Efek Polaritas dan Fenomena Stres Tegangan Sebelum Kegagalan Isolasi pada Sela Udara Jarum - Plat

dokumen-dokumen yang mirip
KARAKTERISTIK KORONA DAN TEGANGAN TEMBUS ISOLASI MINYAK PADA KONFIGURASI ELEKTRODA JARUM-PLAT

LUQMAN KUMARA Dosen Pembimbing :

DAMPAK GEJALA MEDAN TINGGI PADA TRANSFORMATOR AKIBAT EFEK KORONA

BAB I PENDAHULUAN. dibangkitkan oleh sebuah sistem pembangkit perlu mengalami peningkatan nilai

BAB I LATAR BELAKANG. berlangsung secara aman dan efisien sepanjang waktu. Salah satu solusi yang dapat dilakukan untuk menyalurkan listrik secara

PENGUJIAN TEGANGAN TEMBUS KARPET INTERLOCKING PT. BASIS PANCAKARYA LAPORAN

PENGARUH UKURAN BUTIRAN AIR HUJAN TERHADAP TEGANGAN TEMBUS UDARA

BAB I PENDAHULUAN. Terjadinya kegagalan alat-alat listrik yang bertegangan tinggi ketika dipakai

Pengaruh Bentuk dan Material Elektrode terhadap Partial Discharge

PENGARUH KENAIKAN TEMPERATUR TERHADAP TEGANGAN TEMBUS UDARA PADA ELEKTRODA BOLA TERPOLUSI ASAM

PENGARUH POSISI STUB ISOLATOR TERHADAP DISTRIBUSI TEGANGAN PADA ISOLATOR PIRING GELAS

PENGUJIAN TEGANGAN TEMBUS MEDIA ISOLASI UDARA DAN MEDIA ISOLASI MINYAK TRAFO MENGGUNAKAN ELEKTRODA BIDANG

BAB I PENDAHULUAN. fenomena partial discharge tersebut. Namun baru sedikit penelitian tentang

BAB I PENDAHULUAN. minim gangguan. Partial discharge menurut definisi IEEE adalah terjadinya

BAB II TEGANGAN TINGGI. sehingga perlu penjelasan khusus mengenai pengukuran ini. Ada tiga jenis tegangan

Perancangan dan Realisasi Pembangkit Korona dengan Sumber DC dari Baterai 12 Volt DC Menggunakan Flyback Converter

ANALISIS PENGARUH KEADAAN SUHU TERHADAP TEGANGAN TEMBUS AC DAN DC PADA MINYAK TRANSFORMATOR. Sugeng Nur Singgih, Hamzah Berahim Abstrak

BAB I PENDAHULUAN. Tegangan tinggi dapat diukur dengan menggunakan alat ukur elektroda bola-bola.

BAB II TINJAUAN PUSTAKA

BAB II BUSUR API LISTRIK

PENGUJIAN ISOLASI MINYAK TROFO TEGANGAN TINGGI TERHADAP PERUBAHAN SUHU.

Analisis Kegagalan isolasi Minyak Trafo jenis energol baru dan lama dengan minyak pelumas

PENGUKURAN TEGANGAN TEMBUS DIELEKTRIK UDARA PADA BERBAGAI SELA DAN BENTUK ELEKTRODA DENGAN VARIASI TEMPERATUR SEKITAR

MODUL PRAKTIKUM TEKNIK ARUS DAN TEGANGAN TINGGI

PERCOBAAN - I PEMBANGKITAN DAN PENGUKURAN TEGANGAN TINGGI BOLAK-BALIK

I. PENDAHULUAN. Isolasi merupakan bagian yang sangat penting dalam sistem tegangan tinggi yang

Pengaruh Arus Bocor Terhadap Perubahan Temperatur Pada Kabel Bawah Tanah 20 Kv

BAB IV ANALISA PERHITUNGAN PERTUMBUHAN PEMOHONAN LISTRIK PADA KABEL TANAH TEGANGAN MENENGAH 20 KV

KARAKTERISTIK BERBAGAI JENIS BAHAN ISOLASI KABEL INSTALASI TEGANGAN RENDAH

III. METODE PENELITIAN. Penelitian ini dilakukan di Laboratorium Terpadu Teknik Elektro, Jurusan Teknik

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN. konsumen yang letaknya saling berjauhan. Karena dengan menaikkan tegangan maka

PENGARUH PERSENTASE FENOL TERHADAP KEKUATAN DIELEKTRIK MINYAK JAGUNG

PERHITUNGAN BESAR RUGI-RUGI DAYA KORONA PADA SISTEM SALURAN TRANSMISI 275 KV GI MAMBONG MALAYSIA GI BENGKAYANG INDONESIA

SIMULASI PEMBANGKITAN DAN PENGUKURAN TEGANGAN TINGGI DENGAN MENGGUNAKAN SELA BOLA

OPTIMASI JARAK MAKSIMUM PENEMPATAN LIGHTNING ARRESTER SEBAGAI PROTEKSI TRANSFORMATOR PADA GARDU INDUK. Oleh : Togar Timoteus Gultom, S.

BAB I PENDAHULUAN. untuk mendistribusikan energi listrik tersebut. Hal ini tentunya akan

ANALISIS ARUS BOCOR DAN TEGANGAN FLASHOVER PADA ISOLATOR SUSPENSI 20 kv 3 SIRIP DENGAN 4 TIPE SIRIP BERBAHAN POLIMER RESIN EPOKSI SILANE SILIKA

Analisis Karakteristik Fenomena Pre-Breakdown Voltage Berbasis Pengujian pada Media Isolasi Minyak

Karakteristik Tegangan Tembus Dielektrik Isolasi Vakum

III. METODE PENELITIAN. Penelitian ini dilakukan di laboratorium terpadu jurusan teknik elektro, fakultas teknik,

BAB I PENDAHULUAN. Energi listrik menjadi kebutuhan yang penting dalam kehidupan manusia saat ini,

BAB I PENDAHULUAN. dengan yang lain. Pada saat sistem isolasi menahan electrical stresses, isolasi

BAB III TEGANGAN GAGAL DAN PENGARUH KELEMBABAN UDARA

Sifat Dielektrik Campuran Gas CO 2 Dengan Nitrogen (N 2 ) Dibawah Terpaan Medan Tinggi DC Polaritas Positif

Teknik Elektro Universitas Diponegoro Semarang

ARESTER SEBAGAI SISTEM PENGAMAN TEGANGAN LEBIH PADA JARINGAN DISTRIBUSI TEGANGAN MENENGAH 20KV. Tri Cahyaningsih, Hamzah Berahim, Subiyanto ABSTRAK

I. PENDAHULUAN. Kebutuhan energi listrik terus meningkat seiring dengan perkembangan pola hidup

DISTRIBUSI FASA PULSA-PULSA PD MINYAK SILIKON DENGAN TEGANGAN TINGGI AC

RANCANG BANGUN VOLTMETER ELEKTROSTATIK UNTUK PENGUKURAN NILAI EFEKTIF TEGANGAN TINGGI AC 100 KV

1 BAB I PENDAHULUAN. mungkin memiliki keseimbangan antara sistem pembangkitan dan beban, sehingga

1. BAB I PENDAHULUAN

Studi Karakteristik Tegangan Tembus DC Polaritas Positif Pada Gas Nitrogen (N 2 )

BAB I PENDAHULUAN. pesat sehingga untuk mentransmisikan energi yang besar digunakan sistem

Pengaruh Elektroda Tambahan Pada Penangkap Petir Tipe Franklin

KarakteristikkDielektrik Campuran Gas Karbondioksida (CO2) Dengan Nitrogen (N2) Dibawah Terpaan Medan Tinggi DC Polaritas Negatif

BAB I PENDAHULUAN. Tenaga listrik adalah unsur yang paling penting dalam kehidupan modern

BAB III METODE PENELITIAN. Pada prinsipnya penelitian ini bertujuan untuk mengetahui

ANALISIS KARAKTERISTIK DIELEKTRIK MINYAK HIDROLIK SEBAGAI ALTERNATIF ISOLASI CAIR UNTUK TRANSFORMATOR DAYA

Karakteristik Tegangan Tembus Gas CO 2 Dengan Menggunakan Pembangkit Tegangan Tinggi DC Polaritas Positif

ANALISIS KARAKTERISTIK DIELEKTRIK MINYAK HIDROLIK SEBAGAI ALTERNATIF ISOLASI CAIR UNTUK TRANSFORMATOR DAYA

Rancangan Awal Prototipe Miniatur Pembangkit Tegangan Tinggi Searah Tiga Tingkat dengan Modifikasi Rangkaian Pengali Cockroft-Walton

BAB I PENDAHULUAN. 1.1 Latar Belakang

STUDI PENGARUH KORONA PADA KUBIKEL MODEL TERHADAP DISTORSI HARMONISA ARUS DAN TEGANGAN SUMBER LISTRIK AC SKRIPSI

1 BAB V KESIMPULAN DAN SARAN

BAB I PENDAHULUAN A. Latar Belakang Masalah

Analisis Tegangan Tembus Pada Minyak Transformator Lama Dan Baru Menggunakan Tiga Jenis Elektroda

EVALUASI ARRESTER UNTUK PROTEKSI GI 150 KV JAJAR DARI SURJA PETIR MENGGUNAKAN SOFTWARE PSCAD

BAB II GAS INSULATED SWITCHGEAR ( GIS ) GIS yang sekarang telah menggunakan Gas SF6 ( Sulfur Hexafluoride )

Pengujian Tegangan Impuls Pada Isolator Tonggak Pin ( PinPost) Untuk Saluran Udara Tegangan Menengah

PROSEDING SEMINAR TUGAS AKHIR (2014) 1-6 1

Rancang Bangun Pemotong Surja Tegangan Pada kwh Meter Tiga Fasa Menggunakan PCB (Printed Circuit Board)

Modul 1 Tegangan Tinggi Arus Bolak Balik

ANALISIS MEKANISME KEGAGALAN ISOLASI PADA MINYAK TRAFO MENGGUNAKAN ELEKTRODA BERPOLARITAS BERBEDA PADA JARUM BIDANG HANUNG SAYOGI L2F302486

LEMBAR PERSETUJUAN KAJIAN UNJUK KERJA KELISTRIKAN ARESTER PORSELEN DAN ARESTER POLIMER PADA SISTEM TEGANGAN 20 KV

I. PENDAHULUAN. Untuk pengukuran kuat medan listrik dan kuat medan magnet di bawah konduktor

ANALISIS PENGARUH KENAIKAN TEMPERATUR TERHADAP TEGANGAN TEMBUS DAN NILAI HARAPAN HIDUP ISOLASIPADAT DAN CAIR TRANSFORMATOR

Teknik Elektro Universitas Diponegoro Semarang

PEMETAAN MEDAN LISTRIK

PENGUJIAN TAN δ PADA KABEL TEGANGAN MENENGAH

BAB IV. PENGOPERASIAN dan PENANGANAN ELECTROSTATIC PRECIPITATOR

MAKALAH PELATIHAN PROSES LAS BUSUR NYALA LISTRIK (SMAW)

ANALISIS KARAKTERISTIK BREAKDOWN VOLTAGE PADA DIELEKTRIK MINYAK SHELL DIALA B PADA SUHU 30 0 C C

BAB I PENDAHULUAN. tegangan tinggi digunakan dalam peralatan X-Ray. Dalam bidang industri, listrik

Tegangan Tembus (kv/2,5 mm) Jenis Minyak RBD FAME FAME + aditif

PENGARUH HUJAN TERHADAP TEGANGAN LEWAT DENYAR ISOLATOR PIRING TERPOLUSI

BAB I PENDAHULUAN. dalam pengelolaan listrik, salah satunya adalah isolasi. Isolasi adalah suatu alat

KINERJA RANGKAIAN R-C DAN R-L-C DALAM PEMBANGKITAN TEGANGAN TINGGI IMPULS

KARATERISTIK PENGUJIAN MINYAK NABATI SEBAGAI ALTERNATIF ISOLASI PENGGANTI MINYAK TRANSFORMATOR DISTRIBUSI 20 kv

saklar pemisah (disconnecting switch)

Analisis Tegangan Tembus Minyak Biji Karet (Rubber Seed Oil) Sebagai Alternatif Bahan Isolasi Cair

PERANCANGAN PROTOTYPE PENGUBAH UDARA KOTOR MENJADI UDARA BERSIH DENGAN TEKNIK IONISASI ABSTRAK

PENGARUH ELEKTRODA CINCIN PERATA TERHADAP DISTRIBUSI TEGANGAN ISOLATOR RANTAI JENIS PORSELEN

PEMAKAIAN DAN PEMELIHARAAN ARRESTER GARDU INDUK 150 KV UNGARAN PT. PLN (PERSERO) APP SEMARANG

BAB II DASAR TEORI. 2.1 Isolator. Pada suatu sistem tenaga listrik terdapat berbagai bagian yang memiliki

TUGAS AKHIR PENGARUH KETINGGIAN ALAT UKUR ELEKTRODA BOLA- BOLA DI ATAS PERMUKAAN TANAH TERHADAP KESALAHAN PENGUKURAN OKTAFIANUS ZEBUA NIM :

2. KLASIFIKASI PMT Berdasarkan besar / kelas tegangan (Um)

PENGUJIAN TEGANGAN TEMBUS AC PADA MINYAK SEREH DENGAN MENGGUNAKAN ELEKTRODA JARUM-JARUM DAN TABUNG-TABUNG

KUAT MEDAN ELEKTRIK DI PERMUKAAN ISOLATOR PENDUKUNG

STUDI DISTRIBUSI TEGANGAN DAN ARUS BOCOR PADA ISOLATOR RANTAI DENGAN PEMBASAHAN

Transkripsi:

Efek Polaritas dan Fenomena Stres Tegangan Sebelum Kegagalan Isolasi pada Udara Jarum - Plat Luqman Kumara - 2205100129 Jurusan Teknik Elektro-FTI, Institut Teknologi Sepuluh pember Kampus ITS, Keputih-Sukolilo, Surabaya-60111 Abstrak - Isolasi memiliki peranan yang sangat penting dalam sistem tenaga listrik. Isolasi diperlukan untuk memisahkan bagian yang bertegangan dengan yang tidak bertegangan sehingga tidak terjadi lompatan listrik atau percikan diantaranya. Bahan isolasi akan mengalami pelepasan muatan yang merupakan bentuk kegagalan listrik apabila tegangan yang diterapkan melampaui kekuatan isolasinya. Udara merupakan bahan isolasi yang banyak digunakan pada peralatan tegangan tinggi. Karakteristik kegagalan selain bergantung pada media isolator tersebut, juga dipengaruhi oleh konfigurasi elektroda yang mengapitnya. Pada penelitian ini dilakukan pengujian di laboratorium untuk mengetahui karakteristik korona dan tegangan tembus dengan menggunakan elektroda jarum-plat (needle-plat). Hasil pengujian menunjukkan peristiwa korona (corona inception voltage) dan tegangan tembus (streamer breakdown voltage) meningkat seiring dengan semakin besarnya permukaan elektroda jarum, jarak sela antar elektroda dan perbedaan penggunaan polaritas tegangan AC, DC Positif, dan DC Negatif. Kata kunci: Isolasi Udara, Elektroda Jarum Plat,Polaritas Tegangan, Inception Voltage korona, Tegangan Tembus (streamer breakdown voltage). 1. PENDAHULUAN Isolasi memiliki peranan yang sangat penting dalam sistem tenaga listrik. Isolasi diperlukan untuk memisahkan bagian yang bertegangan dengan yang tidak bertegangan sehingga tidak terjadi lompatan listrik atau percikan diantaranya. Bahan isolasi akan menunjukkan sifatnya bila dipengaruhi medan listrik. Gas ataupun udara merupakan salah satu bahan isolasi yang termasuk dalam bahan dielektrik. Tegangan tembus isolasi merupakan tegangan yang mampu merusak ketahanan isolasi dari suatu bahan isolasi. Begitu juga dengan peristiwa korona yang merupakan salah satu fenomena dari tegangan tinggi. Studi tentang korona telah banyak dilakukan sebelumnya seperti oleh M.Goldman dan RS.Sigmond [1]. Sehingga hasil dari makalah ini adalah sebagai studi awal untuk mengetahui peristiwa korona pada isolasi udara. in itu, untuk mengetahui karakteristik dari kedua permasalahan tersebut yaitu peristiwa tegangan tembus dan korona maka dilakukan pengujian dengan menggunakan elektroda jarumplat, tegangan AC, tegangan DC Positif dan tegangan DC Negatif. Pemilihan elektroda jarum untuk memudahkan pengamatan saat pengujian. 2. FENOMENA KORONA Korona merupakan proses dimana arus, mungkin diteruskan, muncul dari sebuah elektroda berpotensial tinggi di dalam sebuah fluida yang netral, biasanya udara, dengan mengionisasi fluida hingga menciptakan plasma di sekitar elektroda. Bila dua kawat sejajar yang penampangnya kecil dibandingkan dengan jarak antar kawat tersebut diberi tegangan, maka akan terjadi korona. Pada tegangan yang cukup rendah tidak terlihat apa-apa, bila tegangan dinaikkan maka akan tejadi korona secara bertahap. Pertama kali, kawat kelihatan bercahaya yang berwarna ungu muda, mengeluarkan suara berdesis (hissing) dan berbau ozon. Jika tegangan dinaikkan terus, maka karakteristik diatas akan terlihat semakin jelas, terutama pada bagian yang kasar, runcing atau kotor serta cahaya bertambah besar dan terang. Bila tegangan masih terus dinaikkan akan terjadi busur api. Korona bisa bermuatan positif atau negatif. Hal ini ditentukan oleh polaritas tegangan di elektroda yang kelengkungannya tinggi. Jika elektroda melengkung bemuatan positif berkenaan dengan elektoda rata terciptalah korona positif, tapi jika negatif yang tercipta adalah korona negatif. Inception Voltage korona atau tegangan awal korona didefinisikan sebagai tegangan yang terukur pada saat terjadi lucutan pertama kali saat pengujian dilakukan. Definisi ini sebagai acuan untuk mendapatkan nilai inception voltage secara langsung, dikarenakan pada pengujiannya tidak digunakan oscilloscope untuk mendapatkan sinyal yang menunjukkan awal terjadi korona.

3. PENGUJIAN 3.1. Elektroda Elektroda yang digunakan dalam pengujian ini adalah elektroda jarum-plat. Elektroda ini terbuat dari bahan stainless steel. Elektroda jarum dimanfaatkan sebagai anoda sedangkan elektroda plat sebagai katodanya. Diameter dari elektroda jarum yang digunakan yaitu 0.2, 0.4 dan 0.6, dan sebagai pembandingnya akan digunakan elektroda yang lebih besar diameter permukaannya yaitu elektroda Rod 5. Gambar 4. Rangkaian Pengukuran Tegangan AC Gambar 5. Rangkaian Pengukuran Tegangan DC Gambar 1. Elektroda Jarum Gambar 2. Elektroda Set Gambar 3. Skema Pengujian 3.2. Rangkaian Pengukuran Rangkaian pengukuran tegangan AC pada gambar 4 dan pengukuran tegangan DC pada gambar 5 adalah rangkaian yang digunakan untuk mengetahui tegangan tembus dan nilai inception voltage corona untuk mengetahui karakteristiknya. Elektroda plat dan jarum di susun pada elektroda set seperti gambar 3. 3.3. Langkah-Langkah Pengujian Pengujian dilakukan di laboratorium Tegangan Tinggi milik Teknik Elektro FTI-ITS, langkahlangkah pengujian dibagi menjadi 3 (tiga) tahap yaitu tahap persiapan, tahap pengujian dan tahap akhir pengujian. Proses pengujian adalah dengan menyiapkan peralatan tes (elektroda set, perlengkapan utama pengukuran tegangan), kemudian menyusunnya menjadi rangkaian seperti gambar 3 yaitu skema pengujian. Sebelum dilakukan pengujian maka sebaiknya peralatan tes dibersihkan dari kotoran dan debu. Setelah dipastikan bersih maka jarak sela kedua elektroda dapat di atur. Setelah persiapan selesai maka akan dilakukan pengujian dengan langkah-langkah yaitu mengatur test method dari kontrol box, dengan menggunakan bat-handle switch, kemudian menempatkan charging range pengatur tegangan pada kedudukan 0%. Aktifkan kontrol box. Kemudian mengatur tegangan melalui transformator pengatur tegangan secara perlahan sampai didapatkan nilai inception voltage korona dan tegangan tembus (Streamer breakdown voltage). Catat nilai inception voltage korona dan tegangan tembusnya. 4. HASIL PENGUJIAN DAN ANALISIS 2

4.1. Hasil Pengujian Pengujian dilakukan sebanyak lima kali untuk setiap jarak sela yang dibuat berbeda, dengan ukuran elektroda dan polaritas tegangan yang berbeda-beda juga. Hasil dari pengujian diperoleh rata-rata nilai inception voltage dan tegangan tembus (streamer breakdown) sebagai berikut : Tabel 1. Rata-Rata Nilai Inception Voltage Korona Pada Isolasi Udara Tegangan AC Inception Voltage Korona (kv) (cm) Rod 5 0.2 0.4 0.6 1 2 12.6 14.4 16.4 17.2 2 3 14.8 16.4 17.4 18.2 3 4 16.2 18.6 18.8 20 Tabel 2. Rata-Rata Nilai Inception Voltage Korona Pada Isolasi Udara Tegangan DC Positif Inception Voltage Korona (kv) (cm) 0.2 0.4 0.6 Rod 5 1 2 18 20 26 36 2 3 32 36 42 48 3 4 34 40 44 52 Tabel 5. Rata-Rata Nilai Streamer Breakdown Korona Pada Isolasi Udara Tegangan DC Positif Streamer breakdown (kv) (cm) Rod 5 0.2 0.4 0.6 1 2 20 22 31 40 2 3 34 40 46 52 3 4 36 46 44 56 Tabel 6. Rata-Rata Nilai Streamer Breakdown Korona Pada Isolasi Udara Tegangan DC Negatif Streamer breakdown (kv) (cm) Rod 5 0.2 0.4 0.6 1 2 43.4 50.4 51.2 58.2 2 3 53.6 57.4 59.6 65.4 3 4 66 70.4 75 82.8 Analisis Hasil Pengujian (i) (ii) Tabel 3. Rata-Rata Nilai Inception Voltage Korona Pada Isolasi Udara Tegangan DC Negatif Inception Voltage Korona (kv) (cm) 0.2 0.4 0.6 Rod 5 1 2 41.6 47 49.6 55.8 2 3 52.6 56.4 58.6 62.8 3 4 65 68.6 73.8 81 (i) (ii) Tabel 4. Rata-Rata Nilai Streamer Breakdown Korona Pada Isolasi Udara Tegangan AC Streamer breakdown (kv) (cm) Rod 5 0.2 0.4 0.6 1 2 15 17.2 19 20 2 3 17.2 18.6 20 21.2 3 4 19.2 20.8 21.6 22.4 (iii) (iv) Gambar 6. Proses Pengujian Elektroda Jarum 0.2 Jarak 4 cm dengan Sumber Tegangan AC Gambar 6 menunjukkan salah satu contoh hasil pengujian untuk memperoleh karakteristik korona dan tegangan tembus (streamer breakdown voltage). Gambar (i) elektroda jarum 0.2 dengan jarak sela 4 cm diberi tegangan AC, saat 3

mencapai tegangan 16 kv ujung elektroda jarum mulai muncul cahaya (ii), terjadi inception voltage untuk pertama kali pada saat tegangan yang diberikan sebesar 18 kv (iii). Pada saat tegangan semakin diperbesar menjadi 20 kv maka terjadi peristiwa tembus atau streamer breakdown (iv). Tegangan saat terjadi peristiwa tembus dicatat sebagai nilai tegangan tembus. Gambar 7. Grafik Karakteristik Incepetion Voltage Korona Pada Isolasi Udara Tegangan AC besar juga nilai Inception Voltage nya dan hal ini berarti nilai inception voltage korona dipengaruhi oleh : 1. Polaritas tegangan yang digunakan. 2. Besar ujung permukaan (tip) dari elektroda. 3. Jarak sela elektroda dengan elektroda lainnya. Sedangkan dari gambar 10 sampai gambar 12 dapat diketahui bahwa tegangan tembus (streamer breakdown voltage) pada isolasi udara dengan ukuran elektroda yang berbeda-beda yaitu 0.2, 0.4 dan 0.6 cenderung meningkat. Pada elektroda dengan ukuran diameter lebih besar (0.6) memerlukan tegangan yang lebih besar untuk mencapai peristiwa kegagalan begitu juga halnya jika jarak sela ditambahkan maka peristiwa untuk mencapai tegangan tembusnya juga membutuhkan tegangan semakin besar. Hal ini terjadi karena semakin besar jarak sela maka semakin tebal juga kerapatan udara sebagai media isolasinya. Gambar 8. Grafik Karakteristik Incepetion Voltage Korona Pada Isolasi Udara Tegangan DC Positif Gambar 10. Grafik Karakteristik Tegangan Tembus Pada Isolasi Udara Dengan Sumber Tegangan AC Gambar 9. Grafik Karakteristik Incepetion Voltage Korona Pada Isolasi Udara Tegangan DC Negatif Berdasarkan gambar 7 sampai gambar 9 dari hasil pengujian grafik bergerak secara linear karena pengaruh dari polaritas dan stres tegangan sebagai sumber tegangan pengujian elektroda. Grafik gambar juga menunjukkan pengaruh besarnya ujung permukaan elektroda yaitu untuk elektroda jarum dengan ukuran 0.2 ; 0.4; 0.6 dan 5 untuk elektroda rod terhadap Inception Voltage korona, dengan semakin besar ukuran ujung permukaan elektroda maka semakin besar tegangan yang diperlukan untuk mencapai peristiwa korona, begitu juga semakin besar jarak sela maka semakin Gambar 11. Grafik Karakteristik Tegangan Tembus Pada Isolasi Udara Dengan Sumber Tegangan DC Positif 4

Gambar 12. Grafik Karakteristik Tegangan Tembus Pada Isolasi Udara Dengan Sumber Tegangan DC Negatif 4.2 Efek Polaritas dan Stress Tegangan Sebelum Kegagalan Isolasi Efek polaritas dan stres tegangan sebelum kegagalan isolasi dapat dilihat dengan membandingkan antara nilai inception voltage korona dengan tegangan tembus (streamer breakdown Voltage) pada masing-masing kondisi elektroda. Tampak pada gambar 13 sampai gambar 16 grafik perbandingan nilai inception voltage korona tiap elektroda dan gambar 17 sampai gambar 20 grafik perbandingan nilai tegangan tembus tiap elektroda. Gambar 15. Grafik Perbandingan nilai Inception Voltage Korona Elektroda 0.6 Sumber Tegangan Berbeda Pada gambar 13 perbandingan antara nilai inception voltage korona pada elektroda 0.2 diperoleh tegangan inception voltage korona polaritas AC dan DC positif lebih cepat dari DC negatif karena kuat medan disekitar elektroda jarum kecil sehingga mempermudah pertumbuhan peluahan inception voltage korona. Untuk inception voltage polaritas DC negatif bernilai sangat besar disebabkan kuat medan yang sangat tinggi pada ujung elektroda jarum. Dibandingkan dengan grafik Gambar 16 elektroda rod dengan diameter 5 memiliki nilai inception voltage korona yang besar untuk setiap polaritas tegangan dimulai jarak sela 2 cm hingga jarak 4 cm daripada jenis elektroda jarum 0.2, 0.4 dan 0.6. Kuat medan listrik disekitar elektroda jarum dan plat juga berpengaruh pada nilai tegangan tembus pada setiap elektroda jarum dan elektroda rod sehingga diperoleh nilai tegangan tembus polaritas AC dan DC positif lebih cepat daripada DC negatif terlihat pada gambar 17 sampai gambar 20. Gambar 13. Grafik Perbandingan nilai Inception Voltage Korona Elektroda 0.2 Sumber Tegangan Berbeda Gambar 16. Grafik Perbandingan nilai Inception Voltage Korona Elektroda Rod 5 Sumber Tegangan Berbeda Gambar 14. Grafik Perbandingan nilai Inception Voltage Korona Elektroda 0.4 Sumber Tegangan Berbeda 5

karena distribusi medan semakin tidak uniform menyebabkan muatan ruangnya semakin besar sehingga menekan perkembangan korona atau memerlukan lebih besar lagi tegangan untuk terjadinya korona dan tegangan tembusnya. Bandingkan juga antara gambar 16 dengan gambar 20, elektroda rod dengan diameter 50 memiliki rentang yang besar mulai dari jarak sela awal jika dibandingkan dengan rentang pada elektroda jarum. Gambar 17 Grafik Perbandingan nilai Tegangan Tembus Elektroda 0.2 dengan Sumber Tegangan berbeda Gambar 18 Grafik Perbandingan nilai Tegangan Tembus Elektroda 0.4 dengan Sumber Tegangan berbeda Gambar 19 Grafik Perbandingan nilai Tegangan Tembus Elektroda 0.6 dengan Sumber Tegangan berbeda Gambar 20 Grafik Perbandingan nilai Tegangan Tembus Elektroda Rod dengan Sumber Tegangan berbeda Efek kestabilan korona dapat terlihat dengan membandingkan antara nilai inception voltage korona elektroda 0.2 gambar 13 dengan nilai tegangan tembus pada elektroda 0.2 gambar 17 yang mempunyai rentang tegangan cukup kecil dan berbeda antar jarak 2, 3 dan 4 cm. Elektroda 0.4 dan 0.6 memiliki rentang inception voltage korona dan tegangan tembus lebih besar dibandingkan dengan elektroda 0.2, berarti semakin tidak efektif daerah kestabilan koronanya, 5. PENUTUP 5.1 Kesimpulan 1. Semakin besar ujung permukaan elektroda (tip) menghasilkan nilai Inception Voltage Korona dan nilai tegangan tembus semakin besar karena semakin tebal media kerapatan udara sebagai media isolasinya. 2. Nilai Inception Voltage Corona dan tegangan tembus untuk tegangan DC negatif lebih besar daripada nilai Inception Voltage Corona dan tegangan tembus tegangan AC dan DC Positif karena pengaruh kuat medan listrik disekitar elektroda jarum dan kuat medan listrik disekitar elektroda plat. 3. Karakteristik kestabilan korona dipengaruhi oleh besarnya permukaan elektroda uji. Dengan semakin besar permukaan elektroda maka semakin tidak efektif kestabilan korona. Disebabkan karena semakin besarnya muatan ruang sehingga menghambat terjadinya korona. 5.2 Saran 1. Pada makalah ini pengujian dilakukan untuk 3 jarak sela dan 3 jenis sumber tegangan yang berbeda, selanjutnya dapat dilakukan pengujian dengan lebih banyak variasi jarak dan sumber tegangan untuk mengetahui lebih detail gejala pre-brekdown pada medan udara non-uniform. 2. Untuk pengembangan lebih lanjut dapat dilakukan analisa yang sama untuk jenis isolasi dan jenis electron yang berbeda. 3. Dapat dijadikan dasar perbandingan pengujian dengan isolasi yang sama namun dengan memperhatikan kondisi suhu dan temperatur yang berbeda DAFTAR PUSTAKA [1] Goldman, M. dan Sigmond, RS, April 1982. Corona and Insulation. IEEE Transactions on Electrical Insulation Vol. EI- 17.2 [2] Kind, D. 1982. Einfuhrung in die Hochspannungs - Versuchtechnik fur elektrotechniker. Friedr, Vieweg & Sohn, Germany. [3] Abdul Syakur, Mochaad Facta, Des 2005. Perbandingan Tegangan Tembus Media Isolasi Udara dan Media Isolasi Minyak 6

Trafo Menggunakan Elektroda Bidang- Bidang. Transmisi, Vol.10 2 [4] Kuffel,E ; Zaengl WS ; Kuffel J, 2000. High Voltage Engineering Fundamentals Second Edition. Newnes, Oxford. [5] Naidu M.S. ; Kamaraju V, 2002. High Voltage Engineering Third Edition. Mc. Graw Hill, Boston. [6] Arismunandar,A., 2001. Teknik Tegangan Tinggi. Pradnya Paramita, Jakarta. [7] Bonggas L Tobing, 2003. Peralatan Tegangan Tinggi. PT. Gramedia Pustaka Utama, Jakarta. [8] Hayt, W.H.Jr, 1991. Elektromagnetika Teknologi Edisi Kelima Jilid 1. Erlangga Jakarta [9]..., Oktober, 2009. Lucutan Korona, URL:http://www.wikipedia.com 7

RIWAYAT HIDUP Luqman Kumara, dilahirkan di kota Surabaya 11 September 1986. Penulis adalah anak ketiga dari empat bersaudara dari pasangan H. Nasir, S.E dan Hj. Anis Indrawati. Pada Bulan Juli tahun 2005 penulis terdaftar sebagai mahasiswa Jurusan Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh pember Surabaya. Mulai Oktober 2008 penulis aktif sebagai asisten praktikum Tegangan Tinggi di Laboratorium Tegangan Tinggi Elektro ITS. in aktif di laboratorium, penulis juga pernah aktif di kegiatan organisasi BEM ITS periode 2006-2008 dan TIM ROBOT ITS periode 2005 2008. Sekarang penulis aktif sebagai seorang BLOGGER di http://www.luxsman.web.id/ Jenjang pendidikan yang telah ditempuh penulis adalah sebagai berikut : SD Negeri Jemur Wonosari I/417 Surabaya, lulus tahun 1999 SLTP Negeri 2 Surabaya, lulus tahun 2002 SMA Negeri 18 Surabaya, lulus tahun 2005 Tahun 2005 terdaftar sebagai mahasiswa Jurusan Teknik Elektro, FTI - ITS Surabaya. 8