3. METODE PENELITIAN

dokumen-dokumen yang mirip
4 HASIL DAN PEMBAHASAN

3. BAHAN DAN METODE. Penelitian yang meliputi pengolahan data citra dilakukan pada bulan Mei

BAB 2 KONSEP DASAR PENGENAL OBJEK

Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6

BAB 3 METODOLOGI PENELITIAN

APLIKASI JARINGAN SARAF TIRUAN UNTUK INVENTARISASI LUAS SUMBER DAYA ALAM STUDI KASUS PULAU PARI

menunjukkan nilai keakuratan yang cukup baik karena nilai tersebut lebih kecil dari limit maksimum kesalahan rata-rata yaitu 0,5 piksel.

BAB III METODOLOGI PENELITIAN

PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK

BAB IV PENGOLAHAN DATA

HASIL DAN PEMBAHASAN

BAB III METODA. Gambar 3.1 Intensitas total yang diterima sensor radar (dimodifikasi dari GlobeSAR, 2002)

BAB 2 LANDASAN TEORI

PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI

BAB 3 PERANCANGAN SISTEM. Bab ini menguraikan analisa penelitian terhadap metode Backpropagation yang

BAB II DASAR TEORI. 2.1 Meter Air. Gambar 2.1 Meter Air. Meter air merupakan alat untuk mengukur banyaknya aliran air secara terus

BAB 2 LANDASAN TEORI

BAB III METODOLOGI PENELITIAN

METODOLOGI PENELITIAN

BAB 2 LANDASAN TEORI

3. METODOLOGI. Penelitian ini dilakukan dalam tiga tahap. Tahap pertama adalah

ANALISIS PENAMBAHAN NILAI MOMENTUM PADA PREDIKSI PRODUKTIVITAS KELAPA SAWIT MENGGUNAKAN BACKPROPAGATION

BAB IV IMPLEMENTASI DAN PENGUJIAN

Bab 5 Penerapan Neural Network Dalam Klasifikasi Citra Penginderaan Jauh

BAB II DASAR TEORI Jaringan Syaraf Tiruan. Universitas Sumatera Utara

5. PEMBAHASAN 5.1 Koreksi Radiometrik

BAB III PERANCANGAN SISTEM

BAB 2 LANDASAN TEORI

III. BAHAN DAN METODE

Pengembangan Aplikasi Prediksi Pertumbuhan Ekonomi Indonesia dengan Jaringan Syaraf Tiruan Backpropagation

BAB 2 LANDASAN TEORI

Gambar 6. Peta Lokasi Penelitian

PENGELOMPOKKAN HABITAT DASAR PERAIRAN DANGKAL BERBASIS DATA SATELIT QUICKBIRD MENGGUNAKAN ALGORITMA SELF ORGANISING MAP

BAB III METODOLOGI PENELITIAN

BAB III PELAKSANAAN PENELITIAN

BAB 2 LANDASAN TEORI. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu

BAB II DASAR TEORI. 2.1 Citra Digital

HASIL DAN PEMBAHASAN

BAB 2 TINJAUAN PUSTAKA

lalu menghitung sinyal keluarannya menggunakan fungsi aktivasi,

III. METODE PENELITIAN. berlokasi di kawasan Taman Nasional Way Kambas. Taman Nasional Way

Evaluasi Kesesuaian Tutupan Lahan Menggunakan Citra ALOS AVNIR-2 Tahun 2009 Dengan Peta RTRW Kabupaten Sidoarjo Tahun 2007

III. METODOLOGI 3.1 Waktu Penelitian 3.2 Lokasi Penelitian

BAB III PERANCANGAN DAN IMPLEMENTASI SISTEM

MATERI DAN METODE. Cara Pengambilan Data

III. BAHAN DAN METODE

4. HASIL DAN PEMBAHASAN

Architecture Net, Simple Neural Net

Jatinangor, 10 Juli Matius Oliver Prawira

3. METODE PENELITIAN

BAB III PERANCANGAN SISTEM

LAPORAN PRAKTIKUM MATA KULIAH PENGOLAHAN CITRA DIGITAL

METODE PENELITIAN. Badan Pusat Statistik Kabupaten Bengkalis

III. METODE PENELITIAN

BAB I PENDAHULUAN 1.1. Latar Belakang

3. METODE PENELITIAN. 3.1 Waktu dan Tempat Penelitian

BAB 2 TINJAUAN PUSTAKA

BAB 2 LANDASAN TEORI

BAB II LANDASAN TEORI

III. METODE PENELITIAN. Penelitian dilaksanakan di Taman Hutan Raya Wan Abdul Rachman (Tahura

BAB 2 LANDASAN TEORI

BAB 2 TINJAUAN PUSTAKA

KATA PENGANTAR Pemetaan Sebaran dan Kondisi Ekosistem Lamun Di Perairan Bintan Timur Kepulauan Riau.

Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation

VOL. 01 NO. 02 [JURNAL ILMIAH BINARY] ISSN :

MODEL PEMBELAJARAN JARINGAN SYARAF TIRUAN UNTUK OTOMATISASI PENGEMUDIAN KENDARAAN BERODA TIGA

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN

ANALISA JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MENGETAHUI LOYALITAS KARYAWAN

BAB 2 LANDASAN TEORI. fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses

KLASIFIKASI CITRA PARU MENGGUNAKAN MODEL SELF-ORGANIZING MAPS RADIAL BASIS FUNCTION NEURAL NETWORKS (SOM-RBFNN) SKRIPSI

III. METODOLOGI. Gambar 2. Peta Orientasi Wilayah Penelitian. Kota Yogyakarta. Kota Medan. Kota Banjarmasin

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. fold Cross Validation, metode Convolutional neural network dari deep learning

BAB III METODE PENELITIAN. menjawab segala permasalahan yang ada dalam penelitian ini.

Analisis Ketelitian Geometric Citra Pleiades 1B untuk Pembuatan Peta Desa (Studi Kasus: Kelurahan Wonorejo, Surabaya)

BAB 2 LANDASAN TEORI

Klasifikasi Pola Huruf Vokal dengan Menggunakan Jaringan Saraf Tiruan

KLASIFIKASI BENTUK DAUN MENGGUNAKAN METODE KOHONEN ABSTRAK

BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM

BAB II LANDASAN TEORI

BACK PROPAGATION NETWORK (BPN)

III. BAHAN DAN METODE

METODE PENELITIAN. Lokasi dan Waktu Penelitian

BAB III METODELOGI PENELITIAN. Alat yang digunakan dalam penelitian ini adalah: a. Prosesor : Intel Core i5-6198du (4 CPUs), ~2.

PREDIKSI KELULUSAN MAHASISWA MENGGUNAKAN METODE NEURAL NETWORK DAN PARTICLE SWARM OPTIMIZATION

BAB VIII JARINGAN SYARAF TIRUAN

PENENTUAN SEBARAN TERUMBU KARANG DENGAN MENGGUNAKAN ALGORITMA LYZENGA DI PULAU MAITARA. Universitas Khairun. Ternate. Universitas Khairun.

JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI CURAH HUJAN SUMATERA UTARA DENGAN METODE BACK PROPAGATION (STUDI KASUS : BMKG MEDAN)

Analisis Ketelitian Geometric Citra Pleiades 1A untuk Pembuatan Peta Dasar Lahan Pertanian (Studi Kasus: Kecamatan Socah, Kabupaten Bangkalan)

Presentasi Tugas Akhir

PREDIKSI CURAH HUJAN DI KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK

BAB III METODOLOGI PENELITIAN

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK MENGENALI MOTIF BATIK

BAB 2 HEMISPHERIC STRUCTURE OF HIDDEN LAYER NEURAL NETWORK, PCA, DAN JENIS NOISE Hemispheric structure of hidden layer neural network

PERANCANGAN SISTEM PENGENALAN DAN PENYORTIRAN KARTU POS BERDASARKAN KODE POS DENGAN MENGGUNAKAN ARTIFICIAL NEURAL NETWORK

Hasil klasifikasi citra ALOS PALSAR filterisasi Kuan. dengan ukuran kernel size 9x dengan ukuran kernel size 3x

PENGENALAN POLA HURUF ROMAWI DENGAN JARINGAN SARAF TIRUAN PERSEPTRON LAPIS JAMAK

BAB II TINJAUAN PUSTAKA

PERATURAN KEPALA BADAN INFORMASI GEOSPASIAL NOMOR 15 TAHUN 2014 TENTANG PEDOMAN TEKNIS KETELITIAN PETA DASAR DENGAN RAHMAT TUHAN YANG MAHA ESA,

PENGENALAN HURUF DAN ANGKA PADA CITRA BITMAP DENGAN JARINGAN SARAF TIRUAN METODE PROPAGASI BALIK

Transkripsi:

3. METODE PENELITIAN 3.1 Waktu dan Lokasi Penelitian Penelitian ini berlangsung mulai Maret 2009 - Juli 2010. Prosessing data citra dilakukan di bagian SIG Kelautan dan Remote Sensing Departemen Ilmu dan Teknologi Kelautan IPB. Pelaksanaan ground truth pada 23-28 Juni 2009 di perairan Gusung Karang Lebar dan Karang Congkak Kepulauan Seribu (Gambar 3-1) yang menjadi lokasi penelitian ini. 674000 675000 676000 677000 678000 679000 680000 N W 9370000 673000 9370000 672000 E 500 9368000 9367000 9368000 500 9367000 S Meter Kabupaten Kepulauan Seribu Provinsi DKI Jakarta 0 9369000 Gusung Karang Congkak Gusung Karang Congkak 9366000 9366000 9365000 9365000 P. Panggang 672000 673000 674000 675000 676000 677000 678000 679000 680000 Gambar 3-1 Lokasi Penelitian 3.2 Jenis dan Sumber Data Jenis dan sumber data penelitian ini adalah data penginderaan jauh dan pengukuran langsung (in-situ). Data penginderaan jauh yang digunakan adalah citra satelit Quickbird Gusung Karang Lebar dan Karang Congkak Kepulauan Seribu yang diperoleh dari Digital Globe s QuickBird Satellite tanggal aquisisi 28 September 2008. Data pengukuran in-situ terdiri dari; (1) ground control point (GCP), dan (2) data ekologi, yaitu karakteristik habitat dan kondisi ekosistem terumbu karang (biotik dan abiotik). Sejumlah stasiun pengamatan dalam penelitian ini merupakan deskripsi terkait karakteristik habitat perairan dangkal. 9364000 9364000 P. Pramuka Sumber: Citra Satelit Quickbird 28 September 2008 Survey Ground Truth 25-27 Juli 2009

24 3.3 Metode Pengumpulan Data Citra Metode pengumpulan data citra in-situ ditentukan dengan teknik sampling data spasial secara stratified random sampling. Teknik ini dilakukan di wilayah Gusung Karang Congkak terhadap 122 titik yang dipilih mewakili klasifikasi habitat perairan dangkal dari keseluruhan daerah penelitian. Data tersebut diperoleh dengan metode survey ground truth posisi menggunakan prinsip Differential Global Positioning System (DGPS) memanfaatkan teknologi GPS. Sedangkan pengumpulan data sekunder ditelusuri dari hasil akuisisi pengetahuan dan penelitian yang relevan. Peralatan dan parameter tersebut disajikan pada Tabel 3-1, Tabel 3-1 Peralatan dan parameter pengukuran No Nama Peralatan Parameter 1. Geomatic equipment Koordinat: - ground control point; - ground truth point; - Transect habitat site. 2. Scuba Diving equipment, Transect habitat data Transect quadrate (1 x 1m), Line meter (50 m), Digital underwater camera, 3. Akuisisi pengetahuan dan laporan Pengenalan karang dan habitatnya penelitian 4. Hardware dan Soft computing untuk komputasi Image processing system Pembentukan klasifikasi citra Survei DGPS bertujuan untuk menentukan posisi kondisi lapangan secara akurat dan memperbaikinya apabila terjadi perubahan atau ketidaksesuaian informasi dari sumber yang beragam, melalui pengecekan silang peta dasar dan peta citra satelit yang ada. Prinsip operasional survei DGPS tersebut dikembangkan sebagai berikut; Mengatur output dua GPS yang sama tipenya, yaitu Garmin 60 dengan waktu sama (5 detik) dan menghidupkannya secara bersamaan pada saat perekaman data berlangsung, sehingga menghasilkan sejumlah data n GCP. Merekam titik-titik yang dianggap penting sebagai acuan untuk menafsirkan kenampakan/objek antara kenyataan di lapangan dan peta dasar survey, sehingga memudahkan identifikasi dan analisis spasial peta dan koreksi geometrik, Merekam lokasi yang memiliki kecenderungan untuk berubah. Titik-titik lokasi GPS dipilih sesuai kebutuhan dan tujuan penggunaan GPS itu sendiri,

25 Membuat dokumentasi melalui pemotretan objek-objek di lapangan, baik untuk validasi kenampakan objek di peta/citra maupun melengkapi peta dasar survey, Mencatat dan mengidentifikasi informasi survey. Pemilihan informasi survey untuk titik-titik yang dijadikan pencatatan, tidak seperti halnya survei terestrial, survey GPS tidak memerlukan saling keterlihatan (intervisibility) antara titiktitik pengamat. Menghitung koreksi posisi lintang dan bujur sebagai posisi yang sebenarnya. 3.4 Analisis Pengolahan Citra ANN Diagram alir umum analisa citra digital dalam penelitian ini (Gambar 3-2) bermaksud menguji klasifikasi algoritma Artificial Neural Network (ANN). Proses pengolahan citra merupakan eksperimen dari kombinasi Band dari berbagai input, sehingga menghasilkan klasifikasi terbaik. Data Citra Quickbird terkoreksi geometrik Data Survei Lapang Training Sampel Unsupervised ANN Parameter training: Rate RMS Jumlah Iterasi Jumlah klaster Cropping region of interest (ROI) Band 1,2,3,4 Lyzenga Distribusi citra SOM, BP, AdaBoost Training Sampel Supervised ANN Parameter training: Kontribusi Threshold Rate Momentum RMS Jumlah Iterasi Jumlah hidden layer A1 A2 A3 A4 A5 A6 Klasifikasi Algoritma ANN No Akurasi yang Diinginkan Error Matrix Akurasi yang Diinginkan No Kelas A1 Yes Kelas A2 Yes Keterangan: A1 = SOM input semua Band (Band 1, 2, 3 dan 4); A2 = SOM input kombinasi Band 321; A3 = SOM input kombinasi Band 421; A4 = SOM input kombinasi Band 432; A6 = SOM dengan input data Lyzenga (kombinasi Band 432) Kelas A3 Kelas A4 Kelas A5 Kelas A6 Perbandingan Hasil Klasifikasi terbaik Gambar 3-2 Metodologi umum training Algoritma ANN

26 Model pembelajaran ANN supervised untuk mempersiapkan klasifikasi citra tersebut diilustrasikan pada Gambar 3-3. Klasifikasi data citra menggunakan ANN supervised terdiri dari dua tahap, yaitu pelatihan jaringan (network training) dan klasifikasi. Setelah konfigurasi jaringan ditetapkan, bobot dan bias diinisialisasi, langkah selanjutnya adalah melatih jaringan ANN-Backpropagation (ANN-BP) dan ANN-Adaptive Boosting (ANN-AdaBoost) Input data Pengkodean Learning rate momentum Inisialisasi bobot 1 2 f Kalkulasi Output Output yang Diharapkan Prediksi error 3 4 Update bobot No Diterima? Yes Penghentian training Gambar 3-3 Training ANN supervised dalam persiapan klasifikasi citra 3.4.1 Pra Pengolahan Citra Standar pra-pengolahan citra digital berupa koreksi radiometrik dan geometrik. Koreksi radiometrik bertujuan untuk menghilangkan faktor faktor yang menurunkan kualitas citra. Metode koreksi radiometrik yang digunakan adalah penyesuaian histogram (histogram adjustment), tetapi untuk penelitian ini tidak dilakukan lagi koreksi radiometrik karena citra QuickBird merupakan citra high resolution satellite dan telah terkoreksi secara radiometrik. Koreksi geometrik terhadap kedua periode waktu berbeda dengan acuan data lapang dilakukan setelah koreksi radiometrik. Koreksi geometrik ditempuh dengan transformasi geometris dan resampling citra menggunakan beberapa titik kontrol bumi (ground control point). Titik-titik tersebut diambil pada tempat berbeda yang tersebar di bagian citra, sehingga diperoleh nilai root mean square

27 (RMS) <0,5. Penentuan nilai RMS menentukan akurasi koreksi geometrik yang diketahui dari formula: d u 2 2 / n = a o { ui f ( xi, yi )}.......(3-1) Dimana; d v 2 2 / n = a o { vi g( xi, yi )}......(3-2) d u = standar deviasi pada nomor pixel; d v x, y ) = koordinat peta dari GCP; u, v ) ( i i ( i i = standar deviasi pada nomor pixel; = koordinat peta dari GCP. Rektifikasi (pembetulan) citra berdasarkan informasi posisi GCP yang ada bertujuan untuk menempatkan pixel citra pada posisi sebenarnya di permukaan bumi. Rektifikasi ini sangat erat kaitannya dengan pengambilan data in-situ, metode penentuan akurasi posisi, dan GPS yang digunakan. 3.4.2 Pengolahan Citra Distribusi spasial karakteristik habitat dasar perairan dangkal diolah dari citra satelit menggunakan beberapa pendekatan seperti komposit Band dan penajaman citra dengan algoritma depth invariant index. Algoritma ini mengaplikasikan metode koreksi kolom air atau dikenal dengan Algoritma Lyzenga (1981). Metode ini efektif untuk meningkatkan kualitas identifikasi dan klasifikasi habitat dasar perairan dangkal secara tematik. Persamaan algoritma depth invariant index diturunkan sebagai berikut:: Y = Ln B1 (ki/kj) Ln B2 dimana Y = indek dasar perairan; B = band yang dipilih; ki/kj= koefisien atenuasi = Variance Band ke i, = Variance Band ke j, = Covar Band ke ij Pengolahan citra ANN selanjutnya memerlukan ekstraksi ciri parameter input untuk data pembelajaran (learning), dan paramater training masing-masing metode ANN supervised dan unsupervised.

28 1) Ekstraksi Parameter Input Penelitian ini menyelidiki kombinasi 6 (enam) parameter input, yaitu A1, A2, A3, A4, A5 dan A6. Ilustrasi kesemuanya disajikan pada Tabel 3-2. Tabel 3-2 Parameter input klasifikasi Kode Input Jumlah Proses/ Node Metode Output A1 Band 1, 2, 3 dan 4 4 SOM Klaster citra (4 Band asli) A2 Komposit Band 1, 2 dan 3 3 SOM Klaster citra (Band 321) A3 Komposit Band 1, 2 dan 4 3 SOM Klaster citra (Band 421) A4 Komposit Band 2, 3 dan 4 3 SOM Klaster citra (Band 432) A5 Band 1, 2, 3 dan 4 (4 Band asli) dan komposit Band 432 7 Lyzenga Klaster/klasifikasi citra, dan koreksi A6 Data A5 (rationing) 3 SOM/BP/ AdaBoost 2) Parameter Training kolom air Klaster/klasifikasi citra, dan koreksi kolom air Parameter training untuk membangun model pembelajaran ANN unsupervised mengikuti parameter-parameter SOM berikut: Tabel 3-3 Parameter training ANN unsupervised Item parameter Nilai Jumlah input citra 3 Training rate 0.5 0.001 Radius ketetanggaan pixel 4 Jumlah Iterasi training 10,000 Sedangkan algoritma ANN supervised untuk membangun model pembelajaran ANN-BP dan AdaBoost mengacu parameter training (Tabel 3-4) dan ROI (Tabel 3-5) sebagai data pembelajaran (learning). Tabel 3-4 Parameter training ANN supervised Item parameter Nilai Training threshold 0.9 Training momentum 0.9 Kriteria RMS 0-0.1 Jumlah unit hidden layer *) 2 4 Jumlah node hidden layer **) 8 Training rate 0.2 Jumlah Iterasi training 10,000 *) Unit hidden layer berjumlah 2 khusus untuk AdaBoost **) Unit node hidden layer khusus untuk AdaBoost

29 Jenis penutupan Tabel 3-5 Region of Interest (ROI) training ANN supervised No/ Sampel Warna Deskripsi Kode (pixel) Karang hidup 1 (KH) 1652 Cyan Dominan karang hidup Karang mati 2(KM) 68 Magenta Dominan karang mati Lamun 3(L) 599 Green Dominan lamun Pasir 4(P) 1383 Yellow Dominan pasir Pasir campur karang Pasir campur lamun 5(PK) 375 Maroon Campuran pasir dan karang 6(PL) 279 Purple Hamparan pasir ditumbuhi lamun Daratan 7(D) 612 Red Pemukiman penduduk dan karang mati yang timbul di permukaan air Laut 8(L) 2764 Blue Perairan terendam lebih dalam Total jumlah pixel 7,737 3) Model Pembelajaran/Training ANN Pelatihan (training) ANN dalam penelitian ini ditempuh dengan dua cara pembelajaran (learning), yaitu unsupervised learning (algoritma SOM) dan supervised learning (algoritma Backpropagation). Algoritma SOM (self organizing map) Desain unsupervised learning menggunakan algoritma SOM (Kohonen 1984) memiliki kemampuan atau pengorganisasian mandiri tanpa adanya pendefinisian kelas sebelumnya, sehingga membentuk suatu klaster. Pendekatan ini memerlukan Parameter training (Tabel 3-3) dengan input minimal dari user (unit input layer) untuk membagi jumlah kelas/klaster yang dihasilkan (unit output layer): a. Unit input layer x i diaktifkan oleh input data citra. Input nilai pixel citra secara linear dibuat dari skala 0.0 dan 1.0 untuk input dengan Band minimum dan maksimum. b. Unit output layer y j merupakan output klaster. Output layer adalah kelompok yang paling dekat/mirip radius ketetanggan pixel dari masukan yang diberikan.

30 W ji X 0 =1 Y 1 X 1 X 2 X i Input layer Y 2 Y 3 Y j Output layer Dimana: x i : input variabel dari node i dalam input layer y j : output node k dalam output layer (nilai prediksi untuk node j) w ji : bobot koneksi node i input layer dengan node j dalam output layer Gambar 3-4 Jaringan Algoritma ANN-SOM Pelatihan jaringan Algoritma ANN-SOM (Gambar 3-3) melalui langkah berikut: (1) Inisialisasi: bobot-bobot w ij (biasanya random antara 0-1) laju pemahaman awal dan faktor penurunannya bentuk dan jari-jari (=R) topologi sekitarnya (2) Jika kondisi henti gagal, lakukan langkah 3-8. (3) Untuk setiap vektor masukan x, lakukan langkah 3-6 (4) Untuk setiap j, hitung:... (3-3) dimana adalah input neuron ke i pada iterasi n, dan adalah bobot dari input neuron i ke output neuron j pada iterasi n. (5) Tentukan indeks j sehingga d j minimum (6) Untuk setiap neuron j disekitar J modifikasi bobot: w baru ji = w lama ji + α(x ji w lama ji )... (3-4) (7) Perbaiki kecepatan pembelajaran (mulai dengan 0.5 dan turunkan 0.001) (8) Uji kondisi penghentian Kondisi penghentian iterasi adalah selisih antara w ji saat itu dengan w ji pada iterasi sebelumnya. Apabila semua w ji hanya berubah sedikit saja, berarti iterasi sudah mencapai konvergensi sehingga dapat dihentikan.

31 Algoritma Backpropagation Algoritma ANN BP dengan parameter pelatihan (Tabel 3-4) didesain berikut: (1) Kontribusi Ambang (threshold) dengan nilai 0-1. Kontribusi training threshold menentukan besarnya kontribusi bobot internal dengan baik ke tingkat aktivasi node. Hal ini digunakan untuk mengatur bobot perubahan untuk bobot internal node. Pelatihan algoritma interaktif menyesuaikan bobot antara node dan secara opsional ambang node untuk meminimalkan kesalahan antara lapisan output dan respon yang diinginkan. Pengaturan kontribusi thereshold training ke nol tidak mengatur node bobot internal. Penyesuaian bobot internal juga dapat menyebabkan klasifikasi yang lebih baik, tetapi terlalu berat banyak juga bisa menyebabkan generalisasi miskin. (2) Tingkat Pelatihan (training rate) dengan nilai 0-1. Tingkat pelatihan menentukan besarnya penyesuaian bobot. Tingkat yang tinggi akan mempercepat pelatihan, tetapi juga meningkatkan resiko goyangan (oscillation) atau tidak bertemu di satu tempat (non-convergence) dari hasil pelatihan. (3) Momentum Pelatihan (training momentum) dengan nilai 0-1. Memasukan tingkat momentum lebih besar dari nol memungkinkan untuk mengatur tingkat pelatihan yang lebih tinggi tanpa osilasi. Tingkat momentum yang lebih tinggi melatih dengan langkah lebih besar dari momentum yang lebih rendah. Pengaruhnya adalah untuk mendorong perubahan bobot selama proses berlangsung. (4) Kriteria RMS, masukan nilai kesalahan RMS dimana pelatihan harus berhenti. Jika kesalahan RMS seperti yang disajikan dalam plot selama pelatihan turun dibawah nilai masuk, pelatihan akan berhenti, bahkan jika jumlah iterasi belum terpenuhi. Klasifikasi ini kemudian akan dieksekusi. (5) Pelatihan Iterasi, jumlah iterasi pelatihan diatur hingga maksimum 10.000 dengan waktu terlatih sekitar 30 menit untuk area penelitian kecil. a. Unit input layer yang diaktifkan oleh input data citra. Input nilai pixel citra secara linear dibuat dari skala 0.0 dan 1.0 dengan Band minimum dan maksimum. b. Hidden layer diantara input layer dan output layer. Hitung unit input layer ke unit hidden layer (pers. 3-5) dan hidden layer ke unit output layer (pers. 3-6).

32 c. Unit output layer merupakan output kelas. Output kelas tersebut adalah habitat terumbu karang. d. Target digunakan untuk pembanding output. Target diperoleh dari training area atau region of interest (ROI). Proses belajar dihentikan jika nilai prediksi cukup dekat dengan nilai target melalui perhitungan kesalahan (pers. 3-11). Pembelajaran algoritma BP tersebut diatas secara lengkap dan sistematik yaitu: (1) Inisialisasi bobot: a. Normalisasi input data X i dan target t k dalam range nilai (0,1) b. Acak bobot W ij dan V jk menggunakan nilai (0,1) c. Inisialisasi threshold menggunakan unit aktivasi, Xo =1 dan Ho = 1. H 0 =1 X 0 = X 1 W ij H 2 X 2 H 3 X i Input layer H 1 H j Hidden layer V jk Y 1 Y k Output layer Dimana: x i : input variable dari node i dalam input layer h j : output node j dalam hidden layer y k : output node k dalam output layer (nilai prediksi untuk node k) w ij : bobot koneksi node i dalam input layer dan j dalam hidden layer v jk : bobot koneksi node j dalam hidden layer dan node k dalam output layer Gambar 3-5 Jaringan algoritma ANN-BP dengan satu hidden layer (2) Prediksi t dengan Y dengan langkah umpan maju: a. lakukan training set x i dan t k b. hitung bobot input layer-hidden layer menggunakan fungsi aktivasi h j :....... (3-5) c. Hitung bobot hidden layer-output layer menggunakan fungsi aktivasi y k :

33...... (3-6) (3) Minimalkan kesalahan bobot dengan penyesuaian V jk dan W ij menggunakan langkah umpan balik. a. Hitung kesalahan dari node dalam output layer (δk) untuk disesuaikan dengan bobot v jk..........(3-7).......(3-8) b. Hitung kesalahan dalam node input layer yang disesuaikan dengan bobot W ij.....(3-9)............ (3-10) (4) Pindahkan pada pelatihan data selanjutnya, dan ulangi langkah 2. Proses pembelajaran berhenti jika Y k cukup mendekati target T k Penentuannya dapat berdasarkan error E, proses pembelajaran berhenti ketika E<0.0001. dimana....(3-11) Dimana: T kp = nilai target data p dari training set node k Y p = nilai prediksi data p dari training set node k Jaringan dapat digunakan untuk memprediksi t melalui x setelah training selesai. Algoritma Adaptive Boosting Algoritma Adaptive Boosting (AdaBoost) merupakan standar klasifikasi ANN yang difokuskan pada struktur MLP (Richards and Jia 1999 dan Duda et al. 2001). Algoritma AdaBoost (Gambar 3-5) dibedakan dengan algoritma BP pada jumlah layernya, yaitu memiliki tiga layer dan dua hidden layer. Mekanisme pelatihan data menggunakan kalman filtering (Bishop 1995). Prosedur pelatihan

34 Kalman filter adalah fungsi kuadrat linear square error output jaringan yang menyimpulkan semua bobot pengamatan: dan dengan jumlah acak. (2) Pilih pasangan acak (g(v+1), l(v+1) dengan distribusi probabilitas p(v) yang tepat dan menentukan vektor output layer tersembunyi menurut persamaan:. dan network output berdasarkan: set dan (3) Tentukan Kalman yang didapat untuk semua neuron berdasarkan:

35 (4) Update synaptik bobot matrik (umpan mundur dengan jaringan): Gambar 3-5 Penentuan bobot synaptic untuk isolasi output neuron dengan Kalman Filter (5) Tentukan bobot matriks kovarian baru (6) Jika fungsi keseluruhan cukup kecil, berhenti lalu atur v=v+1 dan kembali ke langkah (2). Sedangkan pembelajaran algoritma ANN-AdaBoost secara sistematik dijalankan sebagai berikut:

36 (1) Set p 1 (v) = 1/n, v = 1... n, dimana n adalah jumlah observasi dalam susunan data training area. Set i = 1. (2) Set r = 0. (3) Buat sebuah jaringan neural network N (i) yang baru dengan bobot synaptic acak. Latih N dengan algoritma (1) dan distribusi sampling p i (v). Setelah pelatihan selesai, biarkan U i menjadi himpunan pengamatan yang salah diklasifikasikan. (4) Kalkulasi Є i = vєuip i (v). Jika Є i <1/2 maka lanjut, jika r<5 maka set r = r+1, putuskan misalnya N(i) dan kembali ke langkah (3), lalu berhenti. (5) Hitung Є i / (1- Є i ) dan update distribusi sampling: dimana 1 1 0 0 1 0 1 1 1 m 1(V) g 1(V) g 2(V) g N(V) N 1 N i N Input layer J 1 J i L Hidden layer 1 J 1 J i L Hidden layer 2 k K Output layer M K(V) M K(V) Dimana: N i : input variable dari node input layer i L : output node j (hidden layer 1) L : output node j (hidden layer 2) K : kelas output node k dalam output layer v : Identitas dari contoh training 0 : bias input Gambar 3-6 Jaringan algoritma AdaBoost dengan dua lapisan hidden layer

37 (6) Set i = i + 1. Jika i>75 maka berhenti, lalu kembali ke langkah (2). Proses pembelajaran berhenti ditunjukkan dengan jumlah iterasi dan nilai quadratic error yang diinginkan. Proses berhenti ini merupakan ukuran validasi sistem. Data validasi merupakan set data pasangan input-output pembelajaran yang dibagi kedalam dua set data, yaitu data training dan data validasi. Data training tersebut setelah dilakukan proses pembelajaran, selanjutnya divalidasi menggunakan satu set data input-output baru yang bertujuan untuk menghubungkan dengan baik pasangan data input-output. 3.5 Analisis Penilaian Akurasi Pengamatan objek di lapangan dilakukan secara rapid mobile dan menganut prinsip penutupan lahan dominan untuk membuat klasifikasi daerah pengamatan dan kodefikasi untuk keperluan simplikasi (Tabel 3-5). Pengambilan data lapangan tersebut dengan cara kombinasi pandangan mata dan penggunaan kamera digital dari permukaan air (dari atas perahu yang bergerak). Di setiap lokasi tertentu, jenis penutupan lahan ditentukan dan dicatat posisinya dengan GPS. Data GPS tersebut kemudian dianalisis akurasi posisinya untuk dipergunakan dalam uji akurasi tematik selanjutnya. 3.5.1 Akurasi Posisi GPS Akurasi posisi hasil survei GPS dengan pendekatan DGPS untuk keperluan uji akurasi dihitung menggunakan formulasi: dimana,...(3-13) Dimana; E 1 = nilai terkoreksi posisi lintang dan bujur ke ij Ê = rata-rata nilai posisi lintang dan bujur E = nilai posisi lintang dan bujur E = selisih nilai E terhadap nilai rata-rata perhitungan dalam satu hari 3.5.2 Akurasi peta tematik Akurasi peta tematik dianalisa dengan uji ketelitian matrik konfusi (Congalton dan Green 1997; 2009). Matrik konfusi ditentukan berdasarkan persentase akurasi klasifikasi dari perbandingan antar kelas habitat ekosistem terumbu karang yang terbentuk dengan jumlah pixel yang benar masuk pada training area hasil survey lapangan (Tabel 3-6).

38 Tabel 3-6 Matrik konfusi (confussion matrix) Training Area Total Baris n +k User accuracy Hasil Klasifikasi A B...... D n +k n kk /n +k A n ii............... B................................................................................. D......... n +k...... Total Kolom n k+......... n... Producer accuracy n kk /n +k............... Overall accuracy Berdasarkan matrik tersebut dihitung secara matematis uji overall accuracy, producer accuracy, dan user accuracy: overall accuracy n = n kk 100% ;....(3-14) producer accuracy = n n kk k+ 100% ;......(3-15) user accuracy = n n kk +k 100% ;.....(3-16) Dimana; - Overall accuracy adalah persentase pixel-pixel yang tepat dikelaskan, - Producer accuracy adalah peluang rata-rata (%) suatu pixel menunjukkan sebaran masing-masing kelas hasil klasifikasi lapangan. - User accuracy adalah peluang rata-rata (%) suatu pixel secara aktual mewakili kelas-kelas hasil klasifikasi citra.