PERHITUNGAN DAN ANALISIS KESEIMBANGAN BEBAN PADA SISTEM DISTRIBUSI 20 KV TERHADAP RUGI-RUGI DAYA (STUDI KASUS PADA PT.

dokumen-dokumen yang mirip
Kata kunci : sistem distribusi, keseimbangan beban, losses, penempatan transformator.

Abstrak. Kata kunci: kualitas daya, kapasitor bank, ETAP 1. Pendahuluan. 2. Kualitas Daya Listrik

BAB II TINJAUAN PUSTAKA

Rudi Salman Staf Pengajar Program Studi Teknik Elektro Universitas Negeri Medan

BAB III KETIDAKSEIMBANGAN BEBAN

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK

atau pengaman pada pelanggan.

ANALISIS TEORITIS PENEMPATAN TRANSFORMATOR DISTRIBUSI MENURUT JATUH TEGANGAN DI PENYULANG BAGONG PADA GARDU INDUK NGAGEL

ANALISIS TEGANGAN JATUH PADA JARINGAN DISTRIBUSI RADIAL TEGANGAN RENDAH oleh : Fitrizawati ABSTRACT

Jurnal Media Elektro Vol. V No. 2 ISSN: ANALISIS RUGI-RUGI DAYA JARINGAN DISTRIBUSI 20 kv PADA SISTEM PLN KOTA KUPANG

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. karena terdiri atas komponen peralatan atau mesin listrik seperti generator,

Perbaikan Tegangan untuk Konsumen

BAB II DASAR TEORI. a. Pusat pusat pembangkit tenaga listrik, merupakan tempat dimana. ke gardu induk yang lain dengan jarak yang jauh.

ANALISIS GANGGUAN HUBUNG SINGKAT TIGA FASE PADA SISTEM DISTRIBUSI STANDAR IEEE 13 BUS

Perencanaan Kebutuhan Distribusi Sekunder Perumahan RSS Manulai II

ANALISIS KETIDAKSEIMBANGAN BEBAN TRANSFORMATOR DISTRIBUSI UNTUK IDENTIFIKASI BEBAN LEBIH DAN ESTIMASI RUGI-RUGI PADA JARINGAN TEGANGAN RENDAH

Jurnal Media Elektro, Vol. 1, No. 3, April 2013 ISSN

REKONFIGURASI JARINGAN DISTRIBUSI TEGANGAN 20 KV PADA FEEDER PANDEAN LAMPER 5 RAYON SEMARANG TIMUR

ANALISIS KETIDAKSEIMBANGAN BEBAN PADA JARINGAN DISTRIBUSI SEKUNDER GARDU DISTRIBUSI DS 0587 DI PT. PLN (Persero) DISTRIBUSI BALI RAYON DENPASAR

ANALISIS RUGI RUGI ENERGI LISTRIK PADA JARINGAN DISTRIBUSI

Penentuan Kapasitas CB Dengan Analisa Hubung Singkat Pada Jaringan 70 kv Sistem Minahasa

Metode Penghematan Energi Listrik dengan Pola Pengaturan Pembebanan.

ANALISIS JATUH TEGANGAN DAN RUGI DAYA PADA JARINGAN TEGANGAN RENDAH MENGGUNAKAN SOFTWARE ETAP

Perbaikan Jatuh Tegangan Dengan Pemasangan Automatic Voltage Regulator

STUDI ANALISA PEMASANGAN KAPASITOR PADA JARINGAN UDARA TEGANGAN MENENGAH 20 KV TERHADAP DROP TEGANGAN (APLIKASI PADA FEEDER 7 PINANG GI MUARO BUNGO)

AKIBAT KETIDAKSEIMBANGAN BEBAN TERHADAP ARUS NETRAL DAN LOSSES PADA TRANSFORMATOR DISTRIBUSI

DASAR TEORI. Kata kunci: Kabel Single core, Kabel Three core, Rugi Daya, Transmisi. I. PENDAHULUAN

ANALISIS GANGGUAN HUBUNG SINGKAT TIGA FASE PADA SISTEM DISTRIBUSI STANDAR IEEE 13 BUS DENGAN MENGGUNAKAN PROGRAM ETAP POWER STATION 7.

PENGARUH PENAMBAHAN JARINGAN TERHADAP DROP TEGANGAN PADA SUTM 20 KV FEEDER KERSIK TUO RAYON KERSIK TUO KABUPATEN KERINCI

BAB III. Transformator

Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) 2014ISSN: X Yogyakarta,15 November 2014

NASKAH PUBLIKASI ANALISIS GANGGUAN HUBUNG SINGKAT TIGA FASE LINE TO GROUND

ANALISIS JATUH TEGANGAN DAN RUGI DAYA PADA JARINGAN TEGANGAN RENDAH MENGGUNAKAN SOFTWARE ETAP

TINJAUAN PUSTAKA. Dalam menyalurkan daya listrik dari pusat pembangkit kepada konsumen

PERBAIKAN REGULASI TEGANGAN

Analisis Rugi Daya Pada Jaringan Distribusi Penyulang Barata Jaya Area Surabaya Selatan Menggunakan Software Etap 12.6

SINGUDA ENSIKOM VOL. 7 NO. 2/Mei 2014

ANALISIS PERHITUNGAN LOSSES PADA JARINGAN TEGANGAN RENDAH DENGAN PERBAIKAN PEMASANGAN KAPASITOR. Ratih Novalina Putri, Hari Putranto

Oleh: Erhaneli (1), Ramadonal (2) (1) Dosen Jurusan Teknik Elektro (2) Mahasiswa Jurusan Teknik Elektro

PERENCANAAN PEMASANGAN GARDU SISIP P117

Muh Nasir Malik, Analisis Loses Jaringan Distribusi Primer Penyulang Adhyaksa Makassar

PERBAIKAN JATUH TEGANGAN PADA FEEDER B KB 31P SETIABUDI JAKARTA DENGAN METODE PECAH BEBAN

PERHITUNGAN ARUS GANGGUAN HUBUNG SINGKAT PADA JARINGAN DISTRIBUSI DI KOTA PONTIANAK

ANALISIS KINERJA SISTEM KELISTRIKAN UNIVERSITAS LANCANG KUNING

2 BAB II TINJAUAN PUSTAKA

Pemerataan Beban Transformator Pada Saluran Distribusi Sekunder

PENGARUH KETIDAKSEIMBANGAN BEBAN TRANSFORMATOR KERING BHT02 RSG GA SIWABESSY TERHADAP ARUS NETRAL DAN RUGI-RUGI

ANALISA PENGARUH BEBAN TIDAK SEIMBANG TERHADAP RUGI DAYA LISTRIK PADA JARINGAN DISTRIBUSI SEKUNDER HASBULAH

EVALUASI RUGI-RUGI JARINGAN YANG DILAYANI OLEH JARINGAN PLTS TERPUSAT SIDING

BAB II LANDASAN TEORI. Tenaga listrik dihasilkan di pusat-pusat pembangkit listrik seperti PLTA,

ANALISIS PEHITUNGAN RUGI-RUGI DAYA PADA GARDU INDUK PLTU 2 SUMUT PANGKALAN SUSU DENGAN MENGGUNAKAN PROGRAM SIMULASI ELECTRICAL TRANSIENT ANALYZER

ANALISIS KINERJA TRANSFORMATOR BANK PADA JARINGAN DISTRIBUSI GUNA MENGURANGI SUSUT TEKNIS ENERGI LISTRIK

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC)

Penentuan Kapasitas dan Lokasi Optimal Penempatan Kapasitor Bank Pada Penyulang Rijali Ambon Menggunakan Sistem Fuzzy

ANALISIS PERSENTASE PEMBEBANAN DAN DROP TEGANGAN JARINGAN TEGANGAN RENDAH PADA GARDU DISTRIBUSI GA 0032 PENYULANG WIBRATA

MAKALAH SEMINAR KERJA PRAKTEK

STUDI PENYALURAN DAYA LISTRIK PADA JARINGAN DISTRIBUSI TEGANGAN MENENGAH PADA PT. PLN (Persero) GARDU INDUK TALANG RATU PALEMBANG

ANALISA JATUH TEGANGAN DAN PENANGANAN PADA JARINGAN DISTRIBUSI 20 KV RAYON PALUR PT. PLN (PERSERO) MENGGUNAKAN ETAP 12.6

PENENTUAN TITIK INTERKONEKSI DISTRIBUTED GENERATION

DAFTAR ISI JUDUL... LEMBAR PRASYARAT GELAR... LEMBAR PERNYATAAN ORISINALITAS... LEMBAR PENGESAHAN... UCAPAN TERIMAKASIH... ABSTRAK...

ANALISA KEBERADAAN GARDU INDUK BALAPULANG TERHADAP DISTRIBUSI 20 KV DI WILAYAH KERJA UPJ BALAPULANG PT. PLN (PERSERO) JATENG DIY

Analisa Dampak Pemecahan Beban Feeder Tiku Terhadap Susut Teknis Jaringan Tegangan Menengah

BAB IV ANALISA POTENSI UPAYA PENGHEMATAN ENERGI LISTRIK PADA GEDUNG AUTO 2000 CABANG JUANDA (JAKARTA)

Politeknik Negeri Sriwijaya

PERENCANAAN DETAIL ENGINEERING DESIGN (DED) PADA SALURAN UDARA TEGANGAN MENENGAH (SUTM) 20KV

METODE PENDEKATAN UNTUK MEREKONFIGURASI PANJANG MAKSIMAL PADA PENYULANG TAMBAK LOROK 04 DAN KALISARI 02 DI UPJ SEMARANG TENGAH

PENGARUH ARUS NETRAL TERHADAP RUGI-RUGI BEBAN PADA TRANSFORMATOR DISTRIBUSI PLN RAYON JOHOR MEDAN

Kata Kunci : Transformator Distribusi, Ketidakseimbangan Beban, Arus Netral, Rugi-rugi, Efisiensi

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Tiga Bagian Utama Sistem Tenaga Listrik untuk Menuju Konsumen

Analisa Drop Tegangan PT PLN (Persero) Rayon Lubuk Sikaping Setelah Penambahan PLTM Guntung Oleh:

Gambar 2.1 Skema Sistem Tenaga Listrik

Analisa Sistem Distribusi 20 kv Untuk Memperbaiki Kinerja Sistem Distribusi Menggunakan Electrical Transient Analysis Program

ANALISIS HUBUNG SINGKAT 3 FASA PADA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS DENGAN ADANYA PEMASANGAN DISTRIBUTED GENERATION (DG)

EVALUASI LOSSES DAYA PADA SISTEM TRANSMISI 150 KV SUMATERA BARAT

ANALISA PENEMPATAN KAPASITOR BANK UNTUK PERHITUNGAN DROP VOLTAGE PADA FEEDER BATANG 02 TAHUN DENGAN SOFTWARE ETAP

BAB II TINJAUAN PUSTAKA

ANALISIS HARMONIK DAN PERANCANGAN SINGLE TUNED FILTER PADA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS DENGAN MENGGUNAKAN SOFTWARE ETAP POWER STATION 4.

Analisa Perbaikan Tegangan Pada Saluran Transmisi Industri Minyak Lepas Pantai CNOOC SES Ltd.

Penentuan Nilai Arus Pemutusan Pemutus Tenaga Sisi 20 KV pada Gardu Induk 30 MVA Pangururan

ANALISIS DAMPAK PEMASANGAN DISTIBUTED GENERATION (DG) TERHADAP PROFIL TEGANGAN DAN RUGI-RUGI DAYA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS

ANALISA PEMILIHAN TRAFO DISTRIBUSI BERDASARKAN BIAYA RUGI-RUGI DAYA DENGAN METODE NILAI TAHUNAN

BAB IV ANALISIS DATA

PENGARUH KETIDAKSEIMBANGAN BEBAN TERHADAP ARUS NETRAL DAN LOSSES PADA TRAFO DISTRIBUSI

BAB I PENDAHULUAN. Transmisi, dan Distribusi. Tenaga listrik disalurkan ke masyarakat melalui jaringan

ANALISIS TEGANGAN JATUH SISTEM DISTRIBUSI LISTRIK KABUPATEN PELALAWAN DENGAN MENGGUNAKAN ETAP 7.5.0

SINGUDA ENSIKOM VOL. 7 NO. 1/April 2014

PERHITUNGAN JATUH TEGANGAN SUTM 20 KV PADA PENYULANG SOKA DI PT. PLN ( PERSERO ) CABANG JAYAPURA. Parlindungan Doloksaribu.

ANALISA PENEMPATAN KAPASITOR BANK UNTUK PERHITUNGAN DROP VOLTAGE PADA FEEDER BATANG 02 TAHUN DENGAN SOFTWARE ETAP 7.0.0

PERBAIKAN LOSSES DAN DROP TEGANGAN PWI 9 DENGAN PELIMPAHAN BEBAN KE PENYULANG BARU PWI 11 DI PT PLN (PERSERO) AREA SEMARANG

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. dibawah Kementrian Keuangan yang bertugas memberikan pelayanan masyarakat

OPTIMALISASI PEMBEBANAN TRANSFORMATOR DISTRIBUSI DENGAN PENYEIMBANGAN BEBAN

REKONFIGURASI SISTEM DISTRIBUSI 20 KV GARDU INDUK TELUK LEMBU DAN PLTMG LANGGAM POWER UNTUK MENGURANGI RUGI DAYA DAN DROP TEGANGAN

Analisa Kebutuhan Kapasitas Kapasitor Bank Untuk Menjaga Pasokan Tegangan Operasi Pada Bus Pompa Motor HCT Duri

ESTIMASI UMUR PAKAI DAN RUGI DAYA TRANSFORMATOR. The Estimated Age of Use and Loss Power Transformer

ANALISA EFISIENSI JARINGAN PADA SISTEM DISTRIBUSI PRIMER 20 KV DI GARDU INDUK TALANG KELAPA PT. PLN (PERSERO) TRAGI BORANG

ANALISIS KOORDINASI RELE PENGAMAN FEEDER WBO04 SISTEM KELISTRIKAN PT. PLN (PERSERO) RAYON WONOSOBO

BAB II PERHITUNGAN ARUS HUBUNGAN SINGKAT

ANALISIS SUSUT ENERGI PADA SISTEM KELISTRIKAN BALI SESUAI RENCANA OPERASI SUTET 500 kv

ANALISIS KETIDAKSEIMBANGAN BEBAN TRAFO 1 GI SRONDOL TERHADAP RUGI-RUGI AKIBAT ARUS NETRAL DAN SUHU TRAFO MENGGUNAKAN ETAP

Transkripsi:

PERHITUNGAN DAN ANALISIS KESEIMBANGAN BEBAN PADA SISTEM DISTRIBUSI 20 KV TERHADAP RUGI-RUGI DAYA (STUDI KASUS PADA PT. PLN UPJ SLAWI) Tejo Sukmadi 1, Bambang_Winardi 2 1,2 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Diponegoro, Jl. Prof. Sudharto, SH, Tembalang, Semarang, Indonesia, 50275 E-mail: 2 bbwinz@yahoo.com Abstract. Power distribution network is the part of electrical power system close to the customer or load side than the transmission network. To be better the electrical power system giving the electrical power supply to the customer, load balance must be achieved in each load points. Keseimbangan beban dapat tercapai jika tegangan yang dihasilkan dapat mensuplai beban secara penuh dari masing-masing titik beban maka sistem juga menjadi lebih baik dalam pemenuhan kebutuhan listrik. The load balance is important issue to decrease the voltage drop or power losses that can be occured in distribution line, so the information about load characteristics in each phases (R, S, and T) in some network area must be observed certain time. Keywords: distribution system, load balance, drop voltage, power loss. Sistem distribusi merupakan salah satu sistem dalam tenaga listrik yang mempunyai peran penting karena berhubungan langsung dengan pemakai energi listrik, terutama pemakai energi listrik tegangan menengah dan tegangan rendah. Biasanya sering kali terjadi beban tidak seimbang pada fase-fasenya (sistem distribusi merupakan sisem 3 fase) atau terjadi kelebihan beban karena pemakaian alat-alat listrik dari konsumen energi listrik. Keseimbangan beban antar fasa diperlukan untuk pemerataan beban sehingga meminimalkan perubahan yang diakibatkan oleh beban penuh. Hal ini juga penting karena bermanfaat pada teknik optimasi untuk menghasilkan siystem yang handal dan efisien. Sebuah konfigurasi 1 fase dengan 3 kabel dapat dikatakan tidak seimbang jika arus netral tidak bernilai nol. Hal ini terjadi karena beban yang dikoneksikan, antara fase dan neutral tidak sama. Metoda yang dipakai untuk menganalisa keseimbangan beban salah satunya dengan menghitung jatuh tegangan dan rugi-rugi daya pada feeder KBN09 Slawi. Tujuan penelitian ini adalah untuk menghitung dan menganalisis keseimbangan beban pada sistem distribusi dan pengaruhnya terhadap jatuh tegangan dan rugi daya yang timbul pada sistem tersebut. SISTEM DISTRIBUSI DAYA Jaringan Distribusi Jaringan distribusi adalah semua bagian dari suatu sistem yang menunjang pendistribusian tenaga listrik yang berasal dari gardu-gardu induk. Klasifikasi jaringan distribusi menurut strukturnya antara lain struktur jaringan radial, struktur jaringan loop, dan struktur jaringan spindle. Aliran Daya Studi aliran daya adalah penentuan atau perhitungan tegangan, arus dan daya yang terdapat pada berbagai titik suatu jaringan pada keadaan pengoperasian normal, baik yang sedang berjalan maupun yang akan datang. 47

48 Transmisi, Jurnal Teknik Elektro, Jilid 11, Nomor 1, Maret 2009, hlm. 47-52 Jatuh Tegangan atau Drop Voltage Jatuh tegangan adalah selisih antara tegangan ujung pengiriman dan tegangan ujung penerimaan, jatuh tegangan disebabkan oleh hambatan dan arus, pada saluran bolak-balik besarnya tergantung dari impedansi dan admitansi saluran serta pada beban dan faktor daya. Jatuh tegangan relatif dinamakan regulasi tegangan dan dinyatakan dengan rumus: V reg = Vs Vr x 100 % Vs Rugi-rugi Daya atau Losses Dalam teori listrik arus bolak-balik penjumlahan daya dilakukan secara vektoris, yang dibentuk vektornya merupakan segitiga siku-siku, yang dikenal dengan segitiga daya. Sudut θ merupakan sudut pergeseran fasa, semakin besar sudutnya, semakin besar Daya Semu (S), dan semakin besar pula Daya Reaktif (Q), sehingga faktor dayanya (cos θ )semakin kecil. Perbandingan antara besar daya aktif dengan daya semu disebut faktor daya (cos θ ), θ adalah sudut yang dibentuk antara daya aktif dan daya semu. PF ( cos θ) = P (watt) S (VA) Seperti diketahui, kerugian daya suatu saluran merupakan perkalian arus pangkat dua dengan resistansi atau reaktansi dari saluran tersebut. Rugi rugi dapat dinyatakan sebagai berikut. - Rugi daya nyata = I 2. R (watt) - Rugi daya reaktif = I 2. X (watt) - Rugi daya semu = 2 ( I. R) + ( I. X Besarnya rugi daya pada beban 1 fasa dan 3 fasa dapat dituliskan adalah. P = 2 L, S 1φ 2xI1 φr watt dan P = 2 L, S 3φ 2xI 3φ R watt jika disubstitusikan persamaan di atas menjadi PLS,1φ = 2.0 P LS,3ι Metode Perhitungan Jatuh Tegangan Pada pembahasan ini akan diuraikan tentang perhitungan jatuh tegangan pada penghantar jaringan distribusi, diambil perhitungan jatuh tegangan pada feeder KBN09 Slawi. ) 2 Adapun yang akan dihitung disini adalah dari saluran sampai ke trafo terjauh dari GI, yaitu dari saluran utama tiga phasa 20 kv, percabangan satu phasa. Adapun rumus voltage jatuh (jatuh tegangan) adalah : VD = r K ixdx cosφ + L 0 0 ixdxsinφ L L = ri cosφ + xi sinφ L. r L. x = I cosφ + I sinφ dengan cos φ dan sin φ adalah faktor daya. Faktor daya pada penghantar akan kita hitung berdasarkan data yang ada yaitu data beban lepas dari GI ke distribusi jaringan (Data I). Pada suatu rangkaian seri yang sederhana Z = R + jx dengan mengingat I. Z sama dengan V, maka untuk beban 3 fase: P = 3 I L 2. Z L. cos Ø = 3 V L 2. I L. cos Ø Q = 3 I L 2. Z L. cos Ø = 3 V L 2. I L. cos Ø Kemudian dengan mengingat bahwa R= Zcos Ø, dan X = Z sin Ø, maka didapatkan : P = 3 I L 2. R L dan Q = 3 I L 2. X L Selanjutnya didapatkan rumus faktor daya. P cos Ø = P + Q Selanjutnya menghitung arus percabangan 3φ, jatuh tegangannya serta tegangan yang dihitung dari pole nomer T 9-1 sampai pole nomor T 9-44, dimana diketahui data-datanya dari PLN UPJ Slawi. Dengan data di atas, maka arus pada percabangan 3φ ini adalah : I cab 3Φ = total-kva/ tegangan-pole Analisis Perhitungan Rugi Daya Seperti diketahui, kerugian daya suatu saluran merupakan perkalian arus pangkat dua dengan resistansi atau reaktansi dari saluran tersebut. Rugi rugi dapat dinyatakan sebagai berikut. - Rugi daya nyata = I 2. R Watt - Rugi daya reaktif = I 2. X Watt - Rugi daya semu = 2 ( I. R) + ( I. X ) 2

Sukmadi, Perhitungan dan Analisis Keseimbangan Beban pada Sistem Distribusi 20 kv terhadap. 49 Keseimbangan Daya 3 Fase Suatu keseimbangan tiga fase dapat terjadi bila jaringan dengan hubungan Y- atau - mempunyai beban yang tetap. Karena beban simetris arus balik yang mengalir sama dengan nol masing-masing R 1, R 2, R 3 mempunyai nilai yang sama namun berbeda nilai tegangannya sebesar 120 0. Untuk mencari keseimbangan bila menggunakan parameter beban tiga fasa maka dibuat rumus matematika linear yaitu nilai mean yang dapat dicari dari rumus. ΣX = (X 1 + X 2 + X 3 + X n )/ n dengan X 1 + X 2 + X 3 + X n = nilai fasa pada sistem dan n = jumlah fase. Dengan cara diatas maka besar arus fasa yang seimbang adalah: I a = I b =... = I z = I p = arus fasa θ a = θ b =... = θ z = θ = sudut faktor daya Single line 20 kv Diagram ini merupakan hasil pengamatan dan penggambaran pada GI Kebasen dengan sumber energi trafo 4 sebagai penyulang ada feeder 9 yang akan dianalisa dan disimulasikan perhitunganya. Data data yang dibutuhkan mengenai feeder didapatkan dari data PT. PLN UPJ Slawi namun penulis hanya menganalisa salah satu feeder yang masuk unit pelayanan PLN UPJ Slawi yaitu fedeer KBN09. PERHITUNGAN JATUH TEGANGAN DAN RUGI DAYA PADA SALURAN FEEDER KBN09 Dasar Perhitungan Jatuh Tegangan pada Fedeer KBN09 Perhitungan jatuh tegangan ini hanya dikhususkan untuk menghitung saluran dari GI Kebasen Tegal KBN09 misalnya ke saluran (Feeder) yang masuk pada unit jaringan Slawi. VD = r K ixdx cosφ + L 0 0 ixdxsinφ L L = ri cosφ + xi sinφ L. r L. x = I cosφ + I sinφ dengan L= panjang saluran (m), r = resistansi penghantar (ohm), x= reaktansi induktif penghantar (ohm). Berikut adalah perhitungan cos Ø yang dicatat pada tanggal 1 Februari 2008 dari trafo KBN09 (data diambil dari diagram single line 20 kv UPJ Slawi) pada beban puncak malam dan pada beban puncak siang, Tabel 3.1 Data primer Faktor Daya pada tanggal 1 Februari 2008 Waktu Beban kw kvar Cos Ø Beban Jam 05.00 Beban Puncak Siang Beban Puncak Malam 345 370 185 210 590 645 153 165 84 105 262 290 0,8 Dari tabel diatas cos Ø rata-rata = 0.9 sehingga sin Ø = 0.4. Perhitungan arus, jatuh tegangan dan tegangan dihitung pada beberapa daerah yang dapat disebutkan di bawah ini. Tabel 3.2 Perhitungan Jatuh Tegangan Feeder KBN09 Hasil perhitungan jatuh tegangan Ap (A) Vp (v) Vd (v) Fedeer utama Percabangan 3Ø Ketanggungan I Ketanggungan II Pengarasan Gumalar I Gumalar II Pecangakan Kupu I Kupu II 80 36.256 2.1633 4.3256 8.6522 4..3256 4.3256 8.6522 12.9783 10.8152 20000 19996.754 11557.729 11557.624 11556.196 11557.616 11557.624 11557.020 11556.927 11557.085 3.246 1.7068 0.10053 0.2676 1.0989 0.2144 0.2676 0.8577 1.2062 0.7706 Dasar Perhitungan Rugi Rugi Daya pada Saluran Feeder KBN09 Rugi rugi dapat dinyatakan sebagai berikut. - Rugi daya nyata = I 2. R Watt - Rugi daya reaktif = I 2. X Watt - Rugi daya semu = 2 ( I. R) + ( I. X Tabel 3.3 Hasil Perhitungan Rugi daya Fedeer KBN09 Hasil perhitungan rugi daya Nyata Reaktif Semu Fedeer utama Percabangan 3Ø Ketanggungan I Ketanggungan II Pengarasan Gumalar I Gumalar II Pecangakan Kupu I Kupu II 426.4512 129.082 0.1507 0.8026 2.201 0.6417 0.8026 1.718 3.624 1.9298 3218.56 55.208 0.1363 0.7269 1.941 0.5815 0.7269 1.53 3.275 1.743 3246.69 140.392 0.203 1.0828 2.938 0.866 1.0829 2.3 4.885 2.601 ) 2

50 Transmisi, Jurnal Teknik Elektro, Jilid 11, Nomor 1, Maret 2009, hlm. 47-52 HASIL DAN ANALISIS PERHITUNGAN Pada bagian ini digunakan sistem 3 fasa, untuk dapat mengetahui besarnya beban tiap fasa maka diperlukan suatu persamaan matematika untuk mempermudahkan dalam perhitungan. Hasil Perhitungan Daya Daya yang dihitung dapat dibuat tabel 4.1. Tabel 4.1 Hasil Perhitungan Daya Feeder Arus Daya Utama 80 1439339.838 Penyulang 36.25588431 652308.6945 Feeder Fasa R, S, T Daya pada fedeer R S T yang dihitung dapat dibuat tabel seperti dibawah ini. Tabel 4.2 Hasil Perhitungan Daya Fase Arus 3 fasa Daya R 7.950025209 82661.52 S 5.059106951 52613 T 5.781836516 60127.06 Feeder Cabang Daya pada fedeer percabangan yang dihitung dapat dibuat tabel 4.3 Tabel 4.3 Hasil Perhitungan Daya Feeder Arus Daya Ketanggungan I 2.163057314 584976.9 Ketanggungan II 4.326114627 44999.4 Pengarasan 8.652229254 89995.05 Gumalar I 4.326114627 44999.52 Gumalar II 4.326114627 44999.4 Pecangakan 8.652229254 89996.14 Kupu I 12.97834388 134991.9 Kupu II 10.81528657 112495.7 Jadi total daya yang terpasang atau daya tetap, P = Si = 404564.157 Watt. Sehingga dapat diketahui daya tidak tetap atau daya cadangan sebesar : P tidak tetap = P tersedia - P tetap = 652313.7005 404564.157 = 247749.543 = 247 kw Perhitungan Jatuh Tegangan Jatuh Tegangan 3 Fase Perhitungan jatuh tegangan pada fasa R,S, dan T dapat diketahui besarnya: Tabel 4.4 VD ( Drop Voltage) pada Fasa R L (m) VD (Volt) L (m) VD (Volt) 175 0.86089501 175 0.860895013 80 0.39355201 255 1.254447019 80 0.39355201 335 1.647999025 50 0.24597 385 1.893969029 40 0.196776 425 2.090745032 25 0.122985 450 2.213730033 Tabel 4.5 VD ( Drop Voltage) pada Fasa S L (m) VD (Volt) L (m) VD (Volt) 75 0.23478955 75 0.234784585 200 0.62610546 275 0.860890049 50 0.15652637 325 1.017416415 50 0.15652637 375 1.173942781 Tabel 4.6 VD ( DropVoltage) pada Fasa T L (m) VD (Volt) L (m) VD (Volt) 100 0.35777455 100 0.357774551 100 0.35777455 200 0.715549102 100 0.35777455 300 1.073323653 80 0.28621964 380 1.359543293 Jatuh Tegangan Fedeer Percabangan Dari perhitungan feeder percabangan dihasilkan tabel hasil dari perhitungan arus dan jatuh tegangan. Tabel 4.7 Hasil Perhitungan Arus dan Jatuh Tegangan Feeder Hasil Perhitungan Arus (A) VD (V) Ketanggungan I 2.163057314 0.100517 Ketanggungan II 4.326114627 0.268046 Pengarasan 8.652229254 1.09899 Gumalar I 4.326114627 0.214437 Gumalar II 4.326114627 0.268046 Pecangakan 8.652229254 0.857748 Kupu I 12.97834388 1.206208 Kupu II 10.81528657 0.770633 Analisis Perhitungan Rugi daya Rugi daya pada Fase Rugi daya pada trafo yang dihitung dapat dibuat tabel 4.8. Tabel 4.8 Hasil Perhitungan Rugi daya Fasa Rugi daya 3 fasa 1 fasa R 102.351523 34.19810999 S 34.5401146 11.5406845 T 45.7151341 15.27452773

Sukmadi, Perhitungan dan Analisis Keseimbangan Beban pada Sistem Distribusi 20 kv terhadap. 51 Rugi daya Trafo pada Feeder Percabangan Perhitungan rugi daya trafo pada tiap pole atau feeder cabang dapat dilihat pada tabel 4.9 Tabel 4.9 Tabel Perhitungan Rugi daya Trafo Feeder Simbol Feeder Rugi daya Ketanggungan I A 0.422570861 Ketanggungan II B 2.25371126 Pengarasan C 18.48043233 Gumalar I D 1.802969008 Gumalar II E 2.25371126 Pecangakan F 14.42375206 Kupu I G 30.42510201 Kupu II H 16.19854968 Perhitungan Penyeimbang Beban Nilai Keseimbangan Untuk mencari nilai kesimbangan dapat digunakan dengan mencari nilai mean (rataan hitung) seperti pada matematika. Nilai mean dapat dicari dengan rumus : ΣX = X 1 + X 2 + X 3 + X n n Diketahui X 1 = 275, X 2 = 175, X 3 = 200, dengan rumus di atas dapat dhitung sebagai berikut: X = X 1 + X 2 + X 3 / 3 = (275 + 175 + 200)/3 = 216.67 Jadi nilai tengah yang dapat diambil untuk keseimbangan beban adalah - Pada kawat R terpasang 225 kva - Pada kawat S terpasang 225 kva - Pada kawat T terpasang 200 kva Perubahan daya yang terjadi pada kawat R dan S, Dikarenakan kawat R berkurang bebannya dipindahkan ke kawat S agar terjadi keseimbangan beban. Pada single line dapat dilihat kawat R pada T9-64/50 kva dapat dipindahkan bebannya ke kawat S sehingga pada masing-masing fasa mempunyai nilai yang hampir sama. Perhitungan Daya untuk Fase Seimbang Daya pada fasa seimbang yang dihitung dapat dibuat tabel seperti dibawah ini : Tabel 4.9 Hasil Perhitungan Daya Fase Sebelum Daya Sesudah R 82593.36 67609.12 S 52590 67603.03 T 60096.62 60096.62 Jatuh Tegangan Fasa sesudah Keseimbangan Jatuh tegangan pada fase R S T yang dihitung dapat dibuat tabel seperti dibawah ini : Tabel 4.10 VD ( Drop Voltage) pada Fasa R L (m) VD (Volt) L (m) VD (Volt) 175 0.70436865 175 0.704368647 80 0.3219971 255 1.026365743 80 0.3219971 335 1.348362839 0 335 1.348362839 40 0.16099855 375 1.509361386 25 0.10062409 400 1.609985479 Tabel 4.11 VD ( Drop Voltage) pada Fasa S L (m) VD (volt) L (m) VD (volt) 75 0.30187228 75 0.234784585 200 0.80499274 275 1.039777324 50 0.20124818 325 1.241025509 50 0.20124818 375 1.442273694 50 0.20124818 425 1.643521879 Tabel 4.12 VD ( Drop Voltage) pada Fasa T L (m) VD (volt) L (m) VD (volt) 100 0.35777455 100 0.357774551 100 0.35777455 200 0.715549102 100 0.35777455 300 1.073323653 80 0.28621964 380 1.359543293 Dari ketiga tabel di atas dapat dikelompokan sebagai berikut. Tabel 4.13 Tabel Perubahan Jatuh Tegangan Sistem fase VD (V) Sebelum Sesudah Fase R 2.21373 1.609985 Fase S 1.173943 1.643522 Fase T 1.359543 1.359543 Dari tabel di atas dapat dilihat nilai VD pada sebelum keseimbangan tidak merata pada tiap fasa. Setelah dihitung dan dianalisa nilai keseimbangannya maka nilai VD pada tabel setelah keseimbangan menghasilkan nilai yang hampir sama atau imbang. Setelah perhitungan VD tiap fasa menurut data keseimbangan dapat dihitung pula nilai rugi daya trafo setelah seimbang. Rugi daya pada fedeer R S T yang dihitung dapat dibuat tabel 4.13 Tabel 4.13 Hasil Perhitungan Rugi daya Fase Sebelum Rugi daya Sesudah R 34.19810999 17.04252919 S 11.5406845 19.07745805 T 15.27452773 15.27452773

52 Transmisi, Jurnal Teknik Elektro, Jilid 11, Nomor 1, Maret 2009, hlm. 47-52 Pada kasus yang terjadi biasanya keseimbangan sistem dapat terjadi bila antara sisi teknis dan nonteknis dapat berjalan saling mendukung dan baik. Pada data yang telah dihitung dapat dianalisa bahwa sistem yang seimbang dipegaruhi oleh : - Panjang dan luas penampang saluran - Besarnya daya yang terpasang - Banyaknya konsumen / beban. Secara umum sistem seimbang sangat sulit tercapai karena secara geografis daerah kita belum merata sehingga jarak saluran dari pembangkitan ke konsumen sangat panjang, hal ini mempengaruhi besanya daya yang mengalir pada saluran dapat semakin berkurang hal ini disebabkan oleh rugi-rugi daya pada saluran. PENUTUP Dari perbandingan hasil perhitungan jatuh tegangan hanya dikhususkan untuk menghitung saluran dari GI Kebasen Tegal misalnya ke saluran (Feeder) yang masuk pada unit jaringan Slawi. Adapun yang akan dihitung disini adalah saluran yang mempunyai beban rata-rata harian terkecil sampai ke konsumen terjauh dari GI, yaitu dari saluran utama tiga phasa 20 kv, percabangan satu phasa sampai ke sistem 220 volt pada konsumen. Menghitung arus percabangan 3φ, jatuh tegangannya serta tegangan dan rugi daya yang dihitung dari pole nomer T 9-1 sampai pole nomor T 9-39, dimana diketahui data-datanya dari PLN UPJ Slawi. Selanjutnya adalah menghitung arus, jatuh tegangan dan tegangan dan rugi daya pada percabangan 1φ juga tegangan yang diterima. Dengan data yang sudah diketahui, maka dapat dihitung arus pada percabangan 1φ dimana untuk tegangan pada pole nomor diambil satu fase saja. Pada perhitungan jatuh tegangan dari GI Kebasen Tegal seperti pada tabel terjadi perbedaan pada fasa R, S, dan T sebelum seimbang dengan sesudah seimbang. Pada fasa R nilainya turun dari 2.213 V menjadi 1.6098 V. Fasa S nilainya naik dari 1.1739 V menjadi 1.4128 V sedang fasa T tetap nilainya 1.3587 V. Pada perhitungan daya dari GI Kebasen Tegal seperti pada tabel terjadi perbedaan antar fasa R, S dan T dengan tiga phasa 20 kv pada kondisi sebelum seimbang dan setelah seimbang. Seperti yang dituliskan yaitu untuk kawat R 82661.52 W, untuk S 52613 W sedangkan untuk fasa T nilainya 60127.06 W. Pada perhitungan rugi-rugi daya dari GI Kebasen Tegal seperti pada tabel terjadi perbedaan antar fasa R, S dan T dengan tegangan 1phasa pada kondisi sebelum seimbang dan setelah seimbang. Seperti yang dituliskan yaitu pada 3fasa untuk kawat R rugi dayanya turun dari 34.198 W menjadi 17.0425 W, untuk S naik dari 11.540 W menjadi 19.077 W sedangkan untuk fase T nilainya tetap 15.274 W. DAFTAR RUJUKAN Arismunandar. A, DR, M.A.Sc, Kuwahara. S, DR, Teknik Tenaga Listrik, PT Pradnya Paramita, Jakarta, 1993. Deshpande,M V. Electrical Power System Design. Tata McGraw-Hill Publishing Company Limited. New Delhi. 1982 Gonen Turan, Electric Power Distribution System Engineering, McGraw-Hill, United States of America, 1986. Kushadiyono.MT,Drs, Dasar Teknik Elektro, STT Wiworotomo, Purwokerto, 2003 RC. Dugan, Electrical Power System Quality, McGraw-Hill, New York, 1996. Saadat, Hadi. Power System Analysis. WCB McGraw-Hill. Singapore. 1999 Stevenson. William D. Jr., Analisis Sistem Tenaga, Edisi ke empat, Alih Bahasa oleh Ir. Kamal idris, Penerbit erlangga, Jakarta, 1993. Sulasno, Ir., Analisis Sistem Tenaga Listrik, Badan Penerbit UNDIP, Semarang, 2001.