MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)

dokumen-dokumen yang mirip
TUGAS MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)

TUGAS. Di Susun Oleh: ADRIAN. Kelas : 3 IPA. Mengenai : PLTN

Definisi PLTN. Komponen PLTN

PENGENALAN PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)

PEMBANGKIT PENGENALAN (PLTN) L STR KTENAGANUKLTR

Makalah Fisika Modern. Pembangkit Listrik Tenaga Nuklir (PLTN) Dosen pengampu : Dr.Parlindungan Sinaga, M.Si

SYNOPSIS REAKTOR NUKLIR DAN APLIKASINYA

2. Reaktor cepat menjaga kesinambungan reaksi berantai tanpa memerlukan moderator neutron. 3. Reaktor subkritis menggunakan sumber neutron luar

TUGAS 2 MATA KULIAH DASAR KONVERSI ENERGI

BERBAGAI TIPE PEMBANGKIT LISTRIK TENAGANUKLIR

REAKTOR GRAFIT BERPENDINGIN GAS (GAS COOLED REACTOR)

2. Prinsip kerja dan Komponen Utama PLTN

REAKTOR AIR DIDIH (BOILING WATER REACTOR, BWR)

Nomor 36, Tahun VII, April 2001

NUCLEAR CHEMISTRY & RADIOCHEMISTRY

REAKTOR AIR BERAT KANADA (CANDU)

REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK)

REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK)

I. PENDAHULUAN. hampir 50 persen dari kebutuhan, terutama energi minyak dan gas bumi.

REAKTOR PENDINGIN GAS MAJU

BAB I PENDAHULUAN BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

REAKTOR PEMBIAK CEPAT

PENGENALAN DAUR BAHAN BAKAR NUKLIR

I. PENDAHULUAN. penduduk dunia yaitu sekitar 7 miliar pada tahun 2011 (Worldometers, 2012),

235 U + n 148 La + 85 Br + 3n

II. TINJAUAN PUSTAKA. mekanisme yang banyak digunakan untuk menghasilkan energi nuklir melalui

BAB III KARAKTERISTIK DESAIN HTTR DAN PENDINGIN Pb-Bi

KONSEP DESAIN NEUTRONIK REAKTOR AIR TEKAN BERBAHAN BAKAR PLUTONIUM-URANIUM OKSIDA (MOX) DENGAN INTERVAL PENGISIAN BAHAN BAKAR PANJANG ASIH KANIASIH

BAB I PENDAHULUAN. umat manusia kepada tingkat kehidupan yang lebih baik dibandingkan dengan

BAB I PENDAHULUAN. bising energi listrik juga memiliki efisiensi yang tinggi, yaitu 98%, Namun

BAB I PENDAHULUAN 1.1. Latar Belakang

KATA PENGANTAR. Palembang, Juni Penyusun

BAB I PENDAHULUAN Latar Belakang

FAQ tentang Pembangkit Listrik Tenaga Nuklir (PLTN)

Hasbullah, M.T. Electrical Engineering Dept., Energy Conversion System FPTK UPI 2009

BAB I PENDAHULUAN. Semakin maraknya krisis energi yang disebabkan oleh menipisnya

PEMANFAATAN ENERGI NUKLIR

REAKTOR NUKLIR. Sulistyani, M.Si.

Analisis Termal Hidrolik Gas Cooled Fast Reactor (GCFR)

BAB III DAUR ULANG PLUTONIUM DAN AKTINIDA MINOR PADA BWR BERBAHAN BAKAR THORIUM

I. PENDAHULUAN. Telah dilakukan beberapa riset reaktor nuklir diantaranya di Serpong

Efisiensi PLTU batubara

REAKSI INTI. HAMDANI, S.Pd

ASPEK KESELAMATAN TERHADAP BAHAYA RADIASI NUKLIR, LIMBAH RADIOAKTIF DAN BENCANA GEMPA PADA PLTN DI INDONESIA SKRIPSI

5. KIMIA INTI. Kekosongan elektron diisi elektron pada kulit luar dengan memancarkan sinar-x.

TINJAUAN PUSTAKA. ditimbulkan oleh semakin berkurangnya sumber energi fosil serta dampak

PENTINGNYA REAKTOR PEMBIAK CEPAT

I. PENDAHULUAN. tanpa disadari pengembangan mesin tersebut berdampak buruk terhadap

MODUL 2 ANALISIS KESELAMATAN PLTN

BAB I PENDAHULUAN A. Latar Belakang

Reaktor Nuklir dan PLTN BAB I PENDAHULUAN

PARAMETER YANG DIPERTIMBANGKAN SEBAGAI KONDISI BATAS UNTUK OPERASI NORMAL

RISET KECELAKAAN KEHILANGAN AIR PENDINGIN: KARAKTERISTIK TERMOHIDRAULIK

POTENSI ENERGI NUKLIR

Sumber-Sumber Energi yang Ramah Lingkungan dan Terbarukan

PERATURAN MENTERI NEGARA LINGKUNGAN HIDUP NOMOR 21 TAHUN 2008

MAKALAH APLIKASI NUKLIR DI INDUSTRI

KONSEP DAN TUJUAN DAUR BAHAN BAKAR NUKLIR

MAKALAH FISIKA DAN KIMIA DASAR 2B DAMPAK MASALAH LINGKUNGAN LEDAKAN REAKTOR NUKLIR FUKUSHIMA

REAKSI NUKLIR NANIK DWI NURHAYATI,S.SI, M.SI

Oleh ADI GUNAWAN XII IPA 2 FISIKA INTI DAN RADIOAKTIVITAS

SMA NEGERI 1 PANDEGLANG

REAKTOR AIR TEKAN (PRESSURIZED WATER REACTOR, PWR)

BAB 1 PENDAHULUAN. Energi listrik merupakan salah satu faktor yang sangat penting dalam

Analisis Neutronik pada Gas Cooled Fast Reactor (GCFR) dengan Variasi Bahan Pendingin (He, CO 2, N 2 )

Pratama Akbar Jurusan Teknik Sistem Perkapalan FTK ITS

PERATURAN MENTERI NEGARA LINGKUNGAN HIDUP NOMOR 21 TAHUN 2008

REACTOR SAFETY SYSTEMS AND SAFETY CLASSIFICATION

adukan beton, semen dan airmembentuk pasta yang akan mengikat agregat, yang

KEBIJAKAN ENERGY MIX DAN POTENSI ENERGI TERBARUKAN DI INDONESIA

Teknologi Pembuatan Bahan Bakar Pelet Reaktor Daya Berbasis Thorium Oksida EXECUTIVE SUMMARY

BAB I PENDAHULUAN I. 1. Latar Belakang

I. PENDAHULUAN. suatu alat yang berfungsi untuk merubah energi panas menjadi energi. Namun, tanpa disadari penggunaan mesin yang semakin meningkat

ANALISIS KEBUTUHAN ENERGI KALOR PADA INDUSTRI TAHU

Jumlah Proton = Z Jumlah Neutron = A Z Jumlah elektron = Z ( untuk atom netral)

PENGOLAHAN BATU BARA MENJADI TENAGA LISTIRK

Generation Of Electricity

BAB III DASAR TEORI SISTEM PLTU

BAB I PENDAHULUAN Latar Belakang

BAB IV HASIL DAN PEMBAHASAN Geometri Aqueous Homogeneous Reactor (AHR) Geometri AHR dibuat dengan menggunakan software Visual Editor (vised).

RESUME PENGAWASAN K3 PESAWAT UAP DAN BEJANA TEKAN

REAKTOR AIR TEKAN TIPE RUSIA (VVER)

BAB I PENDAHULUAN. Pembangkit Listrik Tenaga Nuklir (PLTN) telah banyak dibangun di beberapa negara di

BAB I PENDAHULUAN. terutama dipenuhi dengan mengembangkan suplai batu bara, minyak dan gas alam.

CHAPTER III INTI ATOM DAN RADIOAKTIVITAS

BAB II PEMBAHASAN. perpindahan panas.

MITIGASI DAMPAK KEBAKARAN

BAB I PENDAHULUAN I.1. Latar Belakang

PENCEGAHAN KEBAKARAN. Pencegahan Kebakaran dilakukan melalui upaya dalam mendesain gedung dan upaya Desain untuk pencegahan Kebakaran.

STUDI PARAMETER REAKTOR BERBAHAN BAKAR UO 2 DENGAN MODERATOR H 2 O DAN PENDINGIN H 2 O

BAB 1 PENDAHULUAN 1.1 Latar Belakang

EFISIENSI MATERIAL PADA PEMBANGKIT LISTRIK TENAGA NUKLIR LWR (LIGHT WATER REACTOR) DAN PHWR (PRESSURIZED HEAVY WATER REACTOR)

SKRIPSI UPAYA PEMERINTAH JEPANG DALAM PENANGGULANGAN KRISIS ENERGI PASCA BENCANA GEMPA DAN TSUNAMI 2011

OPTIMASI DIMENSI BAHAN BAKAR UNTUK REAKTOR BERBAHAN BAKAR UO 2 DENGAN MODERATOR DAN PENDINGIN AIR RINGAN (H 2 O)

CHAPTER iii INTI ATOM DAN RADIOAKTIVITAS

LAMPIRAN FAKTOR-FAKTOR YANG HARUS DIPERTIMBANGKAN UNTUK MENETAPKAN KONDISI-KONDISI BATAS UNTUK OPERASI YANG AMAN

CONTOH KEJADIAN AWAL TERPOSTULASI. Kejadian Awal Terpostulasi. No. Kelompok Kejadian Kejadian Awal

BAB I PENDAHULUAN. penjemuran. Tujuan dari penjemuran adalah untuk mengurangi kadar air.

LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR NONDAYA

LEMBAR SOAL ULANGAN AKHIR SEMESTER TAHUN (UTAMA) Mata Pelajaran (Beban) : Fisika 4 ( 4 sks) Hari/Tanggal : Rabu, 01 Desembar 2010

Transkripsi:

MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) Di Susun Oleh: 1. AFRI YAHDI : 2013110067 2. M.RAZIF : 2013110071 3. SYAFA RIDHO ILHAM : 2013110073 4. IKMARIO : 2013110079 5. CAKSONO WIDOYONO : 2014110003 JURUSAN TEKNIK MESIN S1 FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI PADANG 2015

BAB I PENDAHULUAN A. LATAR BELAKANG Masyarakat pertama kali mengenal tenaga nuklir dalam bentuk bom atom yang dijatuhkan dihiroshima dan Nagasaki dalam Perang Dunia II tahun 1945. Sedemikian dahsyatnya akibat yang ditimbulkan oleh bom tersebut sehingga pengaruhnya masih dapat dirasakan sampaisekarang.di samping sebagai senjata pamungkas yang dahsyat, sejak lama orang telah memikirkan bagaimana cara memanfaatkan tenaga nuklir untuk kesejahteraan umat manusia. Sampai saat ini tenaga nuklir, khususnya zat radioaktif telah dipergunakan secara luas dalamberbagai bidang antara lain bidang industri, kesehatan, pertanian, peternakan, sterilisasi produk farmasi dan alat kedokteran, pengawetan bahan makanan, bidang hidrologi, yang merupakan aplikasi teknik nuklir untuk non energi. Salah satu pemanfaatan teknik nuklir dalam bidang energi saat ini sudah berkembang dan dimanfaatkan secara besar-besaran dalam bentuk Pembangkit Listrik Tenaga nuklir (PLTN), dimana tenaga nuklir digunakan untuk membangkitkan tenaga listrik yang relatif murah, aman dan tidak mencemari lingkungan. Pemanfaatan tenaga nuklir dalam bentuk PLTN mulai dikembangkan secara komersial sejak tahun 1954. Pada waktu itu di Rusia (USSR), dibangun dan dioperasikan satu unit PLTN air ringan bertekanan tinggi (VVER = PWR) yang setahun kemudian mencapai daya 5 Mwe. Pada tahun 1956 di Inggris dikembangkan PLTN jenis Gas Cooled Reactor (GCR + Reaktor berpendingin gas) dengan daya 100 Mwe. Pada tahun 1997 di seluruh dunia baik di negara maju maupun negara sedang berkembang telah dioperasikan sebanyak 443 unit PLTN yang tersebar di 31 negara dengan kontribusi sekitar 18 % dari pasokan tenaga listrik dunia dengan total pembangkitan dayanya mencapai 351.000 Mwe dan 36 unit PLTN sedang dalam tahap kontruksi di 18 negara. Seiring dengan krisis energi yang sedang menimpa Indonesia saat ini yang ditandai dengan semakin menipisnya cadangan minyak yang dimiliki Indonesia,

maka pemerintah berniat membangun PLTN (Pembangkit Listrik Tenaga Nuklir) di Indonesia. Pemerintah merasa pembangkit-pembangkit listrik yang sudah ada sekarang dirasa masih kurang untuk memenuhi konsumsi listrik di Indonesia. Pengertian dari PLTN sendiri adalah stasiun pembangkit listrik thermal di mana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik. Cara kerja PLTN tidak jauh dengan PLTU (Pembangkit Listrik Tenaga Uap). Bedanya pada PLTN energi panas yang dihasilkan berasal dari reaksi nuklir. Panas yang dihasilkan dari reaksi nuklir ini digunakan untuk menguapkan air pendingin. Uap ini digunakan untuk menggerakkan turbin sehingga diperoleh energi kinetik. Energi kinetik yang dihasilkan digunakan untuk memutar generator yang akhirnya menghasilkan energi listrik. Namun masih terdapat pro dan kontra dalam masyarakat mengenai rencana pemerintahan ini.oleh karena itu pemerintah harus memberikan penyuluhan mengenai teknologi nuklir kepada masyarakat. Selain itu pemerintah juga harus menerapkan standar keamanan yang ketat terhadap PLTN yang akan didirikan. B. TUJUAN 1. Meningkatkan pengetahuan mahasiswa tentang PLTN. 2. Menambah cara berfikir mahasiswa untuk menganalisis suatu permasalahan. 3. Agar mahasiswa bisa mengaplikasikan dalam kehidupan bermasyarakat. C. RUMUSAN MASALAH Dalam penulisan makalah ini ada beberapa permasalahan yang perlu dibahas antara lain: 1. Bagaimana prinsip kerja dari PLTN? 2. Bagaimana proses pemanfaatan panas hasil fisi untuk menghasilkan energi listrik di dalam PLTN? 3. Keuntungan dan kerugian dari PLTN?

BAB II PERALATAN 2.1 Reaktor Reaktor nuklir adalah tempat terjadinya reaksi pembelahan inti (nuklir) atau dikenal dengan reaksi fisi berantai yang terkendali. Bagian utama dari reaktor nuklir yaitu: elemen bakar, perisai, moderator dan elemen kendali. Reaksi fisi berantai terjadi apabila inti dari suatu unsur dapat belah (Uranium-235, Uranium-233) bereaksi dengan neutron termal/lambat yang akan menghasilkan unsur-unsur lain dengan cepat serta menimbulkan energi panas dan neutron-neutron baru. Reaktor nuklir berdasarkan fungsinya dapat dibedakan menjadi 2 (dua), yaitu: 2.2. Komponen Dasar Reaktor Nuklir Elemen Bahan Bakar Elemen bahan bakar ini berbentuk batang-batang tipis dengan diameter kirakira 1 cm. Dalam suatu reaktor daya besar, ada ribuan elemen bahan bakar yang diletakkan saling berdekatan. Seluruh elemen bahan bakar dan daerah sekitarnya dinamakan teras reaktor. Umumnya, bahan bakar reaktor adalah uranium-235. Moderator Netron Netron yang mudah membelah inti adalah netron lambat yang memiliki energi sekitar 0,04 ev (atau lebih kecil), sedangkan netron-netron yang dilepaskan selama proses pembelahan inti (fisi) memiliki energi sekitar 2 MeV. Oleh karena itu, sebuah reaktor atom harus memiliki materaial yang dapat mengurangi kelajuan netron-netron yang energinya sangat besar sehingga netron-netron ini dapat dengan mudah membelah inti. Material yang memperlambat kelajuan netron dinamakan moderator.

Moderator yang umum digunakan adalah air. Ketika netron berenergi tinggi keluar dari sebuah elemen bahan bakar, netron tersebut memasuki air di sekitarnya dan bertumbukan dengan molekul-molekul air. Netron cepat akan kehilangan sebagian energinya selama menumbuk molekul air (moderator) terutama dengan atom-atom hidrogen. Sebagai hasilnya netron tersebut diperlambat. Batang Kendali Jika keluaran daya dari sebuah reactor dikehendaki konstan, maka jumlah netron yang dihasilkan harus dikendalikan. Sebagaimana diketahui, setiap terjadi proses fisi ada sekitar 2 sampai 3 netron baru terbentuk yang selanjutnya menyebakan proses berantai. Batang kendalli terbuat dari bahan-bahan penyerap netron, seperti boron dan kadmium. Jika reaktor menjadi superkritis, batang kendali secara otomatis bergerak masuk lebih dalam ke dalam teras reaktor untuk menyerap kelebihan netron yang menyebabkan kondisi itu kembali ke kondisi kritis. Sebaliknya, jika reaktor menjadi subkritis batang kendali sebagian ditarik menjauhi teras reactor sehingga lebih sedikit netron yang diserap. Dengan demikian, lebih banyak netron tersedia untuk reaksi fisi dan reaktor kembali ke kondisi kritis. Untuk menghentikan operasi reaktor (missal untuk perawatan) batang kendali turun penuh sehingga seluruh netron diserap dan reaksi fisi berhenti. Pendingin Energi yang dihasilkan oleh reaksi fisi meningkatkan suhu reaktor. Suhu ini dipindahkan dari reaktor dengan menggunakan bahan pendingin misalnya air atau karbon dioksida. Bahan pendingin (air) disirkulasikan melalui system pompa, sehingga air yang keluar dari bagian atas teras reactor digantikan air dingin yang masuk melalui bagian bawah teras reactor. Perisai/Wadah Terbuat dari bahan yang mampu menahan radiasi agar pekerja reactor dapat bekerja dengan aman dari radiasi.

BAB III PEMBAHASAN 1. Prinsip kerja dari PLTN Prinsip kerja PLTN sebenarnya mirip dengan pembangkit listrik lainnya, misalnya Pembangkit Listrik Tenaga Uap (PLTU). Yang membedakan antara dua jenis pembangkit listrik itu adalah sumber panas yang digunakan. PLTN mendapatkan suplai panas dari reaksi nuklir, sedang PLTU mendapatkan suplai panas dari pembakaran bahan bakar fosil seperti batubara atau minyak bumi. Uap bertekanan tinggi pada PLTU digunakan untuk memutar turbin. Tenaga gerak putar turbin ini kemudian diubah menjadi tenaga listrik dalam sebuah generator. Perbedaan PLTN dengan pembangkit lain terletak pada bahan bakar yang digunakan untuk menghasilkan uap, yaitu Uranium. Reaksi pembelahan (fisi) inti Uranium menghasilkan tenaga panas (termal) dalam jumlah yang sangat besar serta membebaskan 2 sampai 3 buah neutron. Sebagai pemindah panas biasa digunakan air yang disirkulasikan secara terus menerus selama PLTN beroperasi. Proses pembangkit yang menggunakan bahan bakar uranium ini tidak melepaskan partikel seperti CO2, SO, atau NOx, juga tidak melepaskan asap atau debu yang mengandung logam berat yang dilepas ke lingkungan. Satu gram U-235 setara dengan 2650 batu bara. Oleh karena itu PLTN merupakan pembangkit listrik yang ramah lingkungan. Limbah radioaktif yang dihasilkan dari pengoperasian PLTN, adalah berupa elemen bakar bekas dalam bentuk padat. Elemen bakar bekas ini untuk sementara bisa disimpan dilokasi PLTN, sebelum dilakukan penyimpanan secara lestari.

Prinsip kerja dari PLTN 2. Proses pemanfaatan panas hasil fisi untuk menghasilkan energi listrik di dalam PLTN adalah sebagai berikut : o Bahan bakar nuklir melakukan reaksi fisi sehingga dilepaskan energi dalam bentuk panas yang sangat besar. o Panas hasil reaksi nuklir tersebut dimanfaatkan untuk menguapkan air pendingin, bisa pendingin primer maupun sekunder bergantung pada tipe reaktor nuklir yang digunakan. o Uap air yang dihasilkan dipakai untuk memutar turbin sehingga dihasilkan energi gerak (kinetik). o Energi kinetik dari turbin ini selanjutnya dipakai untuk memutar generator sehingga dihasilkan arus listrik. 3. Keuntungan dan kekurangan Keuntungan PLTN dibandingkan dengan pembangkit daya utama lainnya adalah: o Tidak menghasilkan emisi gas rumah kaca (selama operasi normal) - gas rumah kaca hanya dikeluarkan ketika Generator Diesel Darurat dinyalakan dan hanya sedikit menghasilkan gas). o Tidak mencemari udara - tidak menghasilkan gas-gas berbahaya sepert karbon monoksida, sulfur dioksida, aerosol, mercury, nitrogen oksida, partikulate atau asap fotokimia. o Sedikit menghasilkan limbah padat (selama operasi normal). o Biaya bahan bakar rendah - hanya sedikit bahan bakar yang diperlukan.

o Ketersedian bahan bak ar yang melimpah - sekali lagi, karena sangat sedikit bahan bakar yang diperlukan. Kekurangan dari PLTN o Risiko kecelakaan nuklir - kecelakaan nuklir terbesar adalah kecelakaan (Chernobylcontainment building) yang tidak mempunyai. o Limbah Nuklir - limbah radioaktif tingkat, tinggi yang dihasilkan dapat bertahan hingga ribuan tahun.

BAB IV TINJAUAN PUSTAKA A. LANDASAN TEORI Pembangkit Listrik Tenaga Nuklir (PLTN) adalah stasiun pembangkit listrik thermal di mana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik. PLTN termasuk dalam pembangkit daya base load, yang dapat bekerja dengan baik ketika daya keluarannya konstan (meskipun boiling water reactor dapat turun hingga setengah dayanya ketika malam hari). Daya yang dibangkitkan per unit pembangkit berkisar dari 40 MWe hingga 1000 MWe. Unit baru yang sedang dibangun pada tahun 2005 mempunyai daya 600-1. Pada dasarnya sistem kerja dari PLTN sama dengan pembangkit listrik konvensional, yaitu: air diuapkan di dalam suatu ketel melalui pembakaran. Ulang yang dihasilkan dialirkan ke turbin yang akan bergerak apabila ada tekanan uap. Perputaran turbin digunakan untuk menggerakkan generator, sehingga menghasilkan tenaga listrik. Satu gram U-235 setara dengan 2650 batu bara. Pada PLTN panas yang digunakan untuk menghasilkan uap yang sama, dihasilkan dari reaksi pembelahan inti bahan fisil (uranium) dalam reactor nuklir. Sebagai pemindah panas biasa digunakan air yang disirkulasikan secara terus menerus selama PLTN beroperasi. Proses pembangkit yang menggunakan bahan bakar uranium ini tidak melepaskan partikel seperti CO2, SO2, atau NOx, juga tidak mengeluarkan asap atau debu yang mengandung logam berat yang dilepas ke lingkungan. Oleh karena itu PLTN merupakan pembangkit listrik yang ramah lingkungan. Limbah radioaktif yang dihasilkan dari pengoperasian PLTN, adalah berupa elemen bakar bekas dalam bentuk padat. Elemen bakar bekas ini untuk sementara bisa disimpan di lokasi PLTN. B. JENIS-JENIS PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) 1. Pressurized Water Reactor (PWR)/Reaktor Air Tekan PWR adalah jenis reaktor daya nuklir yang menggunakan air ringan biasa sebagai pendingin maupun moderator neutron. Reaktor ini pertama sekali dirancang oleh

Westinghouse Bettis Atomic Power Laboratory untuk kepentingan kapal perang, tetapi kemudian rancangan ini dijadikan komersial oleh Westinghouse Nuclear Power Division. Reaktor jenis ini merupakan jenis reaktor yang paling umum. Lebih dari 230 buah reaktor digunakan untuk menghasilkan listrik, dan beberapa ratus lainnya digunakan sebagai tenaga penggerak kapal. Gambar 3 Skema Reaktor Pressurized Water Reactor (PWR) Pada reaktor jenis PWR, aliran pendingin utama yang berada di teras reaktor bersuhu mencapai 325 o C sehingga perlu diberi tekanan tertentu (sekitar 155 atm) oleh perangkat pressurizer sehingga air tidak dapat mendidih. Pemindah panas, generator uap, digunakan untuk memindahkan panas ke aliran pendingin sekunder yang kemudian mendidih menjadi uap air dan menggerakkan turbin untuk menghasilkan listrik. Uap kemudian diembunkan di dalam kondenser menjadi aliran pendingin sekunder. Aliran ini kembali memasuki generator uap dan menjadi uap kembali, memasuki turbin, dan demikian seterusnya. 2. Boiling water reactor (BWR)/Reaktor Air Didih Reaktor jenis BWR merupakan rancangan reaktor jenis air ringan sebagai pendingin dan moderator, yang juga digunakan di beberapa Pembangkit Listrik Tenaga Nuklir. Reaktor BWR pertama sekali dirancang oleh Allis-Chambers dan General Electric (GE). Sampai saat ini, hanya rancangan General Electric yang masih bertahan. Reaktor BWR rancangan General Electric dibangun di Humboldt Bay di California. Reaktor ini mempunyai banyak persamaan dengan reaktor PWR; perbedaan yang paling kentara ialah pada reaktor BWR, uap yang digunakan untuk memutar turbin dihasilkan langsung oleh teras reaktor.

Gambar 4 Skema Reaktor Boiling Water Reactor (BWR) Pada reaktor BWR hanya terdapat satu sirkuit aliran pendingin yang bertekanan rendah (sekitar 75 atm) sehingga aliran pendingin tersebut dapat mendidih di dalam teras mencapai suhu 285 o C. Uap yang dihasilkan tersebut mengalir menuju perangkat pemisah dan pengering uap yang terletak di atas teras kemudian menuju turbin. Karena air yang berada di sekitar teras selalu mengalami kontaminasi oleh peluruhan radionuklida, maka turbin harus diberi perisai dan perlindungan radiasi sewaktu masa pemeliharaan. Kebanyakan zat radioaktif yang terdapat pada air tersebut beumur paro sangat singkat, misalnya N-16 dengan umur paro 7 detik sehingga ruang turbin dapat dimasuki sesaat setelah reaktor dipadamkan. Uap tersebut kemudian memasuki turbin-generator. Setelah turbin digerakkan, uap diembunkan di kondenser menjadi aliran pendingin, kemudian dipompa ke reaktor dan memulai siklus kembali seperti di atas. 3. Reaktor Air Didih Lanjut (Advanced Boiling Water Reactor, ABWR) ABWR adalah reaktor air didih lanjut, yaitu tipe modifikasi dari reaktor air didih yang ada pada saat ini. Perbaikan ditekankan pada keandalan, keselamatan, limbah yang rendah, kemudahan operasi dan faktor ekonomi. Perlengkapan khas ABWR yang mengalami perbaikan desain adalah (1) pompa internal, (2) penggerak batang kendali, (3) alat pengatur aliran uap, (4) sistem pendinginan teras darurat, (5) sungkup reaktor dari beton pra-tekan, (6) turbin, (7) alat pemanas untuk pemisah uap (penurun kelembaban), (8) sistem kendali dijital dan lain-lain.

4. Reaktor tabung tekan Reaktor tabung tekan merupakan reaktor yang terasnya tersusun atas pendingin air ringan (ada juga air berat) dan moderator air berat atau pendingin air ringan dan moderator grafit dalam pipa kalandria. Bahan pendingin dan bahan moderator dipisahkan oleh pipa tekan, sehingga bahan pendingin dan bahan moderator dapat dipilih secara terpisah. Pada kenyataannya terdapat variasi gabungan misalnya pendingin air ringan moderator air berat (Steam-Generating Heavy Water Reactor, SGHWR), pendingin air berat moderator air berat (Canadian Deuterium Uranium, CANDU), pendingin air ringan moderator grafit (Channel Type Graphite-moderated Water-cooled Reactor, RBMK). Teras reaktor terdiri dari banyak kanal bahan bakar dan dideretkan berbentuk kisi kubus di dalam tangki kalandria, bahan pendingin mengalir masing-masing di dalam pipa tekan, energi panas yang timbul pada kanal bahan bakar diubah menjadi energi penggerak turbin dan digunakan pada pembangkit listrik. Disebut juga rektor nuklir tipe kanal.

BAB V KESIMPULAN A. KESIMPULAN Prinsip kerja PLTN berdasarkan sumber panas yang dihasilkan oleh suplai panas dari reaksi nuklir. Pemanfaatan energy panas tersebut tidak dapat dihasilkan apabila kurangnya bahan bakar. Adapun jenis PLTN yang ada di Bumi, merupakan pengembangan dari kemajuan teknologi yang ada. Oleh karena itu, banyak terjadi perkembangan pembangkit energy listrik yang baru.