ANALISIS VARIASI DERAJAT PENGAPIAN TERHADAP KINERJA MESIN

dokumen-dokumen yang mirip
PENGARUH VARIASI UNJUK DERAJAT PENGAPIAN TERHADAP KERJA MESIN

Pengaruh Kerenggangan Celah Busi terhadap Konsumsi Bahan Bakar pada Motor Bensin

DAMPAK KERENGGANGAN CELAH ELEKTRODE BUSI TERHADAP KINERJA MOTOR BENSIN 4 TAK

PENGARUH PENAMBAHAN TURBULATOR PADA INTAKE MANIFOLD TERHADAP UNJUK KERJA MESIN BENSIN 4 TAK

PENGARUH JENIS BAHAN BAKAR TERHADAP UNJUK KERJA SEPEDA MOTOR SISTEM INJEKSI DAN KARBURATOR

ANALISIS PENGARUH VARIASI CDI TERHADAP PERFORMA DAN KONSUMSI BAHAN BAKAR HONDA VARIO 110cc

PENGARUH PENGGUNAAN BLOWER ELEKTRIK TERHADAP PERFORMA MESIN SEPEDA MOTOR SISTEM INJEKSI

Andik Irawan, Karakteristik Unjuk Kerja Motor Bensin 4 Langkah Dengan Variasi Volume Silinder Dan Perbandingan Kompresi

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

Upaya Peningkatan Unjuk Kerja Mesin dengan Menggunakan Sistem Pengapian Elektronis pada Kendaraan Bermotor

BAB IV PENGUJIAN DAN ANALISA

STUDI EKSPERIMENTAL PENGARUH TIMING INJECTION TERHADAP UNJUK KERJA MOTOR DIESEL 1 SILINDER PUTARAN KONSTAN DENGAN BAHAN BAKAR BIO SOLAR

UJI PERFORMANSI MESIN OTTO SATU SILINDER DENGAN BAHAN BAKAR PREMIUM DAN PERTAMAX PLUS

PENGARUH PENGGUNAAN CDI PREDATOR DUAL MAP TERHADAP KARAKTERISTIK PERCIKAN BUNGA API DAN KINERJA MOTOR 4 LANGKAH 110 CC TRANSMISI AUTOMATIC

ANALISIS VARIASI TEKANAN PADA INJEKTOR TERHADAP PERFORMANCE (TORSI DAN DAYA ) PADA MOTOR DIESEL

Jurnal Teknik Mesin UMY

BAB II TINJAUAN LITERATUR

PENGARUH VARIASI SUDUT BUTTERFLY VALVE PADA PIPA GAS BUANG TERHADAP UNJUK KERJA MOTOR BENSIN 4 LANGKAH

Abstract. Keywords: Performance, Internal Combustion Engine, Camshaft

Edi Sarwono, Toni Dwi Putra, Agus Suyatno (2013), PROTON, Vol. 5 No. 1/Hal

PENGARUH PERUBAHAN SAAT PENYALAAN (IGNITION TIMING) TERHADAP PRESTASI MESIN PADA SEPEDA MOTOR 4 LANGKAH DENGAN BAHAN BAKAR LPG

Prosiding Seminar Nasional Manajemen Teknologi XIX Program Studi MMT-ITS, Surabaya 2 November 2013

Pengaruh Variasi Durasi Noken As Terhadap Unjuk Kerja Mesin Honda Kharisma Dengan Menggunakan 2 Busi

BAB II DASAR TEORI 2.1 Motor Bakar 2.2 Prinsip Kerja Mesin Bensin

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

Ahmad Nur Rokman 1, Romy 2 Laboratorium Konversi Energi, Jurusan Teknik Mesin, Fakultas Teknik Universitas Riau 1

K BAB I PENDAHULUAN

PENGARUH PENGGUNAAN VARIASI BUSI TERHADAP KARAKTERISTIK PERCIKAN BUNGA API DAN KINERJA MOTOR HONDA BLADE 110 CC

PENGGUNAAN IGNITION BOOSTER

Jurnal Teknik Mesin, Volume 6, Nomor 1, Tahun

UNJUK KERJA MESIN BENSIN 4 SILINDER TYPE 4G63 SOHC 2000 CC MPI

PENGARUH PERUBAHAN TITIK BERAT POROS ENGKOL TERHADAP PRESTASI MOTOR BENSIN EMPAT LANGKAH

PENGARUH FILTER UDARA PADA KARBURATOR TERHADAP UNJUK KERJA MESIN SEPEDA MOTOR

DINAMOMETER GENERATOR AC 10 KW PENGUKUR UNJUK KERJA MESIN SEPEDA MOTOR 100 CC

Oleh: Nuryanto K BAB I PENDAHULUAN

PENGARUH PEMASANGAN DUA CDI DAN VARIASI PUTARAN MESIN TERHADAP OUTPUT DAN KONSUMSI BAHAN BAKAR

OPTIMASI DAYA MESIN DAN KONSUMSI BAHAN BAKAR MESIN TOYOTA SERI 5K MELALUI PENGGUNAAN PENGAPIAN BOOSTER

BAB III METODE PENELITIAN

Seminar Nasional (PNES II), Semarang, 12 Nopember 2014

Analisis emisi gas buang dan daya sepeda motor pada volume silinder diperkecil

OPTIMALISASI SISTEM PENGAPIAN CDI (CAPASITOR DISCHARGE IGNITION) PADA MOTOR HONDA CB 100CC

PENGARUH PENGGUNAAN VARIASI ELEKTRODA BUSI TERHADAP PERFORMA MOTOR BENSIN TORAK 4 LANGKAH 1 SILINDER HONDA SUPRA-X 125 CC

PERFORMANSI MESIN SEPEDA MOTOR SATU SILINDER BERBAHAN BAKAR PREMIUM DAN PERTAMAX PLUS DENGAN MODIFIKASI RASIO KOMPRESI

BAB II LANDASAN TEORI

TUGAS AKHIR. DisusunOleh: MHD YAHYA NIM

ARTIKEL. Analisa Pengaruh Jenis Pegas, Roller Terhadap Torsi Dan Konsumsi Bahan Bakar Pada Sepeda Motor Matic

Gambar 3.1. Diagram alir percikan bunga api pada busi

EFISIENSI GAS ENGINE PADA BERBAGAI PUTARAN: STUDI EKSPERIMEN PADA JES GAS ENGINE J208GS

PENGARUH IGNITION TIMING DENGAN BAHAN BAKAR LPG TERHADAP UNJUK KERJA MESIN BENSIN EMPAT LANGKAH SATU SILINDER

Pengaruh Penggunaan Busi Terhadap Prestasi Genset Motor Bensin

ANALISA PENGARUH DURASI CAMSHAFT TERHADAP UNJUK KERJA MOTOR BAKAR HONDA TIGER 200 CC TUNE UP DRAG BIKE

BAB II DASAR TEORI 2.1. Motor Bensin Penjelasan Umum

Imam Mahir. Jurusan Teknik Mesin, Fakultas Teknik, Universitas Negeri Jakarta Jalan Rawamangun Muka, Jakarta

PENGARUH PENGGUNAAN CDI RACING TERHADAP KARAKTERISTIK PERCIKAN BUNGA API DAN KINERJA MOTOR 4 LANGKAH 110 CC TRANSMISI AUTOMATIC TAHUN 2009

Peningkatan Performa Sepeda Motor Dengan Variasi CDI Programmable. Ibnu Siswanto Pendidikan Teknik Otomotif, FT UNY

SKRIPSI PENGARUH PENGGUNAAN THROTTLE SWITCH SYSTEM PADA SEPEDA MOTOR HONDA SUPRA X 125 TERHADAP DAYA DAN KONSUMSI BAHAN BAKAR

UJI PERFORMA PENGARUH IGNITION TIMING TERHADAP KINERJA MOTOR BENSIN BERBAHAN BAKAR LPG

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. pembakaran yang lebih cepat dan mengurangi emisi gas buang yang di

PENGARUH WAKTU PENGAPIAN (IGNITION TIMING) TERHADAP DAYA DAN TORSI PADA SEPEDA MOTOR DENGAN BAHAN BAKAR PREMIUM, PERTALITE DAN PERTAMAX PLUS

Studi Eksperimental Pengaturan Waktu Pengapian Pada Mesin 4 Langkah 1 Silinder Berbahan Bakar E25

PENGARUH PENAMBAHAN ADITIF PADA PREMIUM DENGAN VARIASI KONSENTRASI TERHADAP UNJUK KERJA ENGINE PUTARAN VARIABEL KARISMA 125 CC

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

Performansi Sepeda Motor Empat Langkah Menggunakan Bahan Bakar dengan Angka Oktan Lebih Rendah dari Yang Direkomendasikan

SWIRL SEBAGAI ALAT PEMBUAT ALIRAN TURBULEN CAMPURAN BAHAN BAKAR DAN UDARA PADA SALURAN INTAKE MANIFOLD

PENGUJIAN MESIN SEPEDA MOTOR 100 CC MENGGUNAKAN DINAMOMETER GENERATOR AC 10 KW

BAB II LANDASAN TEORI. mekanik berupa gerakan translasi piston (connecting rods) menjadi gerak rotasi

PENGARUH PENAMBAHAN ADITIF ABD 01 SOLAR KE DALAM MINYAK SOLAR TERHADAP KINERJA MESIN DIESEL


BAB III METODE PENELITIAN

BAB III PROSES MODIFIKASI DAN PENGUJIAN. Mulai. Identifikasi Sebelum Modifikasi: Identifikasi Teoritis Kapasitas Engine Yamaha jupiter z.

PENGARUH PENGGUNAAN KOIL RACING TERHADAP UNJUK KERJA PADA MOTOR BENSIN

BAB III METODE PENELITIAN

SISTEM PENGAPIAN CDI DENGAN SUDUT PENGAPIAN BERVARIASI UNTUK PENINGKATAN KINERJA MOTOR

PENGARUH PENGGUNAAN FREKUENSI LISTRIK TERHADAP PERFORMA GENERATOR HHO DAN UNJUK KERJA ENGINE HONDA KHARISMA 125CC

BAB IV HASIL DAN PEMBAHASAN

Jurnal Teknik Mesin UMY

ANALISIS PENCAMPURAN BAHAN BAKAR PREMIUM - PERTAMAX TERHADAP KINERJA MESIN KONVENSIONAL

VARIASI JUMLAH KOIL DENGAN 2 BUSI TERHADAP PERFORMA YAMAHA JUPITER Z 110 CC

BAB III METODE PENELITIAN. Mulai

PERBEDAAN DAYA PADA MESIN PENGAPIAN STANDAR DAN PENGAPIAN MENGGUNAKAN BOOSTER

BAB IV PENGUJIAN ALAT

BAB III METODE PENELITIAN

UJI PERFORMANSI MESIN DIESEL BERBAHAN BAKAR LPG DENGAN MODIFIKASI SISTEM PEMBAKARAN DAN MENGGUNAKAN KONVERTER KIT SEDERHANA

Fahmi Wirawan NRP Dosen Pembimbing Prof. Dr. Ir. H. Djoko Sungkono K, M. Eng. Sc

BAB IV HASIL DAN PEMBAHASAN

BAB III METODOLOGI PENELITIAN

PENGARUH JENIS BAHAN BAKAR TERHADAP UNJUK KERJA MOTOR BAKAR INJEKSI ABSTRAK

Beni Setya Nugraha, S.Pd.T. Joko Sriyanto, MT. (Dosen Jurusan Pendidikan Teknik Otomotif F.T. UNY)

Jurnal ENGINE Vol.1 No.1, Mei 2017, pp e-issn:

BAB II LANDASAN TEORI

UJI EKSPERIMENTAL PENGARUH PENAMBAHAN BIOETANOL PADA BAHAN BAKAR PERTALITE TERHADAP UNJUK KERJA MOTOR BAKAR BENSIN

STUDI KARAKTERISTIK TEKANAN INJEKSI DAN WAKTU INJEKSI PADA TWO STROKE GASOLINE DIRECT INJECTION ENGINE

Wardoyo. Jurusan Teknik Mesin Fakultas Teknik Universitas Proklamasi 45 Yogyakarta

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

: ENDIKA PRANNANTA L2E

ANALISA MODIFIKASI INTAKE MANIFOLD TERHADAP KINERJA MESIN SEPEDA MOTOR 4 TAK 110cc

Seminar Nasional IENACO 2016 ISSN:

PENGARUH PERUBAHAN WAKTU PENGAPIAN (IGNITION TIMING) TERHADAP TORSI, DAYA, DAN KONSUMSI BAHAN BAKAR PADA MESIN HONDA G200 DENGAN BAHAN BAKAR GAS LPG

PENGARUH PEMASANGAN SUPERCHARGER TERHADAP UNJUK KERJA PADA MOTOR BENSIN SATU SILINDER

BAB IV HASIL DAN ANALISA DATA

Transkripsi:

ANALISIS VARIASI DERAJAT PENGAPIAN TERHADAP KINERJA MESIN Syahril Machmud 1, Untoro Budi Surono 2, Leydon Sitorus 3 1,2 Staf Pengajar Jurusan Teknik Mesin Fakultas Teknik Universitas Janabadra Yogyakarta 3 Alumni Jurusan Teknik Mesin Fakultas Teknik Universitas Janabadra Yogyakarta Jalan Tentara Rakyat Mataram 55-57 Yogyakarta 53122 e-mail : syahril@janabadra.ac.id ABSTRAK This study aims to determine the influence of ignition timing degree variations to engine performance (BMEP, rate of fuel consumption and SFC) on 4 stroke petrol engine with varieties of engine rotational speed (rpm) that use premium as a fuel. In this research, it was used three variations of ignition timing degree, namely: standard, advance 3 o and advance 6 o This research was done using a motorcycle Honda Supra NF 100 D. This investigation used dynotester to determine the torque and power from the engine. Investigation of engine power was done on rotational speed from 5000 rpm to 9000 rpm by range 1000 rpm, while fuel consumption test was conducted on rotational speed from 5000 rpm to 9000 rpm by range 2000 rpm. From the results of this research, it can be concluded that the lowest BMEP,equal to 923.5 kpa is resulted by the ignition timing advanced 6 o on rotational speed between 5000 rpm to 6500 rpm. Meanwhile, the lowest fuel consumption (2.589 kg/h) and SFC are resulted by the ignition timing advanced 6 o on rotational speed 9000 rpm. Kata Kunci : ignition timing, BMEP, fuel consumption, SFC PENDAHULUAN Salah satu bagian penting dalam proses pembakaran adalah sistem pengapian (ignition). Pada motor bensin, terdapat busi pada celah ruang bakar yang dapat memercikkan bunga api yang kemudian membakar campuran bahan bakar dan udara pada suatu titik tertentu yang diinginkan dalam suatu siklus pembakaran. Penempatan titik penyalaan yang tepat, dapat meningkatkan efisiensi pembakaran dan mengoptimalkan energi dari pembakaran. Waktu penyalaan adalah saat dimana bunga api dipercikkan oleh busi untuk membakar campuran udara dan bahan bakar yang dikompresi oleh piston, kemudian menghasilkan tekanan sehingga digunakan untuk menghasilkan langkah kerja. Gerakan piston terhadap waktu penyalaan, dapat dianalisisa melalui derajat pengapian Derajat pengapian yang sesuai adalah salah satu faktor penting dalam memaksimalkan tekanan dalam ruang bakar. Sehingga sistem ini merupakan salah satu faktor penting untuk menghasilkan efisiensi mesin dan daya mesin yang baik. Penelitian tentang pengaruh variasi derajat pengapian terhadap efisiensi termal dan konsumsi bahan bakar telah dilakukan oleh Nanlohy, 2012. Penelitian menggunakan mesin 125 cc Honda Kharisma SI dan dilakukan pada kondisi setengah bukaan katup dengan variasi derajat pengapian dari 9 o, 12 o, dan 15 o sebelum TMA. Dari penelitian ini diketahui bahwa efisiensi termal tertinggi diperoleh pada derajat pengapian 9 o sebelum TMA. Sedangkan SFC terendah juga diperoleh pada derajat pengapian 9 o sebelum TMA. Zareei dan Kakaee (2013) melakukan penelitian pengaruh derajat pengapian terhadap unjuk kerja dan emisi mesin bensin. Penelitian ini dilakukan dengan putaran mesin 3400 rpm. Sedangkan derajat pengapian divariasikan antara 41 o sebelum TMA sampai 10 o setelah TMA. Dari penelitian ini diketahui bahwa BMEP dan efisiensi termal tertinggi dicapai pada derajat pengapian 31 o sebelum TMA. Dari penelitian ini diketahui juga bahwa BSFC cenderung semakin naik dengan derajat pengapian yang semakin mendekati TMA. Sementara itu emisi HC semakin

menurun seiring dengan derajat pengapian yang semakin dekat dengan TMA. Sedangkan emisi O2, CO dan CO2 hanya mengalami sedikit perubahan dan emisi NOx terendah diperoleh pada derajat pengapian 10 o sebelum TMA. Penelitian dilakukan pada mesin dengan bahan bakar bensin, CNG dan B20. Penelitian tentang pengaruh derajat pengapian juga dilakukan oleh Gopal dan Rajendra, 2013. Penelitian dilakukan dengan putaran mesin 2500 rpm dan variasi derajat pengapian 22 o, 27 o, dan 32 o sebelum TMA. Dari hasil penelitian diketahui bahwa dengan bahan bakar CNG dan pada derajat pengapian 27 o sebelum TMA menghasilkan BSFC terendan dan efisiensi termal paling tinggi. Penelitian ini untuk mengetahui seberapa besar pengaruh variasi derajat pengapian, terhadap kinerja mesin, yang berhubungan dengan BMEP, Laju Konsumsi Bahan Bakar dan SFC pada mesin bensin 4 tak yang menggunakan bahan bakar premium. Sistem Pengapian Sistem pengapian merupakan sistem yang digunakan untuk menghasilkan bunga api, guna melakukan pembakaran terhadap campuran bahan bakar-udara yang ada di dalam ruang pembakaran dengan waktu pengapian (timing ignition) yang telah ditentukan. Untuk tercapainya loncatan bunga api pada busi, maka harus ada tegangan listrik yang cukup tinggi yang berkisar antara 5000 volt sampai lebih dari 10.000 volt. Sistem pengapian ini memiliki beberapa komponen yang sangat penting untuk terciptanya bunga api pada saat pembakaran, diantaranya adalah : 1. Magnet Magnet ditempatkan pada roda penerus yang dipasangkan pada poros engkol. Inti besi ditempatkan sebagai stator. Magnet berputar bersama-sama dengan putaran poros engkol dan antara inti besi dengan magnet terdapat celah kecil. Karena perputaran magnet ini akan menimbulkan listrik dalam lilitan primer pada inti besi. Akibat gerakan cam titik kontak akan terbuka maka akan terjadi arus listrik tegangan tinggi yang memungkinkan terjadinya loncatan bunga api pada busi. 2. Busi (spark plug) Busi merupakan suatu komponen yang berfungsi untuk menciptakan loncatan bunga api saat dialiri arus listrik tegangan tinggi. Kedua elektroda pada busi dipisahkan oleh isolator agar loncatan listrik hanya terjadi diantara ujung elektroda. Bahan isolator itu sendiri haruslah memiliki tahanan listrik yang tinggi, tidak rapuh terhadap kejutan mekanik dan panas. Isolator ini juga harus merupakan konduktor panas yang baik serta tidak bereaksi kimia dengan gas pembakaran. 3. Koil pengapian ( ignition coil ) Koil pengapian mengubah sumber tegangan rendah dari baterai atau koil sumber (12 volt) menjadi sumber tegangan tinggi (10 kvolt atau lebih) yang diperlukan untuk menghasilkan loncatan bunga api yang kuat pada celah busi dalam sistem pengapian. 4. CDI dan Pulser CDI (Capacitive Discharge Ignition) merupakan sebuah perangkat elektronik sebagai pengatur pengapian (ignition) dan kelistrikan (electricity) yang terdapat pada sebuah sepeda motor dan berperan membaca sensor yang mengatur waktu pengapian yang terdapat pada mesin lalu diolah secara digital dalam CDI. Hasil pemrosesan CDI berupa output yang akan mengatur perangkat pengapian untuk melakukan pembakaran (combustion) bahan bakar di dalam ruang bakar (combustion chamber) sebuah mesin sepeda motor. Sensor pengatur waktu (timing) pengapian terdapat pada bagian ruang magnet sebuah mesin. Sensor berupa pulser (pick-up coil) akan membaca tonjolan (trigger magnet) yang terdapat pada sisi luar pelat dudukan (sitting) magnet. Magnet yang terhubung dengan crankshaft akan berputar sesuai dengan putaran mesin, semakin tinggi putaran mesin maka semakin tinggi pula putaran magnet yang akan berpengaruh terhadap pembacaan pulser terhadap tonjolan sisi luar sitting plate magnet. CDI mengandalkan pulser (pick-up coil). Pulser ini memberi sinyal berdasarkan putaran magnet. Sinyal itu dikirim ke CDI, yang kemudian memerintahkan busi menembak. Dalam CDI, sinyal pulser diterima dioda

penyearah arus, lalu dicekal resistor dan diterima beberapa kapasitor, sebelum dilepas ke koil yang kemudian 'menyetrum' busi. Saat Pengapian (ignition timing) dan Pembakaran Setelah campuran bahan bakar dibakar oleh bunga api, maka diperlukan waktu tertentu bagi bunga api untuk merambat di dalam ruang bakar. Oleh sebab itu akan terjadi sedikit kelambatan antara awal pembakaran dengan pencapaian tekanan pembakaran maksimum. Dengan demikian, agar diperoleh output maksimum pada engine dengan tekanan pembakaran mencapai titik tertinggi (sekitar 10º setelah TMA), periode perlambatan api harus diperhitungkan pada saat menentukan saat pengapian (ignition timing) untuk memperoleh output mesin yang semaksimal mungkin. Akan tetapi karena diperlukan waktu untuk perambatan api, maka campuran udara-bahan bakar harus dibakar sebelum TMA. Saat ini disebut dengan saat pengapian (ignition timing). Loncatan bunga api terjadi sesaat torak mencapai titik mati atas (TMA) sewaktu langkah kompresi. Saat loncatan api biasanya dinyatakan dalam derajat sudut engkol sebelum torak mencapai TMA. Pada pembakaran sempurna setelah penyalaan dimulai, api menjalar dari busi dan menyebar ke seluruh arah dalam waktu yang sebanding dengan 20 derajat sudut engkol atau lebih untuk membakar campuran sampai mencapai tekanan maksimum. Kecepatan api umumnya kurang dari 10 30 m/ detik. Panas pembakaran dari TMA diubah dalam bentuk kerja dengan efisiensi yang tinggi. Kelambatan waktu akan menurunkan efisiensi. Hal ini disebabkan rendahnya tekanan akibat pertambahan volume dan waktu penyebaran api yang terlalu lambat. Gambar 1. Saat pengapian Bila Proses pembakaran dimulai dari awal sebelum TMA (menjauhi TMA), tekanan hasil pembakaran meningkat, sehingga gaya dorong piston meningkat (kerja piston menuju gas pada ruang bakar). Jika proses sudut penyalaan dimundurkan mendekati TMA, maka tekanan hasil pembakaran maksimum lebih rendah, bila dibandingkan tekanan hasil pembakaran maksimum, bila sudut penyalaan dimulai normal. Hal ini dikarenakan, pada saat sudut penyalaan terlalu dekat dengan TMA, pada saat busi memercikkan bunga api dan api mulai merambat, gerakan piston sudah melewati TMA sehingga volume ruang bakar mulai membesar. Sehingga walaupun terjadi kenaikan tekanan hasil pembakaran, sebagian telah diubah menjadi perubahan volume ruang bakar. Efek yang terjadi adalah kecilnya kerja ekspansi yang diterima oleh piston. Tekanan Efektif Rata-rata Unjuk kerja mesin yang relatif terukur dapat diperoleh dari pembagian kerja per siklus dengan perpindahan volume silinder per siklus. Parameter ini merupakan gaya per satuan luas dan dinamakan dengan mean effective pressure (MEP). P. N Kerja per siklus =... (1) V. n 3 60P. N.10 BMEP (kpa) (2) V. n dengan: P = daya dalam kw n = putaran mesin dalam rpm V = volume silinder dalam dm 3 N = jumlah putaran engkol untuk setiap langkah kerja (= 2 untuk siklus 4 langkah, = 1 untuk siklus 2 langkah) Konsumsi bahan bakar Salah satu yang diukur dalam prestasi mesin atau unjuk kerja mesin adalah konsumsi bahan bakar spesifik (specific fuel consumption, SFC). Specific Fuel Consumption (SFC) merupakan perbandingan antara bahan bakar yang terpakai sebagai input energi dengan daya yang dihasilkan sebagai output. Semakin tinggi nilai Specific Fuel Consumption, maka semakin banyak energi bahan bakar yang tidak terkonversi menjadi daya. Hal ini disebabkan karena bahan bakar yang masuk ke dalam silinder tidak terbakar dengan sempurna.

Konsumsi bahan bakar spesifik ini, merupakan parameter prestasi mesin yang digunakan untuk mengukur nilai ekonomis suatu mesin, karena dengan mengetahui konsumsi bahan bakar spesifik maka dapat dihitung jumlah bahan bakar yang dibutuhkan per jam untuk menghasilkan sejumlah daya. Prosedur perhitungan konsumsi bahan bakar spesifik atau specific fuel consumption (SFC) berikut dapat dilaksanakan bila untuk pemakaian bahan bakar sebesar m (massa) dibutuhkan waktu sebesar t (detik), sehingga dapat dihitung pemakaian bahan bakar spesifik. Konsumsi bahan bakar ( mf ) b 3600 mf.. bb (kg/jam)... (3) t 1000 SFC = mf P (kg/kwatt-jam)... (4) dengan : SFC = Pemakaian bahan bakar spesifik (kg/kwatt-jam) mf = Laju konsumsi bahan bakar (kg/jam) T = Waktu yang diperlukan untuk pengosongan buret (dt) b = Volume buret yang digunakan dalam pengujian (cm 3 ) P = Daya (kw) bb = Massa jenis bahan bakar gasolin = 0,74 (gr/cm 3 ) METODE PENELITIAN Bahan dan Peralatan Penelitian ini menggunakan metode eksperimen. Pelaksanaan penelitian diawali dengan pengadaan bahan dan peralatan pegujian. Mesin yang dipakai pada penelitian ini adalah sepeda motor empat tak. Sedangkan bahan bakar yang digunakan adalah premium. Alat pengujian yang dipersiapkan adalah 3 jenis magnet yaitu magnet standar (bawaan kendaraan), magnet dengan derajat pengapian dimajukan 3 o dan magnet dengan derajat pengapian dimajukan 6 o. Dalam penelitian ini, mesin yang digunakan adalah sepeda motor Honda Supra NF 100 D dengan spesifikasi sebagai berikut : Tipe Mesin: 4 Langkah, SOHC, 2 Klep, pendinginan udara Diameter x Langkah : 510 x 49,5 mm Volume Silinder : 97,1 cc Perbandingan Kompresi : 9,0 : 1 Daya maksimum : 7,3 PS/8.000 rpm Torsi maksimum : 0,74 kgf.m pada 6.000rpm Sistim pengapian : CDI Untuk pengujian unjuk kerja mesin dilaksanakan di Mototech, dengan peralatanperalatan: Dynotester, untuk mengukur daya dan torsi dari mesin. Buret, untuk mengukur pemakaian bahan bakar. Stopwatch, untuk mengukur waktu pemakaian bahan bakar. Prosedur pengujian Pengujian dilakukan dengan 3 jenis magnet yaitu magnet standar (bawaan kendaraan), magnet dengan derajat pengapian dimajukan 3 o dan magnet dengan derajat pengapian dimajukan 6 o. Untuk memperoleh data-data pengujian, langkah-langkah yang dilakukan adalah sebagai berikut: Letakkan motor di atas dynotester dengan posisi roda belakang di atas roller. Nyalakan mesin sampai pada putaran idle. Setelah putaran ideal didapatkan selanjutnya masukkan motor pada gear transmisi 3 kemudian putar gas dari kondisi idle menjadi 5000 rpm dengan melihat monitor dinotester sampai rpm tertinggi, yaitu 9000 rpm. Lepaskan gas setelah mencapai putaran maksimum. Pada pengujian ini akan didapat daya dan torsi sebagai fungsi dari putaran mesin. Data daya dan torsi akan tersimpan di komputer. Untuk pengujian konsumsi bahan bakar diawali dengan menghidupkan sepeda motor. Gear transmisi diatur pada posisi netral. Selanjutnya atur putaran mesin pada 5000, 7000 dan 9000 rpm secara bergantian. Pengujian konsumsi bahan bakar dilakukan dengan membaca stopwatch untuk menghabiskan berapa ml bahan bakar yang dibutuhkan selama 1 menit. Langkah tersebut dilakukan untuk ketiga macam derajat pengapian. Diagram alir penelitian dapat dilihat pada gambar 2.

Mulai Pengadaan alat uji Persiapan alat uji Proses pengujian Gambar 2. Diagram Alir Penelitian HASIL DAN PEMBAHASAN 1. Break Mean Effective Pressure Tabel 1. Bmep vs Putaran pada Variasi Derajat Pengapian Putaran (rpm) Mencatat data pengujian Pengolahan data pengujian Analisis data Kesimpulan Selesai Bmep (kpa) Standart Maju 3 Maju 6 5000 946,8 946,8 923,6 5500 1005,1 1001,2 981,8 6000 1012,8 999,9 994,7 6500 866,6 961,1 983,1 7000 896,4 911,9 924,9 7500 847,2 870,5 875,7 8000 746,3 756,7 811 8500 642,9 672,6 689,4 9000 596,3 607,9 624,8 Gambar 3 Grafik Bmep vs Putaran Dari tabel 1 dan gambar 3 terlihat bahwa BMEP mulai menanjak pada kisaran 5000 rpm sampai 6000 rpm. Penurunan BMEP dipengaruhi oleh nilai daya efektif dan putaran mesin. Secara teori apabila daya efektif mengalami kenaikan pada putaran yang sama, maka BMEP juga akan mengalami kenaikan. Hal ini terjadi karena sesuai dengan rumus bahwa BMEP berbanding lurus dengan daya efektif. Begitu juga sebaliknya, apabila daya efektif mengalami kenaikan dan putaran mesin juga naik, tetapi persentase kenaikan daya efektif lebih rendah dari kenaikan putaran mesin, maka BMEP akan mengalami penurunan. 2. Laju Konsumsi Bahan Bakar. Tabel 2. Data Laju Konsumsi Bahan Bakar (mf) Laju Konsumsi Bahan Bakar Putaran (kg/jam) (rpm) Standart Maju 3 Maju 6 5000 1,3 1,2 1,2 7000 1,7 1,7 1,7 9000 2,9 2,7 2,6 Gambar 4 Grafik Konsumsi Bahan Bakar (mf)

Pada Tabel 2 dan Gambar 4, dapat diamati bahwa laju konsumsi bahan bakar semakin meningkat seiring dengan kenaikan putaran mesin. Dari hasil pengujian perubahan variasi derajat pengapian, pada putaran 5000 Rpm dan putaran 9000 Rpm, nilai konsumsi bahan bakar tertinggi terjadi pada derajat pengapian standar, yaitu mencapai 1,26 kg/jam dan 2,88 kg/jam. Untuk nilai konsumsi terendah dicapai oleh derajat pengapian yang dimajukan 6 dari standarnya, yaitu sebesar 1,22 kg/jam pada 5000 Rpm, dan 2,58 kg/jam pada 9000 Rpm. Hal ini dikarenakan semakin tinggi putaran, semakin sedikit waktu pembakaran yang berpengaruh terhadap laju konsumsi bahan bakar, sehingga pada waktu derajat pengapian dimajukan, maka konsumsi bahan bakar yang digunakan lebih optimal, karena mendapatkan waktu pembakaran yang cukup akibat pemajuan penyalaan, ketika putaran mesin bertambah. 3. Konsumsi Bahan Bakar Spesifik (SFC) Dari hasil penelitian dari beberapa variasi derajat pengapian, terhadap laju konsumsi bahan bakar spesifik (SFC), diperoleh data sebagai berikut : Tabel 3. Data Konsumsi Bahan Bakar Spesifik (SFC ) Putaran ( Rpm ) SFC ( Kg/kW-jam ) Standart Maju 3 Maju 6 5000 0,328239 0,323339 0,329164 7000 0,33154 0,320862 0,324352 9000 0,662589 0,616169 0,569064 Gambar 5. Konsumsi spesifik bahan bakar (SFC) Semakin tinggi nilai SFC, artinya semakin banyak energi bahan bakar yang tidak terkonversi menjadi daya. Konsumsi bahan bakar spesifik merupakan hasil bagi antara laju konsumsi bahan bakar dengan daya, sehingga apabila laju konsumsi bahan bakar besar dan daya yang dihasilkan besar, maka nilai SFC menjadi kecil, dari Gambar 5, terlihat bahwa SFC pada semua jenis variasi derajat pengapian memiliki kecenderungan yang sama mengalami penurunan kemudian mengalami kenaikan. Penurunan terjadi pada putaran 5000 rpm sampai 6000 rpm, setelah itu SFC-nya mengalami kenaikan. Nilai SFC terendah ada pada kondisi derajat pengapian maju 3 dari standarnya, yang memiliki nilai SFC rata-rata 0,078 kg/kw-jam. Penurunan dan kenaikan nilai SFC ini sesuai dengan rumus teoritis bahwa nilai SFC merupakan hasil bagi antara laju konsumsi bahan bakar dengan daya itu sendiri, sehingga apabila laju konsumsi bahan bakar dan daya besar maka nilai SFC nya akan kecil. KESIMPULAN Berdasarkan data hasil pengujian dan perhitungan, maka dapat disimpulkan sebagai berikut : 1. BMEP atau Tekanan rata rata terendah pada putaran 5000 6500 Rpm dihasilkan oleh derajat pengapian yang dimajukan 6º dari standarnya sebesar 923,5 kpa, sedang pada putaran 7000-9000 Rpm, Bmep terendah dihasilkan derajat pengapian standar sebesar 596,3 kpa. 2. Laju Konsumsi bahan bakar (mf) terendah, dihasilkan oleh derajat pengapian yang dimajukan 6º dari standarnya, yaitu turun sebesar 10 % (2,589 kg/jam), pada putaran 9000 Rpm. 3. Nilai konsumsi bahan bakar spesifik (SFC) yang dihasilkan oleh derajat pengapian yang dimajukan 3º turun sebesar 6,9 % (0,616 kg/kw-jam) sedang derajat pengapian yang dimajukan 6º turun sebesar 14,1 % (0,569064 kg/kw-jam), pada putaran 9000 Rpm. DAFTAR PUSTAKA Arends, BPM. dan Bareenschot, B., 1980. Motor Bensin, Erlangga. Jakarta Arismunandar, W., 1980, Penggerak Mula Motor BakarTorak, ITB, Bandung.

Gopal, M.G. dan Rajendra, D.S., 2013, Experimental Study on SI Engine at Different Ignition Timing Using CNG and Gasoline-20% n Butanol Blend, International Journal of Emerging Technology and Advanced Engineering, Volume 3, Issue 3, March 2013 Heywood, J.B., 1998, Internal Combustion Engine Fundamentals, Mc Graw Hill Int., New York http://jurnaldinamika.files.wordpress. com/2012/11/hendry1.pdf Krisbiantoro, D., 2009, Pengaruh Penggunaan CDI Variable dan Variasi derajat Pengapian Terhadap Unjuk kerja mesin Honda Kharisma Dengan 2 Busi., Jurnal Skripsi Institut Teknologi Sepuluh Nopember., Surabaya. Kristanto, P., Willyanto, dan Wahyudi, D., 2001, Pengaruh Perubahan Pemajuan Waktu penyalaan Terhadap Motor Dual Fuel (Bensin-BBG), Jurnal Teknik Mesin Vol. 3, No.1 : 1 6., Universitas Kristen Petra, Surabaya. Nanlohy, H.Y., 2012, Perbandingan Variasi Derajat Pengapian terhadap Efisiensi Termal dan Konsumsi Bahan Bakar Otto Engine Be50, Jurnal Dinamika Vol. 3 No. 2 Mei 2012, Fakultas Teknik Universitas Haluoleo, Kendari Soenarta N., dan Furuhama S., 2002, Motor Serba Guna, Pradnya Paramita, Jakarta Zareei, J. dan Kakaee, A.H., 2013, Study and The Effects of Ignition Timing on Gasoline Engine Performance and Emissions, European Transport Research Review, Volume 5:109 116, Springer Berlin Heidelberg