SAAT MATAHARI TERBENAM SENIN, 18 DAN SELASA, 19 MEI 2015 M PENENTU AWAL BULAN SYA BAN 1436 H

Unifikasi Kalender Islam di Indonesia Susiknan Azhari

Daftar Pustaka. Abdul Baqi, Muhammad Fuad, 1981, al-mu jam al-mufahras: Li al-faadi-l-qur anil-karim, Beirut: Daar al-fikr.

Perbedaan Penentuan Awal Bulan Puasa dan Idul Fitri diantara Organisasi Islam di Indonesia: NU dan Muhammadiyah

Muchtar Salimi Fakultas Agama Islam Universitas Muhammadiyah Surakarta

INFORMASI ASTRONOMIS HILAL DAN MATAHARI SAAT MATAHARI TERBENAM 10 AGUSTUS 2010 PENENTU AWAL BULAN RAMADHAN 1431 H

BAB I PENDAHULUAN. dengan kelangsungan kegiatan peribadatan umat islam. Ketepatan dan

PRA RANCANGAN SATELIT MISI TUNGGAL HILALSAT. Untuk Keperluan Verifikasi Sistem Kalender Hijriah dan Penentuan Hari Hari Raya Keagamaan

Transkripsi:

118 Prosiding Pertemuan Ilmiah XXV HFI Jateng & DIY Variasi Lokal Dalam Visibilitas Hilaal: Observasi Hilaal di Indonesia Pada 7 9 Muh. Ma rufin Sudibyo Lembaga Pengkajian dan Pengembangan Ilmu Falak Rukyatul Hilal Indonesia (LPIF RHI) Jl. Gejayan Soropadan CC XII/4 Depok Sleman Yogyakarta 5583 Telp. /Fax: (74) 5563 marufins@yahoo.com Abstrak Telah dilaksanakan observasi hilaal selama Januari 7 Desember 9 guna memperbaiki kriteria MABIMS (Imkan Rukyat) sekaligus menguji kriteria LAPAN. Selain menjadi basis kalender Hijriyyah nasional, kriteria MABIMS pun merupakan alat uji validitas laporan laporan visibilitas hilaal terutama kala Ramadhan, Idul Fitri dan Idul Adha. Namun validitas kriteria MABIMS sendiri dipertanyakan mengingat homogenitasnya, pun kriteria LAPAN akibat keterbatasan datanya. Observasi dilakukan dengan bantuan alat optik (binokuler dan teleskop) maupun tidak dan telah menghasilkan 168 data visibilitas. Analisis variabel selisih terbenamnya Bulan dengan terbenamnya Matahari (Lag) dengan variabel waktu saat hilaal pertama terlihat (Best Time) menghasilkan definisi kuantitatif hilaal sebagai fungsi sederhana dari Lag. Hubungan Best Time dengan Lag memiliki bentuk sangat berbeda dibanding persamaan Yallop, namun pada Lag < 4 menit relatif mirip. Sementara analisis variabel selisih tinggi Bulan dan Matahari (a D ) terhadap variabel selisih azimuthnya (DAz) dengan metode least square menghasilkan persamaan visibilitas dua orde: a D,99DAz 1,49DAz + 1,38 yang kami usulkan dinamakan kriteria RHI. Bentuk kriteria RHI hampir sama dengan kriteria LAPAN meski lebih optimistik, namun berbeda bila dibandingkan dengan kriteria yang sejenis seperti dari Scoch, Maunder dan Fotheringham. Tetapi terhadap kriteria MABIMS sangat berbeda karena tinggi Bulan mar i minimum tidak homogen melainkan bervariasi antara 9,38 3,77 sesuai nilai selisih azimuth Bulan Matahari ( 7,5 ). Analisis komparatif dengan data visibilitas global menunjukkan konsistensi kriteria RHI khususnya bagi daerah tropis. Sehingga perbedaan bentuk kriteria RHI dibandingkan kriteria global dua orde sejenis merupakan variasi lokal visibilitas hilaal, yang hanya berlaku bagi daerah tropis. Kata kunci : Hilaal, kriteria MABIMS, kriteria LAPAN, kriteria RHI I. PENDAHULUAN Bulan sabit termuda (hilaal) merupakan fenomena fisis ekstraterestrial dan atmosferik yang menjadi penentu sistem kalender Hijriyyah yang digunakan Umat Islam [,4,7]. Pergantian antar bulan (lunasi) Hijriyyah yang diwujudkan dalam bentuk penentuan tanggal 1 tiap lunasi bergantung pada eksistensi hilaal. Namun berbeda dengan definisi kualitatifnya yang telah disepakati bersama, yakni sebagai Bulan dalam fase sabit yang paling tipis menyerupai sehelai benang melengkung, secara kuantitatif belum ada definisi hilaal yang bisa diterima seluruh komponen Umat Islam. Implikasinya memunculkan problem klasik: perbedaan dalam awal bulan suci Ramadhan atau dua hari raya (Idul Fitri dan Idul Adha) di seluruh dunia. Pun demikian di Indonesia. Salah satu sumber perbedaan adalah terjadinya pemisahan antara hisab (pemodelan matematis gerak Bulan) dan rukyat (observasi Bulan dengan metode tepercaya) sehingga keduanya seolah saling berseberangan dan berhadapan. Akibatnya eksistensi kriteria visibilitas hilaal, yakni hisab tentang batas minimum prediktif nan valid dan reliabel dalam kondisi ideal untuk terlihatnya hilaal yang disusun berdasarkan hasil hasil rukyat, terabaikan. Hal ini menyebabkan pergeseran paradigma dalam mendefinisikan hilaal, dari semula berparadigma empirik menjadi asumtif [9]. Dalam praktiknya paradigma hilaal asumtif kemudian terbagi dalam kubu wujudul hilaal (yang mendefinisikan hilaal sebagai Bulan pasca konjungsi yang terbenam lebih lambat dari Matahari) dan kubu imkan rukyat (mendefinisikan hilaal mirip dengan wujudul hilaal namun menambahkan ketentuan sudah menampakkan bentuk sabit tertipis yang bisa dilihat mata dalam kondisi ideal). Di Indonesia secara garis besar perbedaan itu mengkristal dalam dua kutub: kutub hisab haqiqi wujudul hilaal (yang dipelopori Muhammadiyah) dan kutub rukyatul hilaal (yang dipelopori Nahdlatul Ulama). Secara kuantitatif kedua ormas tersebut memiliki massa terbesar sehingga perbedaan antar keduanya membawa implikasi pada perbedaan signifikan dalam tubuh Umat Islam Indonesia. Kementerian Agama RI mencoba menjembataninya dengan menggagas kriteria visibilitas tiga orde sebagai merupakan derivasi kriteria MABIMS yang merupakan kesepakatan menteri menteri agama dari Malaysia, Singapura, Brunei Darussalam dan Indonesia, sehingga dikenal pula sebagai kriteria MABIMS (Imkan Rukyat). Kriteria ini memiliki ketentuan: a) umur Bulan 8 jam pasca konjungsi, b) tinggi Bulan mar i (toposentrik) dari horizon (a D 3 ), dan c) jarak Bulan Matahari (elongasi) 3 [1,9]. Kriteria ini menjadi dasar penyusunan kalender Hijriyyah nasional dan taqwim standar Kementerian Agama RI sekaligus alat evaluasi untuk laporan laporan rukyatul hilaal khususnya dalam forum sidang itsbat penentuan 1 Ramadhan, 1 Syawwal maupun 1 Zulhijjah. Kriteria ini dibangun berdasarkan laporan rukyatul hilaal 9 Juni 1984 (penentuan 1 Syawwal 144 H) dimana hilaal dilaporkan teramati dari Jakarta, Pelabuhan Ratu dan Pare Pare. Belakangan kriteria ini didukung pula oleh laporan rukyatul hilaal 16 September 1974 (penentuan 1 Ramadhan 1394 H) dimana hilaal dilaporkan terlihat dari dua lokasi di Jakarta dan satu lokasi di Yogyakarta [1]. Namun demikian validitas kriteria ini sendiri banyak dipertanyakan karena bentuknya sangat berbeda dibandingkan kriteria visibilitas lainnya. Dalam perkembangannya aplikasi kriteria MABIMS (Imkan Rukyat) pun cenderung inkonsisten, sehingga dari tiga

Prosiding Pertemuan Ilmiah XXV HFI Jateng & DIY 119 ketentuannya hanya dua yang sering diterapkan (yakni umur Bulan dan tinggi Bulan mar i). Begitupun bila hanya ada satu dari dua ketentuan yang memenuhi syarat maka kriteria dianggap telah terpenuhi [9]. Akibatnya kriteria ini sulit untuk membedakan apakah hilaal yang dilaporkan pengamat merupakan hilaal yang sebenarnya ataukah obyek terang di langit latar belakang maupun latar depan yang bentuknya menyerupai hilaal. Bangun dasar sebuah kriteria visibilitas senantiasa mengikutsertakan parameter iluminansi Bulan (jumlah cahaya yang jatuh di sebuah permukaan per unit area dari sebuah sumber cahaya) dan parameter kegelapan langit (meredupnya cahaya senja di langit latar belakang sebagai akibat kian turunnya Matahari di bawah horizon pasca terbenam). Rasio antara iluminansi Bulan dengan kegelapan langit dinamakan kontras hilaal [4]. Kriteria visibilitas empiris seperti kriteria Maunder Fotheringham, Schoch dan Bruin mengandung parameter kegelapan langit berupa selisih tinggi Bulan Matahari (a D ) dan parameter iluminansi Bulan berupa selisih azimuth Bulan Matahari (DAz) [1]. Tinggi Bulan mar i, meski adalah derivasi dari a D dalam bentuk a D 1, tidak pernah dikategorikan baik sebagai parameter kegelapan langit maupun iluminansi Bulan, mengingat acuan pengukuran tinggi Bulan mar i adalah horizon sehingga berpotensi bias. Observasi hilaal 6 Desember 1 oleh tim pengamat USM di Teluk Kemang (Malaysia) misalnya, baru berhasil mengidentifikasi hilaal ketika tinggi Bulan mar i 1,67 (atau di bawah angka versi kriteria Imkan Rukyat) namun sejatinya pada saat itu Bulan memiliki a D =8,14. Bilamana tinggi Bulan mar i hendak dijadikan parameter visibilitas hilaal, maka harus ditekankan tinggi Bulan mar i tersebut diukur tepat pada saat Matahari terbenam. Dan merujuk pada kriteria visibilitas empiris di atas, tinggi Bulan mar i saat visibilitas hilaal sangat dipengaruhi oleh nilai DAz. Dalam kriteria Maunder Fotheringham misalnya, tinggi Bulan mar i bervariasi antara 8,5 (DAz=1 ) hingga 1 (DAz= ). Hal senada juga nampak dalam kriteria Scoch dimana tinggi Bulan mar i bervariasi antara 8,3 (DAz=1 ) hingga 9,4 (DAz= ). Pendekatan fisis F. Bruin yang kemudian menjadi dasar bagi kriteria kiteria visibilitas fisis modern (seperti kriteria Schaefer, Yallop dan Odeh) pun menyajikan hasil yang mirip dimana tinggi Bulan mar i bervariasi antara 7,5 (DAz=1 ) hingga 9,1 (DAz= ) [1]. M. Ilyas memperlihatkan nilai a D minimal 4 namun hanya terjadi bila DAz besar [1,6]. Nampak bahwa kriteria kriteria itu menyaratkan perlunya DAz dipertimbangkan, bukannya dianggap homogen dan diabaikan seperti dalam kriteria MABIMS. Guna memperbaikinya Djamaluddin telah mengusulkan adanya kriteria LAPAN sebagai kriteria empiris hasil analisis data laporan rukyatul hilaal Kementerian Agama RI periode 196 1997 tanpa membedakan apakah visibilitas berdasarkan alat bantu optik (teleskop atau binokuler) maupun tidak. Hasilnya, tinggi Bulan mar i bervariasi antara,1 (DAz=6,5 ) hingga 8,1 (DAz= ) saat visibilitas hilaal. Seperti halnya MABIMS (Imkan Rukyat), kriteria LAPAN pun terdiri dari 3 ketentuan: a). umur Bulan 8 jam pasca konjungsi, b). elongasi Bulan Matahari 5,6 dan c). Tinggi Bulan Matahari mengikuti selisih azimuthnya (DAz), di mana untuk DAz 6 maka a D > 3 dan untuk DAz < 6 maka a D,14DAz 1,83DAz + 9,11. [1] Kriteria ini didasarkan pada data yang terbatas (11 data, sebagai hasil reduksi dari 38 data) namun 3 data diantaranya diragukan karena memiliki nilai elongasi Bulan Matahari (a L ) kurang dari batas Danjon. Djamaluddin berpendapat batas Danjon disebabkan sensitivitas mata manusia sehingga visibilitas hilaal pada saat a L < 7 (yakni nilai batas yang diusulkan Danjon) adalah memungkinkan, apalagi McNally telah menyarankan nilai batas Danjon seyogyanya lebih rendah yakni 5, sehingga ketiga data itu masih memenuhi syarat [3,5,8]. Dalam kondisi tersebut hilaal dianggap bisa terlihat sebagai titik cahaya mirip bintang (bukan lengkungan cahaya) sehingga mata manusia yang paling sensitif berkemungkinan melihatnya. Argumen ini dipatahkan oleh observasi Jim Stamm (13 Oktober 4), yang hanya bisa mengidentifikasi hilaal (pada a L =6,4 ) yang sangat tipis dengan teleskop pada lokasi dengan elevasi cukup tinggi (+.1 m dpl), sementara observasi serupa dengan mata telanjang dan binokuler gagal mengidentifikasinya. Dengan demikian batas Danjon termutakhir saat ini tidak lebih kecil dari 6,4 [8]. Observasi Stamm sekaligus menunjukkan adanya kebutuhan alat bantu optik (teleskop) dan lokasi berelevasi tinggi, hal mendasar yang tidak dijumpai dalam rukyatul hilaal yang menghasilkan ketiga data meragukan tersebut. Sebagai upaya memperbaiki kriteria MABIMS (Imkan Rukyat) dan sekaligus menguji kembali validitas kriteria LAPAN maka diselenggarakanlah kampanye observasi hilaal dengan tujuan: 1. Merekapitulasi data observasi hilaal di Indonesia sehingga terbentuk basis data lokal termutakhir.. Menyusun kriteria baru yang bertujuan memperbaiki kriteria MABIMS (Imkan Rukyat) maupun LAPAN. 3. Merumuskan definisi hilaal, khususnya untuk Indonesia. 4. Menguji variasi lokal terhadap visibilitas hilaal global. II. DATA Kampanye observasi dilaksanakan pada periode Zulhijjah 147 Zulhijjah 143 H (Januari 7 Desember 9) tiap menjelang lunasi Hijriyyah oleh relawan di jejaring titik observasi LPIF RHI yang secara geografis merentang dari garis lintang 5 LU (Lhokseumawe, NAD) hingga 3 LS (Perth, Australia) dengan titik observasi terbarat di garis bujur 97 BT (Lhokseumawe, NAD) dan titik tertimur di garis bujur 11,5 BT (Gresik, Jawa Timur). Target observasi berupa hilaal (Bulan sabit termuda dan tertipis yang hanya terlihat pasca terbenamnya Matahari) dan hilaal tua (Bulan sabit tertua dan tertipis yang hanya terlihat menjelang terbitnya Matahari). Observasi dilakukan dengan menggunakan alat bantu optik (binokuler dan teleskop) maupun tidak. Data primer berupa koordinat lokasi, elevasi, kapan Matahari teramati terbenam dan hilaal mulai terlihat (untuk hilaal) serta kapan hilaal tua terakhir kali terlihat dan Matahari terbit (untuk hilaal). Sementara data sekunder adalah kondisi kualitatif langit di atas horizon, orientasi serta citra (foto) hilaal dan hilaal tua. Reduksi data dilaksanakan dengan mempertimbangkan data sekunder. Data primer yang telah tereduksi lantas dibagi ke dalam kelompok data positif (hilaal/hilaal tua

1 Prosiding Pertemuan Ilmiah XXV HFI Jateng & DIY teramati) dan data negatif (hilaal/hilaal tua tidak teramati). Keduanya lalu diolah dengan menggunakan software Moon Calculator v6. secara toposentrik, airless dan terbit/terbenamnya Matahari secara geometrik. Keluaran data berupa a D, DAz, a L dan Lag (interval waktu terbenamnya Matahari dan Bulan). Untuk data positif, perhitungan dilaksanakan saat Best Time (waktu saat hilaal dilaporkan pertama kali terlihat atau hilaal tua dilaporkan terakhir kali terlihat) sementara data negatif dihitung saat Matahari terbit/terbenam. Selama kampanye observasi berhasil terkumpul 174 data visibilitas yang membentuk basis data RHI, terdiri dari 17 data positif dan 67 data negatif. Data kemudian dianalisis menggunakan spreadsheet MS Excell. Sebagai pembanding digunakan data visibilitas dari basis data Yallop dan ICOP yang dibatasi hanya untuk lokasi di daerah tropis (antara garis lintang 3,5 LU hingga 3,5 LS). Data Yallop berjumlah 8 data (9,5 % dari basis data) yang terdiri dari 1 data positif dan 7 data negatf. Sedangkan data ICOP berjumlah 54 data (7,3 % dari basis data) yang terdiri dari 3 data positif dan 31 data negatif. Yallop mendefinisikan variabel Best Time (Tb) sebagai waktu saat hilaal mulai terlihat pasca Matahari terbenam sebagai fungsi dari variabel Lag. Baik Best Time maupun Lag diukur secara relatif sejak waktu terbenamnya Matahari. Plot data Best Time dan Lag disajikan dalam Gambar.1. sementara nilai minimum Best Time dan Lag dinyatakan dalam tabel (1). TABEL 1. BEST TIME DAN LAG. Best Time (menit) 5 7 7 1 15 9 Lag (menit) 4 6 56 7 8 15 Analisis linear menghasilkan persamaan (1): Tb =,4Lag + 16, 941 + (1) T sunset Mengikuti langkah al Biruni yang kemudian diikuti Fotheringham, Maunder dan Schoch di kemudian hari, kriteria visibilitas disusun dengan berdasarkan variabel a D (parameter kegelapan langit latar belakang) dan DAz (parameter iluminansi Bulan) [5]. Plot data a D dan DAz disajikan dalam Gambar.. sementara nilai minimum a D dan DAz dinyatakan dalam tabel (). Best time (menit) 5 45 4 35 3 5 15 1 5-5 -1 y = -.45x + 16.941-15 - 5 3 35 4 45 5 55 6 65 7 75 8 85 9 95 1 15 Lag (menit) Gambar 1. Best Time hilaal sebagai fungsi dari Lag. TABEL. a D DAN Daz. DAz ( ) 1 3 4 5 a D ( ) 1,38 9, 7,8 6,8 6,1 5,41 Analisis polinomial menghasilkan persamaan a D,99DAz 1,49DAz + 1,38. () Berdasarkan persamaan () maka tinggi Bulan mar i pada saat Matahari terbenam yang memenuhi kriteria RHI bervariasi dari yang terkecil 3,77 (terjadi pada DAz=7,5 ) hingga yang terbesar 9,38 (terjadi pada DAz= ). III. PEMBAHASAN A. Definisi Hilaal Pada persamaan (1) untuk Tb= diperoleh Lag=4 menit, sehingga Bulan dengan Lag > 4 menit telah memperlihatkan bentuk sabitnya bahkan sebelum Matahari terbenam. Secara filosofis hilaal hanya akan terlihat setelah terbenamnya Matahari sehingga Lag=4 menit menjadi batas atas bagi hilaal. Sementara untuk Tb=Lag diperoleh Lag=1 menit maka Bulan dengan Lag < 1 menit takkan memperlihatkan bentuk sabitnya meskipun ditunggu sampai tiba waktunya Bulan terbenam. Namun data memperlihatkan nilai Lag minimum yang lebih besar, yakni 4 menit sehingga inilah batas bawah bagi hilaal. Lag ini tidak berbeda jauh bila dibandingkan dengan Lag minimum dalam basis data ICOP yakni 1 menit [8]. Menggunakan hubungan a D = a S cosϕ dengan ϕ=lintang pengamatan (yang mendekati nol bagi wilayah tropis sehingga cosϕ 1) dan a S ¼ Lag maka pada persamaan () untuk DAz= diperoleh Lag 41 menit yang tidak berbeda jauh dengan 4 menit, sedangkan pada a D terkecil (terjadi pada DAz=7,5 dan berkorelasi dengan a D =4,78 ) didapat Lag 19 menit. Dari data diketahui bahwa a D terkecil=5,8 yang menghasilkan Lag 3 menit yang tidak berbeda jauh dengan 4 menit. Dengan demikian hilaal secara kuantitatif dapat didefinisikan sebagai Bulan pasca konjungsi yang memiliki Lag 4 menit dan Lag 4 menit. Bulan dengan Lag < 4 menit diusulkan untuk diistilahkan sendiri sebagai Bulan gelap (dark moon), untuk membedakannya dengan hilaal [9]. Selisih altitude (derajat) 18 16 14 1 1 8 6 4 4 6 8 1 1 14 16 18 Selisih azimuth (derajat) Gambar. a D dan DAz hilaal serta kriteria RHI.

Prosiding Pertemuan Ilmiah XXV HFI Jateng & DIY 11 Persamaan (1) sekilas relatif berbeda bila dibandingkan dengan persamaan Best Time Yallop yang berbentuk Tb = 4 / 9 Lag + T sunset. Namun khusus pada Lag 4 menit terdapat kesesuaian antara persamaan Yallop dengan data, yang diperlihatkan oleh deviasi standar residual sebesar + 4 menit. Sehingga estimasi Best Time pada hilaal bisa berdasarkan pada persamaan (1) maupun persamaan Yallop. B. Kriteria RHI dan Variasi Lokal Persamaan () merupakan kriteria visibilitas hilaal yang diusulkan diberi nama kriteria RHI. Bentuk kriteria ini relatif sama dengan kriteria LAPAN yakni sebagai kurva terbuka ke atas, meskipun pada DAz < 11 kriteria LAPAN lebih pesimistik dibanding kriteria RHI. Namun apabila pada basis data kriteria LAPAN dilakukan eliminasi terhadap 3 data meragukan, maka yang tersisa akan bersesuaian dengan kriteria RHI. Sehingga bisa disimpulkan bila proses reduksi data dipertajam, maka kriteria LAPAN pada hakikatnya adalah kriteria RHI. Bentuk kriteria RHI berbeda dibanding kriteria visibilitas dua orde sejenis seperti kriteria Maunder Fotheringham, Schoch dan Bruin, seperti dalam tabel (3), terlihat perbedaan sangat mendasar dimana ketiga kriteria terakhir berbentuk kurva terbuka ke bawah sehingga tidak memiliki titik balik nyata. Mengingat basis data untuk kriteria RHI maupun LAPAN terbatas hanya dari Indonesia, perbedaan bentuk ini kemungkinan mengindikasikan adanya variasi lokal dalam visibilitas hilaal. TABEL 3. PERBANDINGAN KRITERIA RHI DENGAN MAUNDER FOTHERINGHAM, SCHOCH DAN BRUIN. a DAz D ( ) Maunder ( ) RHI Scoch Bruin Fotheringham 1,38 11, 1,37 1,14 1 9, 1,94 1,35 1,5 7,8 1,86 1,31 1,3 3 6,8 1,76 1,5 1,9 4 6,1 1,64 1,16 1, 5 5,41 1,5 1,6 1,9 6 5,1 1,34 9,94 8,94 7 4,8 1,16 9,8 8,8 8 4,8 9,96 9,64 8,64 9 5, 9,74 9,47 8,47 1 5,38 9,5 9,7 8,7 Bukti adanya variasi lokal dalam visibilitas hilaal nampak ketika kriteria RHI dibandingkan dengan data visibilitas hilaal global seperti dari basis data Yallop dan ICOP yang telah dibatasi hanya yang berasal dari daerah tropis. Keduanya ternyata bersesuaian dengan kriteria RHI seperti diperlihatkan Gambar.3. Sehingga sifat visibilitas hilaal seperti dinyatakan kriteria RHI adalah karakteristik daerah tropis, tidak hanya terbatas di Indonesia. Data visibilitas hilaal termutakhir seperti dihimpun tim pengamat USM dengan teleskop dari lokasi di Teluk Kemang, Negeri Sembilan (Malaysia) pun memperkuatnya. Besarnya selisih nilai a D dalam kriteria RHI dengan nilai a D dalam kriteria Maunder Fotheringham, Schoch dan Bruin khususnya pada DAz > akibat tidak dibedakannya visibilitas hilaal dengan ataupun tanpa alat bantu optik dalam kriteria RHI. Sementara pada tiga kriteria lainnya, data visibilitas hanya didasarkan pada mata tanpa alat bantu optik. Data visibilitas hilaal dari Teluk Kemang (observasi 1 Juli 1 dan 6 Desember 1) serta Semarang (observasi 19 September 9) yang diambil dengan teleskop dan dilengkapi citra fotografis membuktikan nilai a D yang lebih kecil seperti termaktub dalam kriteria RHI adalah mungkin. IV. KESIMPULAN Telah tersusun basis data RHI tentang visibilitas hilaal Indonesia yang terdiri dari 174 data dengan 17 data positif dan 67 data negatif sebagai hasil observasi hilaal secara tak teputus dalam periode Zulhijjah 147 Zulhijjah 143 H (Januari 7 Desember 9). Dari basis data ini tersusun definisi baru hilaal, yakni sebagai Bulan pasca konjungsi yang memiliki Lag 4 menit dan Lag 4 menit. Telah tersusun pula kriteria visibilitas baru yang diusulkan sebagai kriteria RHI, dalam bentuk: a D,99 DAz 1,49 DAz + 1,38, sehingga tinggi Bulan mar i pada saat Matahari terbenam kala visibilitas hilaal bervariasi dari yang terkecil 3,77 (DAz=7,5 ) hingga yang terbesar 9,38 (DAz= ). Perbedaan bentuk kriteria RHI dengan kriteria visibilitas sejenis seperti kriteria Maunder Fotheringham, Schoch dan Bruin memperlihatkan kiteria RHI merupakan variasi lokal dalam visibilitas hilaal yang hanya berlaku di daerah tropis, seperti diperlihatkan oleh basis data Yallop dan ICOP. Dengan kata lain, kriteria RHI hanya bisa digunakan di daerah tropis. Selisih altitude (derajat) 6 4 18 16 14 1 1 8 6 4 4 6 8 1 1 14 16 18 Selisih azimuth (derajat) Yallop ICOP Gambar 3. Perbandingan kriteria RHI dengan data Yallop dan ICOP yang telah direduksi untuk daerah tropis. PUSTAKA [1] T. Djamaluddin. Visibilitas Hilal di Indonesia, Warta LAPAN, vol. no. 4, pp. 137 138, Oktober. [] L.E. Dogget and B. E. Schaefer, Lunar Crescent Visibility, Icarus, vol. 17, pp. 388 43, 1994. [3] L.J. Fatoohi, F.R. Stephenson and S.S. Dargazelli, The Danjon Limit of First Visibility of The Lunar Crescent, The Observatory, vol. 118, pp.65 7, April 1998. [4] R.E. Hoffman, Rational Design of Lunar Visibility Criteria, The Observatory, vol. 15, pp. 156 168, 5. [5] M. Ilyas, Lunar Crescent Visibility Criterion and Islamic Calendar, Q.J.R. astr. Soc, vol. 35, pp. 45 461, 1994. [6] M. Ilyas. Limiting Altitude Separation in The New Moon s Visibility Criterion, Astron. & Astophys, vol. 6, pp. 133, 1988. [7] J.S. Mikhail, A.S. Asaad, S. Nawar and N.Y. Hassanin. Visibility of The New Moon at Two Sites: I. Maryland Situated at Northern geographical Latitude. II. Sacramento Peak Situated at High Altitude Above Sea Level. Earth, Moon & Planets, vol.7, pp. 93 18, 1995. [8] M.S. Odeh, New Criterion for Lunar Crescent Visibility. Exp. astr, vol. 18, pp. 39 64, 4.

1 Prosiding Pertemuan Ilmiah XXV HFI Jateng & DIY [9] M.M. Sudibyo, M. Arkanuddin and A.R.S. Riyadi, Observasi Hilaal 147 143 H (7 9 M) dan Implikasinya untuk Kriteria Visibilitas di Indonesia. Proceed. Sem.Nas Obs. Bosscha, 9. [1] B.D. Yallop. A Method for Predicting the First Sighting of The New Crescent Moon. NAO Technical Note, no.69, 1997. TANYA JAWAB Sismanto (UGM)? Apakah hasil perhitungan atau teori sudah dikonfirmasi dengan ciri-ciri dari syariat?? Seberapa beda tipis bulan sabit bisa dilihat sebagai tanda masuk bulan baru? M. Sudibyo @ Data diambil dari visibilitas hilal yang berdasarkan ciri-ciri syariat. Para pemantau telah mencocokkannya dengan ciri-ciri syariat sebelum dilaporkan ke pusat data, sehingga hasil perhitungan sebagai analisis terhadap data sudah memenuhi ciriciri syariat. @ Bangun dasar kriteria visibilitas mensyaratkan adanya parameter kecerahan langit (peredaman sinar matahari) dan kecerlangan bulan sebagai ukuran ketipisan Bulan. Persamaan ini sudah memenuhi syarat tersebut. Seberapa tipis bulan sabit bisa dilihat? Bergantung kepada azimuthnya. Misalnya pada suatu senja diperoleh Daz =, maka bulan tertipis yang dapat dilihat harus memenuhi a D = 1.3. Anonim? Alasan pengambilan persamaan kuadrat?? Apakah dicoba untuk persamaan lain? M. Sudibyo @ Persamaan yangdisusun hanyalah persamaan batas dan itupun belum diperhitungkan lebar ketidakpastiannya. Satu-satunya persamaan yang cocok hanyalah persamaan kuadrat. @ Sudah. Persamaan linear tidak match, karena terlalu lebar dibanding data; persamaan polinomial sudah, hasilnya chaotic; sedang persamaan kutub tidak biasa digunakan dalam astronomi.