TIDAK UNTUK KEPENTINGAN KOMERSIAL

dokumen-dokumen yang mirip
BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB III METODOLOGI PENELITIAN. 3.1 Alur Penelitian Pada bagian ini akan dipaparkan langkah-langkah yang dilakukan untuk mencapai tujuan penelitian.

BAB II TINJAUAN PUSTAKA

RESISTIVITAS BATUAN KAMPUS UNHAS TAMALANREA ABSTRAK

Identifikasi Keretakan Beton Menggunakan Metode Geolistrik Resistivitas Timotius 1*), Yoga Satria Putra 1), Boni P. Lapanporo 1)

Pengukuran RESISTIVITAS batuan.

BAB III METODE PENELITIAN. geolistrik dengan konfigurasi elektroda Schlumberger. Pada konfigurasi

Petunjuk Pengunaan. IPMGEO Induced Polarization & Manual Geolisrik Resistivity Meter

Metode Geolistrik (Tahanan Jenis)

Pendugaan Akuifer serta Pola Alirannya dengan Metode Geolistrik Daerah Pondok Pesantren Gontor 11 Solok Sumatera Barat

KATA PENGANTAR. Kupang, Oktober Penulis

ANALISIS SIFAT KONDUKTIVITAS LISTRIK PADA BEBERAPA JENIS MATERIAL DENGAN METODE POTENSIAL JATUH. Said, M.

Modul Pelatihan Geolistrik 2013 Aryadi Nurfalaq, S.Si., MT

PEMODELAN INVERSI DATA GEOLISTRIK UNTUK MENENTUKAN STRUKTUR PERLAPISAN BAWAH PERMUKAAN DAERAH PANASBUMI MATALOKO. Abstrak

GEOFISIKA EKSPLORASI. [Metode Geolistrik] Anggota kelompok : Maya Vergentina Budi Atmadhi Andi Sutriawan Wiranata

Optimalisasi Desain Parameter Lapangan Untuk Data Resistivitas Pseudo 3D

Analisa Resistivitas Batuan dengan Menggunakan Parameter Dar Zarrouk dan Konsep Anisotropi

PENENTUAN TAHANAN JENIS BATUAN ANDESIT MENGGUNAKAN METODE GEOLISTRIK KONFIGURASI SCHLUMBERGER (STUDI KASUS DESA POLOSIRI)

BAB III METODOLOGI PENELITIAN

III. METODE PENELITIAN

BAB 2 DASAR TEORI. Gambar 2.1 Interaksi antara air tanah dengan struktur geologi

METODE EKSPERIMEN Tujuan

e-issn : Jurnal Pemikiran Penelitian Pendidikan dan Sains Didaktika

PENGOLAHAN DATA MANUAL DAN SOFTWARE GEOLISTRIK INDUKSI POLARISASI DENGAN MENGGUNAKAN KONFIGURASI DIPOLE-DIPOLE

ANALISA RESISTIVITAS BATUAN DENGAN MENGGUNAKAN PARAMETER DAR ZARROUK DAN KONSEP ANISOTROPI

Bab II Metoda Geolistrik Tahanan Jenis 2D

Pemodelan Akuifer Air Tanah dengan Metode Geolistrik Tahanan Jenis Konfigurasi Dipole-dipole

PENENTUAN LAPISAN PEMBAWA AIR DENGAN METODE TAHANAN JENIS DI DAERAH ATAS TEBING LEBONG ATAS BENGKULU

MENENTUKAN LITOLOGI DAN AKUIFER MENGGUNAKAN METODE GEOLISTRIK KONFIGURASI WENNER DAN SCHLUMBERGER DI PERUMAHAN WADYA GRAHA I PEKANBARU

IDENTIFIKASI PATAHAN MANADO DENGAN MENGGUNAKAN METODE GEOLISTRIK KONFIGURASI WENNER- SCHLUMBERGER DI KOTA MANADO

Pemodelan Inversi Data Geolistrik untuk Menentukan Struktur Perlapisan Bawah Permukaan Daerah Panasbumi Mataloko

REVISI, PEMODELAN FISIKA APLIKASI METODE GEOLISTRIK KONFIGURASI SCHLUMBERGER UNTUK INVESTIGASI KEBERADAAN AIR TANAH

CURVE MATCHING. Moe2KiyoKidi

PENENTUAN ZONA PENGENDAPAN TIMAH PLASER DAERAH LAUT LUBUK BUNDAR DENGAN MARINE RESISTIVITY Muhammad Irpan Kusuma 1), Muhammad Hamzah 2), Makhrani 2)

ANALISA KONDUKTIVITAS HIDROLIKA PADA SISTIM AKUIFER

Penjalaran Arus Listrik di Dalam Bumi

UJI NILAI TAHANAN JENIS POLUTAN AIR LAUT DENGAN METODE OHMIK DAN GEOLISTRIK TAHANAN JENIS SKALA LABORATORIUM

Cara arus mengalir di bumi Elektronik (Ohmik) Arus mengalir lewat media padat (logam, batuan, dll.)

APLIKASI METODE GEOLISTRIK TAHANAN JENIS KONFIGURASI WENNER- SCHLUMBERGER UNTUK SURVEY PIPA BAWAH PERMUKAAN

ANALISIS AIR BAWAH TANAH DENGAN METODE GEOLISTRIK

Interpretasi Kondisi Geologi Bawah Permukaan Dengan Metode Geolistrik

ρ i = f(z i ) (1) V r = ρ ii 2π ρ a = K V AB 2

MENENTUKAN AKUIFER LAPISAN AIR TANAH DENGAN METODE GEOLISTRIK KONFIGURASI SCHLUMBERGER DI PERUMAHAN GRIYO PUSPITO DAN BUMI TAMPAN LESTARI

PENERAPAN FORWARD MODELING 2D UNTUK IDENTIFIKASI MODEL ANOMALI BAWAH PERMUKAAN

APLIKASI METODE GEOLISTRIK RESISTIVITAS KONFIGURASI SCHLUMBERGER UNTUK IDENTIFIKASI AKUIFER DI KECAMATAN PLUPUH, KABUPATEN SRAGEN

Penyelidikan Struktur Pondasi Jembatan Lamnyong Menggunakan Metode Geolistrik Konfigurasi Wenner-Schlumberger

Oleh : Dwi Wahyu Pujomiarto. Jurusan Fisika Fakultas MIPA Universitas Negeri Malang. Abstrak

Jurnal Sains dan Teknologi Lingkungan Volume 2, Nomor 2, Juni 2010, Halaman ISSN:

METODE TAHANAN JENIS KONFIGURASI WENNER

Prosiding Seminar Nasional XII Rekayasa Teknologi Industri dan Informasi 2017 Sekolah Tinggi Teknologi Nasional Yogyakarta

Rancang Bangun Sistem Pengukuran Resistivitas Geolistrik dengan menggunakan Sumber Arus Konstan

Jurusan Tadris IPA Fisika IAIN Imam Bonjol Padang 2)

APLIKASI METODE GEOFISIKA UNTUK GEOTEKNIK. Oleh: Icksan Lingga Pradana Irfan Fernando Afdhal Joni Sulnardi

PEMODELAN FISIKA APLIKASI METODE GEOLISTRIK KONFIGURASI SCHLUMBERGER UNTUK INVESTIGASI KEBERADAAN AIR TANAH

INTERPRETASI LAPISAN BATUAN BAWAH PERMUKAAN BERDASARKAN ANALISIS DATA GEOLISTRIK

APLIKASI METODE GEOLISTRIK UNTUK MENENTUKAN INTRUSI AIR GARAM DI SEKITAR BLEDUG KUWU GROBOGAN

IV. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari sampai April 2012,

Petunjuk Pengunaan. G - Sound (GL 4100) Resistivity Meter

Riad Syech, Juandi,M, M.Edizar Jurusan Fisika FMIPA Universitas Riau Kampus Bina Widya Km 12,5 Pekanbaru ABSTRAK

BAB III METODELOGI PENELITIAN

BAB III METODE PENELITIAN. Dalam penelitian ini, ada beberapa tahapan yang ditempuh dalam

BAB II TEGANGAN TINGGI. sehingga perlu penjelasan khusus mengenai pengukuran ini. Ada tiga jenis tegangan

Rustan Efendi 1, Hartito Panggoe 1, Sandra 1 1 Program Studi Fisika Jurusan Fisika FMIPA, Universitas Tadulako, Palu, Indonesia

Kajian Sebaran Limbah Cair Menggunakan Metode Resistivitas

BAB III. METODOLOGI PENELITIAN

Identifikasi Pola Persebaran Sumber Lumpur Bawah Tanah Pada Mud Volcano Gunung Anyar Rungkut Surabaya Menggunakan Metode Geolistrik

SKRIPSI. Diajukan Dalam Rangka Menyelesaikan Study Strata I Untuk Memperoleh Gelar Sarjana Sains

BAB I PENDAHULUAN 1.1 Latar Belakang

PENERAPAN GEOLISTRIK RESISTIVTY 2D DAN BANTUAN PROGRAM GEOSOFT UNTUK ESTIMASI SUMBERDAYA ANDESIT DI PT. MDG KULONPROGO DIY

BAB III METODE PENELITIAN

Analisis Aliran Rembesan (Seepage) Menggunakan Pemodelan 3D Metode Resistivitas Konfigurasi Wenner

Jurnal Neutrino Vol. 1, No. 2 April

INVESTIGASI LAPISAN BEDROCK DENGAN MENGGUNAKAN METODA GEOLISTRIK (Studi Kasus: Gedung Olah Raga Universitas Hasanuddin)

PROFIL RESISTIVITAS 2D PADA GUA BAWAH TANAH DENGAN METODE GEOLISTRIK KONFIGURASI WENNER-SCHLUMBERGER (STUDI KASUS GUA DAGO PAKAR, BANDUNG)

Dinas Pertambangan dan Energi Provinsi Sumatera Barat, Jalan Jhoni Anwar No. 85 Lapai, Padang 25142, Telp : (0751)

Prosiding Seminar Nasional Teknik Sipil 2016 ISSN: Fakultas Teknik Universitas Muhammadiyah Surakarta

Tata cara pengukuran geolistrik Schlumberger untuk eksplorasi air tanah

POLA ALIRAN AIR BAWAH TANAH DI PERUMNAS GRIYA BINA WIDYA UNRI MENGGUNAKAN METODE GEOLISTRIK KONFIGURASI ELEKTRODA SCHLUMBERGER

Interpretasi Bawah Permukaan Daerah Porong Sidoarjo Dengan Metode Geolistrik Tahanan Jenis Untuk Mendapatkan Bidang Patahan

Tata cara pengukuran geolistrik Schlumberger untuk eksplorasi air tanah

PENENTUAN RESISTIVITY TANAH DI DALAM MENETAPKAN AREA PEMASANGAN GROUNDING GARDU DISTRIBUSI

ANALISIS DATA GEOLISTRIK UNTUK IDENTIFIKASI PENYEBARAN AKUIFER DAERAH ABEPURA, JAYAPURA

ANALISIS SIFAT KONDUKTIVITAS LISTRIK PADA BEBERAPA JENIS MATERIAL DENGAN METODE POTENSIAL JATUH

IDENTIFIKASI JENIS BATUAN BAWAH PERMUKAAN SEBAGAI KAJIAN AWAL PERENCANAAN PEMBUATAN PONDASI BANGUNAN MENGGUNAKAN METODE RESISTIVITAS

Gambar 3.1 Lokasi lintasan pengukuran Sumber: Lembaga Ilmu Pengetahuan Indonesia (LIPI)

LAPORAN PRAKTIKUM FISIKA DASAR II HUKUM OHM

SURVAI SEBARAN AIR TANAH DENGAN METODE GEOLISTRIK TAHANAN JENIS KONFIGURASI WENNER DI DESA BANJAR SARI, KEC. ENGGANO, KAB.

PRISMA FISIKA, Vol. III, No. 2 (2015), Hal ISSN :

PENYELIDIKAN BIJIH BESI DENGAN METODE GEOMAGNET DAN GEOLISTRIK

Aplikasi Metode Geolistrik Untuk Alat Monitoring Rembesan Limbah (Penelitian Model Fisik di Laboratorium)

PENGUKURAN TAHANAN JENIS (RESISTIVITY) UNTUK PEMETAAN POTENSI AIR TANAH DI RUMAH SAKIT UMUM DAERAH PRAYA. Oleh:

Jurnal Pendidikan Fisika Indonesia 7 (2009):

LAPORAN PRAKTIKUM LISTRIK MAGNET Praktikum Ke 1 KUMPARAN INDUKSI

IDENTIFIKASI ZONA KONDUKTIF DI DAERAH PROSPEK PANASBUMI LARIKE AMBON MALUKU

MODUL METODE MAGNETOTELLURIK

PENDUGAAN AIR TANAH DENGAN METODE GEOLISTRIK TAHANAN JENIS DI DESA TELLUMPANUA KEC.TANETE RILAU KAB. BARRU SULAWESI-SELATAN

BAB III METODA PENELITIAN. Bab ini akan menjelaskan bebarapa tahapan yang dilakukan untuk

Pendugaan Zona Endapan Mineral Logam (Emas) di Gunung Bujang, Jambi Berdasarkan Data Induced Polarization (IP)

JURNAL SAINS DAN SENI ITS Vol. 6, No.2, (2017) ( X Print) B-29

BAB III METODE PENELITIAN. Penelitian ini dilaksanakan pada tanggal 5 Mei 2015, mulai dari pukul

Transkripsi:

METODA GEOLISTRIK TAHANAN JENIS. PENDAHULUAN Geolistrik merupakan salah satu metoda geofisika yang mempelajari sifat aliran listrik di dalam bumi dan bagaimana cara mendeteksinya di dalam bumi dan bagaiman cara mendeteksinya di permukaan bumi. Dalam hal ini meliputi pengukuran potensial, arus dan medan elektromagnetik yang terjadi baik secara alamiah ataupun akibat injeksi arus ke dalam bumi. Ada beberapa macam metoda geolistrik, antara lain : metoda potensial diri, arus telluric, magnetotelluric, IP (Induced Polarization), resistivitas (tahanan jenis) dan lainlain. Dalam praktikum kali ini, dibahas khusus metoda geolistrik tahanan jenis. Pada metoda geolistrik tahanan jenis ini, arus listrik diinjeksikan ke dalam bumi melalui dua elektroda arus. Kemudian beda potensial yang terjadi diukur melalui dua elektroda potensial. Dari hasil pengukuran arus dan beda potensial untuk setiap jarak elektroda yang berbeda kemudian dapat diturunkan variasi harga hambatan jenis masing-masing lapisan dibawah titik ukur (sounding point). Gb. Konfigurasi pengukuran geolistrik tahanan jenis Metoda ini lebih efektif jika digunakan untuk eksplorasi yang sifatnya dangkal, jarang memberikan informasi lapisan di kedalaman lebih dari 000 feet atau 500 feet. Oleh karena itu metoda ini jarang digunakan untuk eksplorasi minyak tetapi lebih banyak digunakan dalam bidang engineering geology seperti penentuan kedalaman batuan dasar, pencarian reservoar air, juga digunakan dalam eksplorasi geothermal. Berdasarkan letak (konfigurasi) elektroda-elektroda potensial dan elektroda-elektroda arus, dikenal beberapa jenis metoda resistivitas tahanan jenis, antara lain : Geolistrik Tahanan Jenis -

. Metoda Schlumberger. Metoda Wenner 3. Metoda Dipole Sounding. DESKRIPSI ALAT UKUR Multichannel Resistivity (S-Field) S-Field adalah alat ukur resistivity dengan sentuhan teknologi terdepan. Instrumen didesain dengan sistem pengukuran elektroda banyak channel (multichannel), full automatis dengan sampling arus injeksi dilakukan setiap -5 detik. Alat ini memberikan hasil dengan tingkat akurasi tinggi dan bising yang rendah. Dengan hadirnya alat ini pengukuran resistivitas bisa dilakukan secara simultan sampai 6 elektroda, dan dapat pula di-upgrade menjadi 3, 64, 8 elekroda atau lebih (max 000 channel). Dengan demikian akan menghemat waktu dan tenaga dalam pengukuran resistivitas bawah permukaan. Melalui instrumen resistivity multichannel pengukuran data resistivitas D dan 3D menjadi lebih efisian. Teknologi Curent Source (pembangkit arus) yang terdapat pada S-Field menjadikannya handal, berpengaman sistem anti short circuit, sehingga aman digunakan pada saat jarak elektroda arus terlalu rapat atau impedansi sangat rendah. Output format file hasil pengukuran D sesuai (compatible) dengan format software ResDinv Twin Probe Resistivity (G-Sound) G-Sound dibuat untuk menjawab kebutuhan akan alat ukur resistivitas (geolistrik) yang murah dan handal. Instrumen geolistrik ini di desain untuk pengukuran bergerak (portable) dengan kedalaman penetrasi arus mencapai 00 m s.d 50 m. Pada G-Sound tidak diperlukan adjusting SP dengan rumit, melalui tombol adjusting maka nilai SP terkoreksi secara otomatik. Hal ini sangat membantu untuk operator alat yang belum berpengalaman Dengan berat sekitar kg menjadikan pekerjaan akuisisi data resistivity profiling ataupun sounding bertambah ringan. Teknologi Curent Source (pembangkit arus) yang terdapat pada G-Sound menjadikannya handal, berpengaman sistem anti short circuit, dimana kondisi hubungan singkat sering terjadi pada saat spasi AB (arus) terlalu dekat atau pada lapisan berimpedansi rendah. G-Sound AG adalah upgrading resistivity G-Sound sehingga akuisisi bisa dilakukan melalui laptop dan langsung tersimpan dalam format ASCII Geolistrik Tahanan Jenis -

Spek Alat S-Field G-Sound High voltage transmitter Power : 75 W by x V NiCad Battery (low power Consumption) AB voltage : Automatic 500 V (00mA) 000 V (50mA) AB current : 00mA current source transmitter with anti short circuit Injection time : 5s Data acquisition Resolution : Auto range 5 x bit DVM impedance : 0 MΩ Sampling rate : 50 ms Kedalaman penetrasi : > 00 m (moist soil) PC controller Type : IBM compatible Operating system : Microsoft Windows XP - Tegangan : 400 V (00mA) - Tegangan Max : 500 V (50mA) - Arus : 00 ma (Rab < 4k ohm) constant current - Daya : 45 W by x V NiCad Battery - Kedalaman analisa: > 50 m (moist soil) 3. PERALATAN LAPANGAN 3. PERALATAN YANG DIGUNAKAN a. Resistivity meter S-Field/G-Sound b. Accu d. Elektroda arus dan potensial e. Kabel-kabel penghubung f. Meteran 3. PRINSIP KERJA ALAT Pada dasarnya alat ukur resistivitas ini terdiri dari dua bagian utama, yaitu bagian komutator dan potensiometer. a. Bagian Komutator mengubah isyarat arus searah menjadi arus bolak-balik yang kemudian diinjeksikan ke dalam bumi. b. Bagian potensiometer berfungsi untuk mengukur besar potensial yang terjadi di permukaan tanah. Geolistrik Tahanan Jenis - 3

sumber dc komutator potensiometer I V permukaan bumi Gb. Prinsip kerja resistivitymeter Arus dari sumber DC dimasukkan ke dalam bagian komutator, untuk diubah menjadi arus bolak-balik dengan frekuensi yang bisa diatur. Kemudian arus ini diinjeksikan ke dalam bumi melalui elektroda-elektroda arus. Tanggapan tegangan sebagai akibat dari injeksi arus, diukur melalui elektroda potensial oleh bagian potensiometer. 4. TEORI 4. SIFAT LISTRIK BATUAN Aliran arus listrik didalam batuan/mineral dapat digolongkan menjadi tiga macam, yaitu konduksi secara elektronik, konduksi secara elektrolitik dan konduksi secara dielektrik. Konduksi secara elektronik terjadi jika batuan/mineral mempunyai banyak elektron bebas sehingga arus listrik dialirkan dalam batuan/mineral tersebut oleh elektron-elektron bebas itu. Konduksi elektrolitik terjadi jika batuan/mineral bersifat porus dan pori-pori tersebut terisi oleh cairan-cairan elektrolitik. Pada konduksi ini arus listrik dibawa oleh ion-ion elektrolit. Sedang konduksi dielektrik terjadi jika batuan/mineral bersifat dielektrik terhadap aliran arus listrik yaitu terjadi polarisasi saat bahan dialiri listrik. Berdasarkan harga resistivitas listriknya, batuan/mineral digolongkan menjadi tiga yaitu: Konduktor baik : 0 8 < ρ < Ω m Konduktor pertengahan : < ρ < 0 7 Ω m Isolator : ρ > 0 7 Ω m 4. RUMUS DASAR LISTRIK Dalam metoda geolistrik ini digunakan definisi-definisi :. Resistansi : R = V / I ohm ( Ω ). Resistivitas : ρ = E / J Ω m 3. Konduktivitas : σ = / ρ ( Ω m) dengan V : beda potensial buah titik Geolistrik Tahanan Jenis - 4

I E J : besar arus listrik yang mengalir : medan listrik : rapat arus listrik (arus listrik persatuan luas) Untuk silinder konduktor dengan panjang L dan penampang A L A Gb. 3 konduktor dengan panjang L dan luas penampang A E = V / L sehingga diperoleh (hukum ohm) R L = ρ () A 4.3 ALIRAN LISTRIK DALAM BUMI Tinjau suatu medium homogen isotropik. Jika medium tersebut dialiri arus listrik searah I (diberi medan listrik E) maka alemen arusδ I yang melalui elemen luas δ A dengan kerapatan arus J adalah δ I = J.δ A () J = σ E (Hukum ohm) (3) E = - V (4) Jika didalam medium tidak ada arus maka JdA. = 0 (5) s Menurut hukum Gauss JdA.. JdV=0 (6) s v Geolistrik Tahanan Jenis - 5

sehingga. J = -. (σ V ) = 0 (Hukum kekekalan muatan) atau V = 0 (7) yang merupakan persamaan Laplace. Dalam koordinat bola operator Laplacian berbentuk Gb. 4 Teorema Gauss 0 r r r V V V θ r + sin r sinθ θ θ + r sin θ φ = (8) Karena anggapan homogen isotropis maka bumi mempunyai simetri bola, maka persamaan diatas dapat dituliskan : V r V + = 0 (9) r r Akibatnya jawaban umum persamaan Laplace untuk kasus ini adalah Vr ( ) C = + C r (0) dengan C dan C konstanta sembarang. Nilai kedua konstanta tersebut ditentukan dengan menerapkan syarat batas yang harus dipenuhi potensial V(r) yaitu : pada r = ( jarak yang sangat jauh), V( ) = 0 sehingga C = 0 dan C V()= r r Potensial di sekitar titik arus. titik arus di dalam bumi arus keluar secara radial dari titik arus sehingga jumlah arus yang keluar melalui permukaan bola A dengan jari-jari r adalah Geolistrik Tahanan Jenis - 6

I = 4π r r. J dv = 4πr σ dr = 4π σ C () sehingga C I = ρ ( 4π ) dan Iρ Vr ( ) =, (a) 4π r ρ = 4πr V I (b) Gb. 5 arah penjalaran arus dengan injeksi di dalam bumi. Titik arus dipermukaan bumi Gb. 6 arah penjalaran arus dengan injeksi di permukaan bumi Permukaan yang dilalui arus I adalah luas setengah bola = πr V ( I r ) = ρ π r, ρ = π r V I sehingga (3a) (3b) 3. Dua titik arus yang berlawanan polaritasnya di permukaan bumi Gb. 7 arah penjalaran arus dengan dua titik injeksi di permukaan bumi Geolistrik Tahanan Jenis - 7

Beda potensial yang terjadi antara MN yang diakibatkan oleh injeksi arus pada AB adalah : Iρ ΔV = VM VN = π AM BM AN BN ρ = π AM BM AN BN Δ = K V I ΔV I (4) (5) (6) dengan K = AM π BM AN BN (7) merupakan koreksi karena letak (konfigurasi) elektroda potensial dan elektroda arus. Konfigurasi Elektroda cara Schlumberger KEPENTINGAN I KOMERSIAL V A M N B L l Gb. 8 Konfigurasi Sclumberger M, N digunakan sebagai elektroda potensial dan A, B sebagai elektroda arus. Nilai resistivitas untuk konfigurasi ini diberikan oleh ρ s K = s = ΔV I π L l l K s ( ) (8) (9) Geolistrik Tahanan Jenis - 8

Konfigurasi Elektroda cara Wenner I V A M a N a B a Dalam konfigurasi ini AM = MN = NB = a Gb. 9 konfigurasi Wenner ρ w = ΔV (0) I K = π a () K w w Dengan cara yang sama, pada prinsipnya, kita dapat menurunkan faktor K diatas untuk berbagai jenis konfigurasi lainnya. 4.4 KONSEP RESISTIVITAS SEMU Pada bagian awal telah disebutkan bahwa dalam metoda ini diasumsikan bahwa bumi mempunyai sifat homogen isotropis. Dengan asumsi ini, resistivitas yang terukur merupakan resistivitas sebenarnya daan tidak tergantung atas spasi elektroda ρ = KΔ V I. Pada kenyataannya, bumi terdiri atas lapisan-lapisan dengan ρ yang berbeda-beda, sehingga potensial yang terukur merupakan pengaruh dari lapisan-lapisan tersebut. Maka harga resistivitas yang terukur bukan merupakan harga resistivitas untuk satu lapisan saja, hal ini terutama untuk spasi elektroda yang lebar. Δ ρ a = K V I () dengan ρ a resistivitas semu (Apparent Resistivity) yang bergantung pada spasi elektroda. Untuk kasus tak homogen, bumi diasumsikan berlapis-lapis dengan masing-masing lapisan mempunyai harga resistivitas yang berbeda. Resistivitas semu merupakan resistivitas dari suatu medium fiktif homogen yang ekivalen dengan medium berlapis yang ditinjau. Sebagai contoh medium berlapis yang ditinjau misalnya terdiri dari dua lapis yang mempunyai resistivitas berbeda. Resistivitas semu merupakan resistivitas dari suatu medium fiktif homogen yang ekuivalen dengan medium berlapis yang ditinjau. Sebagai contoh medium berlapis yang ditinjau misalnya terdiri atas dua lapisan yang mempunyai Geolistrik Tahanan Jenis - 9

resistivitas yang berbeda ( ρ & ρ ) dianggap sebagai medium satu lapis homogen yang mempunyai satu harga resistivitas yaitu resistivitas semu ρ a, dengan konduktansi lapisan fiktif sama dengan jumlah konduktansi masingmasing lapisan σ f = σ + σ. ρ ρ ρ α ρ 3 ρ 3 Gb. 0 resistivitas semu 4.5 BUMI n LAPIS SEBAGAI MEDIUM TAK HOMOGEN Bumi terdiri dari n lapis dengan ρ n resistivitas lapisan ke-n, d n ketebalan lapisan ke-n, h n kedalaman lapisan ke n +. Dalam model ini setiap lapisan dianggap KEPENTINGAN homogen isotropis. Jika di dalam KOMERSIAL bumi tidak ada sumber arus maka persaamaan Laplace V = 0 tetap berlaku. Berdasarkan asumsi-asumsi di atas, maka persamaan Laplace dapat dipecahkan dengan melakukan separasi variabel, yaitu dengan memisalkan V(r,z) = R(r)Z(z), sehingga jawab umum persamaan Laplace untuk medium yang mempunyai simetri silinder tersebut adalah [ λz + λz] V(, r z) = A( λ) e + B( λ) e Jo ( λr) dλ 0 (3) dengan λ orde fungsi Bessel (yang harus dicari), J ( o λ r ) fungsi Bessel orde nol, A dan B konstanta yang pada λ. Untuk bumi homogen isotropis, fungsi potensial yang terjadi karena adanya aliran arus ialah ρ i I V(, r z) = π ( r + z ) sehingga (4) Geolistrik Tahanan Jenis - 0

V k ρ I (, r z) = π ( r + z ) λz + λz [ k k ] + A ( λ) e + B ( λ) e J ( λr) dλ 0 o (5) juga merupakan jawaban umum persamaan Laplace. Pada setiap bidang batas harus dipenuhi syarat potensial konstan. h d ρ h d ρ h n- h n- d n- ρ n- Gb. Lapisan-lapisan bumi dalam model Vk = Vk +, (6a) V V k k + = (6b) ρ z ρ z k k + Ada beberapa asumsi yang diambil umtuk menyelesaikan persamaan diatas. Di permukaan bumi ρ o = (resistivitas udara) sehingga A = B. Untuk lapisan ke-n z = h n sehingga V n = 0 dipenuhi jika B n = 0 Untuk n lapis terdapat n fungsi potensial yaitu V(, r z), V(, r z),..., Vn (, r z) dengan (n - ) konstanta yang harus dicari yaitu A, A,..., An, B, B,..., Bn. Jika n fungsi potensial tersebut diberlakukan Geolistrik Tahanan Jenis -

syarat batas di atas maka akan diperoleh (n-) persamaan dengan (n-) konstanta yang akan dicari di atas, maka persamaan dapat dipecahkan. Penerapan pada model bumi a. Model bumi homogen ( lapis) ρi V(, r z) = π ( r + z ) (7) dengan A( λ ) = A = 0 b. Model bumi dua lapis h d ρ h = d = ρ gb. model bumi dua lapis n n ρi K K Vrz (, ) = + π ( r + z ) ( ) dengan koefisien refleksi (Applied Geophysic, Telford) + n= [ r + ( nd + z n ) ] = [ r + nd z ] (8) ρ ρ K = ρ + ρ (9) Untuk potensial dipermukaan bumi (z = 0) n ρi K V(,) r 0 = + r n [ r ( nd) ] (30) π = + karena pengukuran dalam metoda resistivitas dilakukan di permukaan, maka perumusan di atas menjadi sangat penting dalam melakukan interpretasi. Geolistrik Tahanan Jenis -

Penurunan Rumus Resistivitas Untuk Metoda Schlumberger dan Wenner. Konfigurasi Schlumberger V ρi E = = + r π r E ρas = πr = ρ + I n= n K (3) 3 n δ K L AB, δ = = 4 d d (3) n= [ r + ( nd) ] ( δ + n ) 3 Persamaan diatas dapat dituliskan dalam bentuk lain sebagai berikut ρ as ρ 3 n AB K d = + (33) n= AB + 4n d Pengeplotan persamaan di atas dengan ρ as sebagai ordinat dan d sebagai absis pada skala bilog (double logarithm) akan memberikan kurva-kurva yang bentuknya KEPENTINGAN persis sama untuk setiap harga KOMERSIAL ρ dan d sepanjang harga ρ as ρ tetap. Perubahan harga ρ hanya akan menggeser kurva keatas atau kebawah sejajar dengan ordinat, sedangkan perubahan harga d hanya akan menggeser kurva ke kanan atau ke kiri sejajar dengan absis. Berdasarkan hal tersebut di atas maka dibuatlah kurva-kurva standar untuk berbagai harga ρ ρ. Konfigurasi Wenner as. Δ ρaw = πa V I (34) = ρ + 4 δk n [ δ + 4n ] n= [ δ + 4n ] δk a, δ = (35) d n= Pengeplotan pada skala bilog akan memberikan efek yang sama sebagaimana halnya konfigurasi schlumberger. Meskipun diturunkan untuk kasus dua lapis, perumusan di atas dapat juga diterapkan untuk model bumi banyak lapis. Prosesnya adalah sebagai berikut (lihat gambar 3) n Geolistrik Tahanan Jenis - 3

ρ ρ ρ ρ ρ n ρ ρ 3 ρ 3 ρ 3 (a) (b) (c) (d) Gb. 3 model bumi empat lapis Misalkan bumi mempunyai empat lapisan seperti pada gambar 3a,. ρ didapat saat spasi elektroda sempit.. Lapisan satu dan lapisan dua dipandang sebagai kasus dua lapis biasa sehingga ρ didapat dengan bantuan kurva standar untuk kasus dua lapis yang diperoleh dari perumusan diatas. 3. Untuk mendapatkan ρ 3, lapisan satu dan lapisan dua dianggap sebagai satu lapis dengan TIDAK resistivitas semu UNTUK ρ f yang bisa didapat dengan pertolongan kurva standar dan kurva bantu untuk kasus dua lapis sehingga lapisan fiktif dengan resistivitas semu ρ fi dengan lapisan tiga dapat diserap sebagai kasus dua lapis yang baru sehingga ρ 3 dapat diperoleh. 4. Untuk mendapatkan ρ 4, lapisan satu, dua dan tiga dianggap sebagai satu lapisan dengan resistivitas semu ρ f yang juga bisa didapat dengan pertolongan kurva standar dan kurva bantu untuk kasus dua lapis sehingga lapisan fiktif dengan resistivitas semu ρ f dengan lapisan 4 dapat diterapkan sebagai kasus dua lapis sehingga ρ 4 dapat diperoleh. 5. Demikian seterusnya untuk kasus bumi n lapis. 4.6 INTERPRETASI DATA RESISTIVITAS Ada beberapa macam metoda yang digunakan untuk menginterpretasi data resistivitas. Salah satu cara yang cukup sederhana adalah dengan metoda pencocokan kurva (curve matching). Metoda pencocokan kurva ini bisa dilakukan karena : Dari pengukuran dilapangan kita akan mendapatkan harga-harga resistivitas semu sebagai fungsi dari spasi elektroda ρ as = f( AB/ ) atau ( ) log = log f AB/. Persamaan ini sama dengan persamaan logaritmis ρ as Geolistrik Tahanan Jenis - 4

yang telah diturunkan terdahulu, kecuali bahwa untuk kurva yang pertama telah mengalami pergeseran sejajar dengan sumbu-sumbu koordinatnya. Pada gb. 4 diperlihatkan contoh pergeseran kurva tersebut. Ada dua macam cara pengukuran resistivitas yang biasa dilakukan untuk fungsi-fungsi yang berbeda, yaitu : a. Geolistrik Mapping Cara ini dilakukan untuk mengetahui kecenderungan harga resisivitas di suatu areal tertentu. Setiap titik yang telah ditentukan pada areal tersebut diukur dengan spasi elektroda yang tetap, kemudian dibuat kontur untuk setiap spasi elektroda yang dilakukan. Pada praktikum ini Geolistrik mapping tidak dilakukan. b. Geolistrik sounding Cara ini digunakan untuk mengetahui distribusi harga resistivas di bawah suatu titik sounding di permukaan bumi. Untuk satu titik sounding spasi elektroda diperbesar secara gradual (bergantung pada jenis konfigurasi yang digunakan), KEPENTINGAN kemudian hasil pengukurannya KOMERSIAL di plot pada grafik bilog untuk mendapatkan kurva lapangan. TAHAP INTERPRETASI A. Interpretasi Lapangan a. Penentuan bentangan maksimal b. Penentuan tipe kurva lapangan Terdapat 4 tipe kurva lapangan seperti yang ditunjukkan dalam gb. 5 berikut: tipe A tipe Q tipe K tipe H Gb. 4 Empat tipe kurva lapangan tipe A : ρ < ρ < ρ3 Geolistrik Tahanan Jenis - 5

tipe Q : ρ > ρ > ρ3 tipe K : ρ < ρ > ρ3 tipe H : ρ > ρ < ρ3 B. Interpretasi Pendahuluan Tahapan ini dilakukan untuk menentukan harga resistivitas masing-masing lapisan dengan menggunakan kurva standar dan kurva bantu (Curve matching partial). Cocokkan untuk segmen kurva yang berspasi pendek dengan kurva standar dua lapis. Setelah cocok, kedudukan pusat koordinat kurva standar pada kertas grafik lapangan akan memberikan d dan ρ. Dengan menggunakan harga perbandingan ρ ρ yang terbaca pada kurva yang cocok ρ dapat ditentukan. Untuk menginterpretasi segmen-segmen kurva selanjutnya, gabung lapisan-lapisan sebelumnya yang sudah diketahui harga resistivitas dan kedalamannya menjadi satu lapisan fiktif yang mempunyai resistivitas ρ f 0 dan d f 0 yang masing-masing dapat ditentukan sebagai berikut : a. Letakkan kurva lapangan di atas kurva bantu yang sesuai dengan tipenya hingga pusat koordinat kurva bantu terletak pada koordinat (d,f) pada kertas grafik lapangan. b. Tentukan kedudukan ( d f 0, ρ f 0 ) yang sesuai dengan perbandingan resistivitas kedua lapisan yang digabung (berupa garis). c. Cocokkan segmen kurva berikutnya dengan kurva standar dengan syarat pusat koordinat kurva standar harus selalu berada pada tempat kedudukan ( d f 0, ρ f 0 ) sehingga setelah ada yang cocok, d f 0 dan ρ f 0 dapat ditentukan. Dalam hal ini perbandingan ρ ρ yang terbaca pada kurva standar yang cocok merupakan perbandingan ρ ρ. Dengan demikian 3 f 0 ρ 3 dapat ditentukan. d. Jika jumlah lapisan lebih dari tiga, ulanglah cara tersebut di atas untuk meneruskan pencocokan segmen-segmen berikutnya. C. Interpretasi Tahap Akhir Pada tahap ini hasil interpretasi pendahuluan harus dikonfirmasikan dengan data lainnya misalnya data geologi. Geolistrik Tahanan Jenis - 6

5. DAFTAR PUSTAKA Bhattacharya P.K and Patra H.P, 968. Direct current Geoelectric Sounding. Elsevier Publishing. Amsterdam. Telford W and Sheriff, 98. Applied Geophysics. Cambridge University Press. Cambridge. Lilik Hendrajaya dan Idam Arif, 990. Monograf, Geolistrik Tahanan Jenis. Laboratorium Fisika Bumi ITB. Bandung. Viridi S, Hilfan K, dkk. 995. Modul Semester Break Fisika Bumi. Jurusan Fisika ITB. Bandung Geolistrik Tahanan Jenis - 7