BAB II LANDASAN TEORI

dokumen-dokumen yang mirip
BAB 2 LANDASAN TEORI. Mikrokontroler AT89S51 hanya memerlukan tambahan 3 kapasitor, 1 resistor dan 1

BAB II TINJAUAN PUSTAKA

digunakan untuk pembahasan dan cara kerja dari rangkaian Teori komponen-komponen pendukung.

BAB 2 LANDASAN TEORI. Mikrokontroler, sebagai suatu terobosan teknologi mikrokontroler dan

BAB 2 LANDASAN TEORI

BAB II TINJAUAN PUSTAKA

Please purchase PDFcamp Printer on to remove this watermark. BAB 2 DASAR TEORI

BAB 2 TINJAUAN TEORITIS. Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan microkomputer,

BAB II TINJAUAN PUSTAKA. Mikrokontroler, sebagai suatu terobosan teknologi mikrokontroler dan

Tabel Perbandingan ROM dan RAM pada beberapa seri ATMEL

BAB 2 TINJAUAN PUSTAKA

BAB 2 LANDASAN TEORI. bisa digunakan untuk memindahkan program yang ber-ekstention.hex ke Flash,

ARSITEKTUR MIKROKONTROLER AT89C51/52/55

BAB II TINJAUAN TEORITIS. Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan

BAB 2 LANDASAN TEORI. (hardware) yang dapat mengolah data, menghitung, mengingat dan mengambil

BAB 2 LANDASAN TEORI. Mikrokontroler sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer,

MIKROKONTROLER Arsitektur Mikrokontroler AT89S51

BAB 2 LANDASAN TEORI. dunia elektronika, khususnya dunia mikroelektronika. Penemuan silikon

Blok sistem mikrokontroler MCS-51 adalah sebagai berikut.

BAB 2 TINJAUAN TEORITIS

Mikrokontroler 89C51 Bagian II :

BAB 2 TINJAUAN PUSTAKA

I/O dan Struktur Memori

Pendahuluan Mikrokontroler 8051

BAB 2 LANDASAN TEORI. Component tester adalah instrument elektronika, atau alat penguji komponen yang

BAB II TEORI DASAR. peralatan input / output ( I / O ) pendukung di dalamnya. Suatu sistem mikroprosesor

TKC210 - Teknik Interface dan Peripheral. Eko Didik Widianto

MIKROKONTROLER AT89S52

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI

USER MANUAL TRAINER KEYPAD DAN SEVEN SEGMENT MATA PELAJARAN:ELEKTRONIKA KENDALI

BAB II DASAR TEORI. disebut pesawat Telepon Dual Tone Multi Frequency (DTMF). Pada pesawat telepon

BAB II TEORI DASAR. Pembuatan alat Traffic light dengan menggunakan mikrokontroler 89S51

BAB 2 LANDASAN TEORI

BAB II TEORI DASAR 2.1 Pendahuluan 2.2 Sensor Clamp Putaran Mesin

BAB II TINJAUAN PUSTAKA. 2.1 Alat-alat Ukur Yang Mengintegrasikan Kebesaran-kebesaran Listrik

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI. memenuhi kebutuhan pasar (market need) dan teknologi baru. Sebagai teknologi baru, yaitu teknologi

BAB 2 LANDASAN TEORI

BAB II LANDASAN TEORI. Mikrokontroller, sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer,

Lab Elektronika Industri Mikrokontroler - 1 AT89C1051

BAB II LANDASAN TEORI. Selain dari pada itu dapat juga dijadikan sebagai bahan acuan didalam

BAB II LANDASAN TEORI. Dalam merancang sebuah peralatan yang cerdas, diperlukan suatu

Gambar 1.1. Diagram blok mikrokontroller 8051

BAB 2 LANDASAN TEORI. Mikrokontroler AT89S52 termasuk kedalam keluarga MCS-51 merupakan suatu. dua macam memori yang sifatnya berbeda yaitu:

BAB 2 DASAR TEORI. 2.1 Perangkat Keras Prinsip Kerja Pembuka/Penutup Pintu

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah

4. Port Input/Output Mikrokontroler MCS-51

BAB 2 LANDASAN TEORI

PERTEMUAN MEMORY DAN REGISTER MIKROKONTROLER

Desain Tracker Antena Parabola Berbasis Mikrokontroler

BAB 2 TINJAUAN TEORITIS. Sensor TGS 2610 merupakan sensor yang umum digunakan untuk mendeteksi adanya

BAB II LANDASAN TEORI. Perkembangan robot sangat berkaitan erat dengan adanya kebutuhan

BAB II LANDASAN TEORI

RANCANG BANGUN PENGAMAN MOBIL BERBASIS MIKROKONTROLER AT89S51 DENGAN APLIKASI TELEPON SELULER SEBAGAI INDIKATOR ALARM

Mikroprosesor Z80 Suryanto Sutikno

BAB II DASAR TEORI. open-source, diturunkan dari Wiring platform, dirancang untuk. memudahkan penggunaan elektronik dalam berbagai

BAB II TINJAUAN PUSTAKA

TAKARIR. Akumulator Register yang digunakan untuk menyimpan semua proses aritmatika

PERTEMUAN PERANGKAT KERAS MIKROKONTROLER

BAB 2 LANDASAN TEORI

BAB II LANDASAN TEORI. Programmable Erasable Read Only Memory (PEROM). Perangkat ini dihasilkan

BAB II LANDASAN TEORI

BAB II. LANDASAN TEORI

BAB III PERANCANGAN DAN REALISASI PERANGKAT KERAS DAN PERANGKAT LUNAK SISTEM. Dari diagram sistem dapat diuraikan metode kerja sistem secara global.

BAB II LANDASAN TEORI

Tabel 1. Karakteristik IC TTL dan CMOS

AT89S52 8kByte In-System Programmable Mikrokontroler

USER MANUAL PALANGAN KERETA API OTOMATIS MATA DIKLAT : SISTEM PENGENDALI ELEKTRONIKA

TAKARIR. Akumulator Register yang digunakan untuk menyimpan semua proses aritmatika. Assembler Bahasa pemrograman mikrokontroler MCS-51

BAB 2 LANDASAN TEORI. Dalam bab ini penulis akan membahas tentang komponen-komponen yang

BAB 2 LANDASAN TEORI 2.1 M

KENDALI LENGAN ROBOT MENGGUNAKAN MIKROKONTROLLER AT89S51

BAB III PERANCANGAN DAN PEMBUATAN PERANGKAT KERAS

BAB 3 PERANCANGAN SISTEM. pada sistem pengendali lampu telah dijelaskan pada bab 2. Pada bab ini akan dijelaskan

BAB II TINJAUAN PUSTAKA. adanya kebocoran gas. Sensor ini merupakan suatu semikonduktor oksida-logam,

BAB II LANDASAN TEORI. Mikrokontroler, sebagai suatu terobosan teknologi mikrokontoler dan mikrokomputer,

BAB 2 DASAR TEORI. sistem atau rangkaian terlebih dahulu membuat blok diagramnya. Sensor air sederhana

Laboratorium Sistem Komputer dan Otomasi Departemen Teknik Elektro Otomasi Fakultas Vokasi Institut Teknologi Sepuluh November

BAB II LANDASAN TEORI. berukuran kecil (mikro). Sebelum mikrokontroller ada, terlebih dahulu muncul yang

Sumber Clock, Reset dan Antarmuka RAM

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB II LANDASAN TEORI

PENGGUNAAN PHOTO DIODA DAN INFRA RED PADA PERANCANGAN LIFT UNTUK 3 LANTAI BERBASIS MIKROKONTROLER AT89S51 LAPORAN TUGAS AKHIR

DESIGN INTERFACE PADA AT89S52 8k Byte In-System Programmable 8bit Mikrokontroler

Pertemuan 10 Arsitektur Mikrokontroler 8051

MICROCONTROLER AVR AT MEGA 8535

BAB II LANDASAN TEORI

BAB III PERANCANGAN STAND ALONE RFID READER. Dalam penelitian ini, perancangan sistem meliputi :

BAB II TINJAUAN PUSTAKA. Gambar 2.1. Simbol LED [8]

BAB 2. cara merancang alat yang akan di buat sesuai dasar teori. Sebelum merancang suatu

BAB II TEORI Telepon Dual Tone Multiple Frequency (DTMF) sebagai DTMF (Dual Tone Multiple Frequency).

BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI PEMANCAR GELOMBANG INFRAMERAH. 2.1 Diagram Blok Pemancar Gelombang Inframerah

BAB III PERANCANGAN SISTEM. Secara garis besar rangkaian pengendali peralatan elektronik dengan. blok rangkaian tampak seperti gambar berikut :

BAB 2 TINJAUAN TEORITIS

Sistem Mikroprosessor

Transkripsi:

A II LANDASAN TEORI 2.1 Mikrokontroler AT89S51 Mikrokontroler, sebagai suatu terobosan teknologi mikrokontroler dan mikrokomputer, hadir memenuhi kebutuhan pasar (market need) dan teknologi baru. Sebagai teknologi baru, yaitu teknologi semikonduktor dengan kandungan transistor yang lebih banyak namun hanya membutuhkan ruang kecil serta dapat diproduksi secara massal (dalam jumlah banyak) sehingga harga menjadi lebih murah (dibandingkan mikroprosesor). Sebagai kebetuhan pasar, mikrokontroler hadir untuk memenuhi selera industri dan para konsumen akan kebutuhan dan keinginan alat-alat bantu dan mainan yang lebih canggih. Ilustrasi yang mungkin bisa memberikan gambaran yang jelas dalam penggunaan mikrokontroler adalah aplikasi mesin tiket dalam arena permainan yang saat ini terkenal di Indonesia. Jika kita sudah selesai bermain, maka akan diberikan suatu nilai, nilai inilah yang menentukan berapa jumlah tiket yang bisa diperoleh dan jika dikumpulkan dapat ditukar dengan berbagai macam hadiah. Sistem tiket ini ditangani dengan mikrokontroler, karena tidak mungkin menggunakan komputer PC yang harus dipasang di samping (atau di belakang) mesin permainan yang bersangkutan. Selain sistem tiket, kita juga dapat menjumpai aplikasi mikrokontroler dalam bidang pengukuran jarak jauh atau yang dikenal dengan sistem telemetri. Misalnya pengukuran disuatu tempat yang membahayakan manusia, maka akan lebih nyaman jika dipasang suatu sistem pengukuran yang bisa mengirimkan data lewat pemancar dan diterima oleh stasiun pengamatan dari jarak yang cukup aman dari sumbernya. Sistem pengukuran jarak jauh ini jelas membutuhkan suatu sistem akuisisi data sekaligus sistem pengiriman data secara serial (melalui pemancar), yang semuanya itu bisa diperoleh dari mikrokontroler yang digunakan.

Tidak seperti sistem komputer, yang mampu menangani berbagai macam program aplikasi (misalnya pengolah kata, pengolah angka dan lain sebagainya), mikrokontroler hanya bisa digunakan untuk satu aplikasi tertentu saja. Perbedaan lainnya terletak pada perbandingan RAM dan ROM-nya. Pada sistem komputer RAM dan ROM-nya besar. Sedangkan pada mikrokontroler ROM dan RAM-nya terbatas. Pada mikrokontroler AT89S51 ROM atau flash PEROM berukuran 2 kilo byte, sedangkan RAM-nya berukuran 128 byte. 2.1.1. Kontruksi AT89S51 Mikrokontrol AT89S51 hanya memerlukan tambahan 3 kapasitor, 1 resistor dan 1 kristal serta catu daya 5 Volt. Kapasitor 10 mikro-farad dan resistor 10 Kilo Ohm dipakai untuk membentuk rangkaian reset. Dengan adanya rangkaian reset ini AT89S51 otomatis direset begitu rangkaian menerima catu daya. Kristal dengan frekuensi maksimum 24 MHz dan kapasitor 30 piko-farad dipakai untuk melengkapi rangkaian oscilator pembentuk clock yang menentukan kecepatan kerja mikrokontroler. Memori merupakan bagian yang sangat penting pada mikrokontroler. Mikrokontroler memiliki dua macam memori yang sifatnya berbeda. Read Only Memory (ROM) yang isinya tidak berubah meskipun IC kehilangan catu daya. Sesuai dangan keperluannya, dalam susunan MCS-51 memori penyimpanan progam ini dinamakan sebagai memori progam. Random Access Memori (RAM) isinya akan sirna begitu IC kehilangan catu daya, dipakai untuk menyimpan data pada saat progam bekerja. RAM yang dipakai untuk menyimpan data ini disebut sebagai memori data.

Ada berbagai jenis ROM. Untuk mikrokontroler dengan progam yang sudah baku dan diproduksi secara masal, progam diisikan ke dalam ROM pada saat IC mikrokontroler dicetak di pabrik IC. Untuk keperluan tertentu mikrokontroler mengunakan ROM yang dapat diisi ulang atau Programble-Eraseable ROM yang disingkat menjadi PEROM atau PROM. Dulu banyak dipakai UV-EPROM (Ultra Violet Eraseable Progamble ROM) yang kemudian dinilai mahal dan ditinggalkan setelah ada flash PEROM yang harganya jauh lebih murah. Jenis memori yang dipakai untuk Memori Program AT89S51 adalah Flash PEROM, program untuk mengendalikan mikrokontroler diisikan ke memori itu lewat bantuan alat yang dinamakan sebagai AT89S51 Flash PEROM Programmer. Memori Data yang disediakan dalam chip AT89S51 sebesar 128 byte, meskipun hanya kecil saja tapi untuk banyak keperluan memori kapasitas itu sudah cukup. Sarana Input/Ouput yang disediakan cukup banyak dan bervariasi. AT89S51 mempunyai 32 jalur Input/Ouput. Jalur Input/Ouput paralel dikenal sebagai Port 1 (P1.0..P1.7) dan Port 3 (P3.0..P3.5 dan P3.7). AT89S51 dilengkapi UART (Universal Asyncronous Receiver/Transmiter) yang biasa dipakai untuk komunikasi data secara seri. Jalur untuk komunikasi data seri (RXD dan TXD) diletakan berhimpitan dengan P3.0 dan P3.1 di kaki nomor 10 dan 11, sehingga kalau sarana input/ouput yang bekerja menurut fungsi waktu. Clock penggerak untaian pencacah ini bisa berasal dari oscillator kristal atau clock yang diumpan dari luar lewat T0 dan T1. T0 dan T1 berhimpitan dengan P3.4 dan P3.5, sehingga P3.4 dan P3.5 tidak bisa dipakai untuk jalur input/ouput parelel kalau T0 dan T1 dipakai. AT89S51 mempunyai enam sumber pembangkit interupsi, dua diantaranya adalah sinyal interupsi yang diumpankan ke kaki INT0 dan INT1. Kedua kaki ini berhimpitan dengan P3.2 dan P3.3 sehingga tidak bisa dipakai sebagai jalur input/output parelel kalau INT0 dan INT1 dipakai untuk menerima sinyal interupsi.

Port1 dan 2, UART, Timer 0,Timer 1 dan sarana lainnya merupakan register yang secara fisik merupakan RAM khusus, yang ditempatkan di Special Functoin Regeister (SFR). 2.1.2 SFR (Register Fungsi Khusus ) Pada Keluarga 51 Sekumpulan SFR atau Special Function Register yang terdapat pada Mikrokontroler Atmel Keluarga 51 ditunjukan pada tabel 2.1, pada bagian sisi kiri dan kanan dituliskan alamat-alamatnya dalam format heksadesimal. Tidak semua alamat pada SFR digunakan, alamat-alamat yang tidak digunakan diimplementasikan pada chip. Jika dilakukan usaha pembacaan pada alamat-alamat yang tidak terpakai tersebut akan menghasilkan data acak dan penulisannya tidak menimbulkan efek sama sekali. Pengguna perangkat lunak sebaiknya jangan menuliskan 1 pada lokasi-lokasi tak bertuan tersebut, karena dapat digunakan untuk mikrokontroler generasi selanjutnya. Dengan demikian, nilai-nilai reset atau non-aktif dari bit-bit baru ini akan selalu 0 dan nilai aktifnya adalah 1. erikut akan dijelaskan secara singkat SFR-SFR beserta fungsinya: Tabel 2.1. Peta Register Fungsi Khusus SFR (Special Function Register)

Akumulator ACC atau akumulator yang menempati lokasi E 0h digunakan sebagai register untuk penyimpanan data sementara, dalam program, instruksi mengacunya sebagai register A (bukan ACC). Register Register (lokasi D 0h) digunakan selama operasi perkalian dan pembagian, untuk instruksi lain dapat diperlakukan sebagai register scratch pad ( papan coret-coret ) lainnya. Program Status Word (PSW) Register PSW (lokasi D 0h) mengandung informasi status program. Stack Pointer Register SP atau Stack Pointer (lokasi 8 1h) merupakan register dengan panjang 8-bit, digunakan dalam proses simpan menggunakan instruksi PUSH dan CALL. Walau Stack bisa menempati lokasi dimana saja dalam RAM, register SP akan selalu diinisialisasi ke 07h setelah adanya reset, hal ini menyebabkan stack berawal di lokasi 08h. Data Pointer Register Data Pointer atau DPTR mengandung DPTR untuk byte tinggi (DPH) dan byte rendah (DPL) yang masing-masing berada dilokasi 83h dan 82h, bersama-sama membentuk register yang mampu menyimpan alamat 16-bit. Dapat dimanipulasi sebagai register 16-bit atau ditulis dari/ke port, untuk masing-masing Port 0,Port 1, Port2 dan Port 3. Serial Data uffer SUF atau Serial Data uffer (lokasi 99h) sebenarnya terdiri dari dua register yang terpisah, yaitu register penyangga pengirim (transmit buffer) dan penyangga penerima (receive buffer). Pada saat data disalin ke SUF, maka data sesungguhnya dikirim ke

penyangga pengirim dan sekaligus mengawali transmisi data serial. Sedangkan pada saat data disalin dari SUF, maka sebenarnya data tersebut berasal dari penyangga penerima. Time Register Pasangan register (TH0, TL0) dilokasi 8Ch dan 8Ah,(TH1, TL1) dilokasi 8Dh dan 8h serta (TH2, TL2) dilokasi CDh dan CCH merupakan register-register pencacah 16-bit untuk masing-masing Timer 0, Timer 1 dan Timer 2. Capture Register Pasangan register (RCAP2H, RCAP21) yang menempati lokasi Ch dan CAh merupakan register capture untuk mode Timer 2 capture. Pada mode ini, sebagai tanggapan terjadinya suatu transisi sinyal di kaki (pin) T2EX (pada AT89C52/55), TH2 dan TL2 disalin masing-masing ke RCAP2H dan RCAP2L. Timer 2 juga memiliki mode isi-ulang-otomatis 16-bit dan RCAP2H serta RCAP2L digunakan untuk menyimpan nilai isi-ulang tersebut. Kontrol Register Register-register IP, IE, TMOD, TCON, T2CON, T2MOD, SCON dan PCON berisi bitbit kontrol dan status untuk sistem interupsi, pencacah/pewaktu dan port serial. erikut ini merupakan spesifikasi dari IC AT89S51 : Kompatible dengan produk MCS-51 Empat K byte In-Sistem Reprogammable Flash Memory Daya tahan 1000 kali baca/tulis Tegangan kerja 4,0 volt sampai 5,5 volt Fully Static Operation : 0 Hz sampai 33 MHz Tiga level kunci memori progam 128 x 8 bit RAM internal 32 jalur input/output (I/O) Dua 16 bit Timer/Counter

Enam sumber interupt Jalur serial dengan UART 2.1.3. Gambar IC Mikrokontroler AT89S51 Gambar IC mikrokontroler AT89S51 ditunjukkan pada gambar 2.1 di bawah ini: Gambar 2.1 IC Mikrokontroler AT89S51 Deskripsi pin-pin pada mikrokontroler AT89S51 : V CC (Pin 40) Suplai tegangan GND (Pin 20) Ground Port 0 (Pin 39 pin 32) Port 0 dapat berfungsi sebagai I/O biasa, low order multiplex address/data ataupun penerima kode byte pada saat flash progamming Pada fungsi sebagai I/O biasa port ini

dapat memberikan output sink ke delapan buah TTL input atau dapat diubah sebagai input dengan memberikan logika 1 pada port tersebut. Pada fungsi sebagai low order multiplex address/data, port ini akan mempunyai internal pull up. Pada saat flash progamming diperlukan eksternal pull up, terutama pada saat verifikasi program. Port 2 (Pin 21 pin 28) Port 2 berfungsi sebagai I/O biasa atau high order address, pada saat mengakse memori secara 16 bit. Pada saat mengakses memori 8 bit, port ini akan mengeluarkan isi dari P2 special function register. Port ini mempunyai internal pull up dan berfungsi sebagai input dengan memberikan logika 1. Sebagai output, port ini dapat memberikan output sink ke keempat buah input TTL. Port 3 (Pin 10 pin 17) Port 3 merupakan 8 bit port I/O dua arah dengan internal pull up. Port 3 juga mempunyai fungsi pin masing-masing, yaitu sebagai berikut : Tabel 2.2 Fungsi Pin pada Port 3 Nama pin Fungsi P3.0 (pin 10) RXD (Port input serial) P3.1 (pin 11) TXD (Port output serial) P3.2 (pin 12) INT0 (interrupt 0 eksternal) P3.3 (pin 13) INT1 (interrupt 1 eksternal) P3.4 (pin 14) T0 (input eksternal timer 0) P3.5 (pin 15) T1 (input eksternal timer 1) P3.6 (pin 16) WR (menulis untuk eksternal data memori) P3.7 (pin 17) RD (untuk membaca eksternal data memori) RST (pin 9) Reset akan aktif dengan memberikan input high selama 2 cycle.

ALE/PROG (pin 30) Address latch Enable adalah pulsa output untuk me-latch byte bawah dari alamat selama mengakses memori eksternal. Selain itu, sebagai pulsa input progam (PROG) selama memprogram Flash. PSEN (pin 29) Program store enable digunakan untuk mengakses memori progam eksternal. EA (pin 31) Pada kondisi low, pin ini akan berfungsi sebagai EA yaitu mikrokontroler akan menjalankan progam yang ada pada memori eksternal setelah sistem direset. Jika kondisi high, pin ini akan berfungsi untuk menjalankan progam yang ada pada memori internal. Pada saat flash programming, pin ini akan mendapat tegangan 12 Volt. X TAL 1 (pin 19) Input untuk clock internal. X TAL 2 (pin 18) Output dari osilator. 2.2 Komponen-Komponen Pendukung 2.2.1 Resistor Resistor komponen pasif elektronika yang berfungsi untuk membatasi arus listrik yang mengalir. erdasarkan kelasnya resistor dibagi menjadi 2 yaitu : Fixed Resistor dan Variable R esistor Dan umumnya terbuat dari carbon film atau metal film, tetapi tidak menutup kemungkinan untuk dibuat dari material yang lain.

Pada dasarnya semua bahan memiliki sifat resistif namun beberapa bahan tembaga perak emas dan bahan metal umumnya memiliki resistansi yang sangat kecil. ahan bahan tersebut menghantar arus listrik dengan baik, sehingga dinamakan konduktor. Kebalikan dari bahan yang konduktif, bahan material seperti karet, gelas, karbon memiliki resistansi yang lebih besar menahan aliran elektron dan disebut sebagai insulator. Gambar 2.2. Resistor Karbon 2.2.2 Kapasitor Kapasitor adalah komponen elektronika yang dapat menyimpan muatan listrik. Struktur sebuah kapasitor terbuat dari 2 buah plat metal yang dipisahkan oleh suatu bahan dielektrik. ahan-bahan dielektrik yang umum dikenal misalnya udara vakum, keramik, gelas dan lain-lain. Jika kedua ujung plat metal diberi tegangan listrik, maka muatanmuatan positif akan mengumpul pada salah satu kaki elektroda metalnya dan pada saat yang sama muatan-muatan negatif terkumpul pada ujung metal yang satu lagi. Muatan positif tidak dapat mengalir menuju ujung kutup negatif dan sebaliknya muatan negatif tidak bisa menuju ke ujung kutup positif karena terpisah oleh bahan elektrik yang nonkonduktif. Muatan elektrik ini tersimpan selama tidak ada konduktif pada ujung-ujung

kakinya. Di alam bebas phenomena kapasitor terjadi pada saat terkumpulnya muatanmuatan positif dan negatif diawan. dielektrik Elektroda Elektroda Gambar 2.3 Skema Kapasitor. Kapasitor merupakan komponen pasif elektronika yang sering dipakai didalam merancang suatu sistem yang berfungsi untuk mengeblok arus DC, Filter, dan penyimpan energi listrik. Didalamnya 2 buah pelat elektroda yang saling berhadapan dan dipisahkan oleh sebuah insulator. Sedangkan bahan yang digunakan sebagai insulator dinamakan dielektrik. Ketika kapasitor diberikan tegangan DC maka energi listrik disimpan pada tiap elektrodanya. Selama kapasitor melakukan pengisian, arus mengalir. Aliran arus tersebut akan berhenti bila kapasitor telah penuh. Yang membedakan tiap-tiap kapasitor adalah dielektriknya. erikut ini adalah jenis jenis kapasitor yang dipergunakan dalam perancangan ini. Gambar 2.4 Electrolytic Capacitor (ELCO)

Gambar 2.5 Ceramic Capacitor 2.2.3 Transistor Transistor adalah komponen elektronika yang mempunyai tiga buah terminal. Terminal itu disebut emitor, basis, dan kolektor. Transistor seakan-akan dibentuk dari penggabungan dua buah dioda. Dioda satu dengan yang lain saling digabungkan dengan cara menyambungkan salah satu sisi dioda yang senama. Dengan cara penggabungan seperti dapat diperoleh dua buah dioda sehingga menghasilkan transistor NPN. ahan mentah yang digunakan untuk menghasilkan bahan N dan bahan P adalah silikon dan germanium. Oleh karena itu, dikatakan : 1. Transistor germanium PNP. 2. Transistor silikon NPN. 3. Transistor silikon PNP. 4. Transistor germanium NPN.. C C E E NPN PNP Gambar 2.6 Simbol Tipe Transistor

Keterangan : C = kolektor E = emiter = basis Didalam pemakaiannya transistor dipakai sebagai komponen saklar (switching) dengan memanfaatkan daerah penjenuhan (saturasi) dan daerah penyumbatan (cut off) yang ada pada karakteristik transistor. Pada daerah penjenuhan nilai resistansi persambungan kolektor emiter secara ideal sama dengan nol atau kolektor dan emiter terhubung langsung (short). Keadaan ini menyebabkan tegangan kolektor emiter (V CE ) = 0 Volt pada keadaan ideal, tetapi pada kenyataannya V CE bernilai 0 sampai 0,3 Volt. Dengan menganalogikan transistor sebagai saklar, transistor tersebut dalam keadaan on seperti pada gambar 2.13. Vcc Vcc I C R V I R V E V CE Saklar On Gambar 2.7. Transistor sebagai Saklar ON Saturasi pada transistor terjadi apabila arus pada kolektor menjadi maksimum dan untuk mencari besar arus basis agar transistor saturi adalah : Vcc I max =...(2.1) Rc

Vcc hfe.i =..(2.2) Rc I = Vcc hfe.rc.(2.3) Hubungan antara tegangan basis (V ) dan arus basis (I ) adalah : I V V = R E.(2.4) V = I. R + V E..(2.5) Vcc.R hfe.rc V = + V E (2.5) Jika tegangan V telah mencapai Vcc.R hfe.rc V = + V E, maka transistor akan saturasi, dengan Ic mencapai maksimum. Keadaan ini menyebabkan tegangan (V C ) sama dengan tegangan sumber (Vcc). Tetapi pada kenyataannya Vcc pada saat ini kurang dari Vcc karena terdapat arus bocor dari kolektor ke emiter. Dengan menganalogikan transistor sebagai saklar, transistor tersebut dalam keadaan off seperti gambar dibawah ini. Vcc Vcc I C R R Saklar Off V CE V I V E Gambar 2.8 Transistor Sebagai Saklar OFF

Keadaan penyumbatan terjadi apabila besar tegangan habis (V ) sama dengan tegangan kerja transistor (V E ) sehingga arus basis (I ) = 0 maka : I = IC (2.6) hfe I C = I. hfe. (2.7) I C = 0. hfe.. (2.8) I C = 0..(2.9) Hal ini menyebabkan V CE sama dengan Vcc dapat dibuktikan dengan rumus : Vcc V CE V CE = Vc + V CE.. (2.10) = Vcc (Ic. Rc).. (2.11) = Vcc.. (2.12) 2.3 Motor Langkah ( Motor Stepper ) Motor langkah ( Motor Stepper ) banyak digunakan dalam berbagai aplikasi, dipergunakan apabila dikehendaki jumlah putaran yang tepat atau di perlukan sebagian dari putaran motor. Suatu contoh dapat di jumpai pada disk drive, untuk proses pembacaan dan/atau penulisan data ke/dari cakram(disk), head baca-tulis ditempatkan pada tempat yang tepat di atas jalur atau track pada cakram, untuk head tersebut di hubungkan dengan sebuah motor langkah. Aplikasi penggunaan motor langkah dapat juga di jumpai dalam bidang industri atau untuk jenis motor langkah kecil dapat di gunakan dalam perancangan suatu alat mekatronik atau robot. Motor langkah berukuran besar digunakan, misalnya, dalam proses pengeboran logam yang menghendaki ketepatan posisi pengeboran, dalam hal ini

di lakukan oleh sebuah robot yang memerlukan ketepatan posisi dalam gerakan lengannya dan lain-lain. Pada gambar di bawah ditunjukkan dasar susunan sebuah motor langkah (stepper). A U C D A S Gambar 2.9 Diagram Motor Stepper Magnet permanen N-S berputar kearah medan magnet yang aktif. Apabila kumparan stator dialiri arus sedemikian rupa, maka akan timbul medan magnet dan rotor akan berputar mengikuti medan magnet tersebut.setiap pengalihan arus ke kumparan berikutnya menyebabkan medan magnet berputar berputar menurut suatu sudut tertentu, biasanya informasi besar sudut putar tertulis pada badan motor langkah yang bersangkutan. Jumlah keseluruhan pengalihan menentukan sudut perputaran motor.jika pengalihan arus di tentukan, maka rotor akan berhenti pada posisi terakhir. Jika kecepatan pengalihan tidak terlalu tinggi, maka slip akan dapat dihindari. Sehingga tidak di perlukan umpan balik (feedback) pada pengendalian motor langkah.

Motor langkah yang akan di gunakan memiliki 4 fase (pole atau kutub), pengiriman pulsa dari mikrokontroler ke rangkaian motor langkah dilakukan secara bergantian, masing-masing 4 data (sesuai dengan jumlah phase-nya), sebagian di tunjukkan pada gambar di bawah ini. A C D Gambar 2.10 Pemberian Data / Pulsa pada Motor Stepper Pada saat yang sama,untuk tiap motor langkah, tidak boleh ada 2 (dua) masukan atau lebih yang mengandung pulsa sama dengan 1 (high), atau dengan kata lain, pada suatu saat hanya sebuah masukan yang bernilai 1 (satu) sedangkan lainnya bernilai 0 (nol). 2.4 Motor DC Pada peristiwa mesin listrik dapat berlaku sebagai generator, perbedaannya hanya terletak dalam konversi dayanya. Generator adalah suatu mesin listrik yang mengubah daya masuk mekanik menjadi daya keluar listrik, sedangkan sebaliknya motor mengubah daya masuk listrik menjadi daya keluar mekanik. Tujuan motor adalah untuk menghasilkan gaya yang menggerakkan (torsi). Motor DC yang digunakan disini adalah motor DC magnet permanen yaitu motor yang fluks magnet utamanya dihasilkan oleh

magnet permanen. erikut adalah bentuk fisik dari motor DC magnet permanen dan prinsip motor serta operasi motor magnet permanen dapat kita lihat pada gambar berikut : Gambar 2.11 entuk Fisik dari Motor DC Magnet Permanen Gambar 2.12 Prinsip Motor

Gambar 2.13 Hukum Tangan Kanan Motor Gambar 2.14 Operasi Motor DC Magnet Permanen

Pada gambar 2.7 (a), jangkar berputar searah dengan putaran jarum jam. Apabila kutub jangkar segaris dengan kutub medan, sikat sikat ada pada celah di komutator dan tidak ada arus mengalir pada jangkar. Jadi, gaya tarik atau gaya tolak magnet berhenti, seperti pada gambar 2.7 (b). Kemudian kelembaman membawa jangkar melewati titik netral. Komutator membalik arus jangkar ketika kutub yang tidak sama dari jangkar dan medan berhadapan satu sama lain, sehingga membalik polaritas medan jangkar. Kutub kutub yang sama dari jangkar dan medan kemudian saling menolak, menyebabkan jangkar berputar terus menerus seperti pada gambar 2.7 ( c ). 2.4 Kristal Kristal adalah komponen yang dibuat dari bahan alam yang menunjukkan efek piezoelektrik, sehingga sering disebut Kristal Piezoelektrik. ahan utama kristal yang dapat menimbulkan efek Piezoelektrik adalah garam rachelle, tourmaline dan qualte. Dalam sebuah kristal Piezoelektrik, biasanya qualeze, mempunyai elektroda-elektroda yang dilapiskan pada permukaan yang berhadapan, dan apabila diberikan suatu potensial pada elektroda-elektroda nya maka gaya akan bekerja pada muatan-muatan yang terikat pada kristal. Apabila komponen ini dipasang dengan benar, maka dalam kristal akan terjadi deformasi-deformasi sehingga terbentuk suatu sistem elektromekanik yang akan bergetar bila dibandingkan dengan benar. Frekuensi, resonansi dan nilai Q-nya tergantung pada dimensi kristal, orientasi permukaan pada sumbu-sumbu kristal dan bagaimana komponen tersebut dipasang (Mountet). Jangkauan frekuensinya dari

beberapa KHz sampai beberapa MHz. dan jangkauan nilai Q (resonansi pararel)-nya yang beberapa ribu sampai beberapa ratus ribu data diperoleh secara komersial. Dengan nilai Q yang sangat tinggi dan dari kenyataan bahwa karakteristik quartz sangat stabil terhadap waktu dan temperature, maka kristal akan menghasilkan stabilitas frekuensi pada osilator-osilator yang dibangun dengan menggunakan kristal. Pada hakikatnya frekuansi dari suatu osilator kristal hanya ditentukan oleh kristalnya dan tidak oleh komponen lainnya. Gambar 2.1516 Lambang Kristal