MODUL 2 ANALISIS KESELAMATAN PLTN
|
|
|
- Ivan Hermawan
- 8 tahun lalu
- Tontonan:
Transkripsi
1 MODUL 2 ANALISIS KESELAMATAN PLTN Muhammad Ilham, Annisa Khair, Mohamad Yusup, Praba Fitra Perdana, Nata Adriya, Rizki Budiman , 12115, , , 12116, Program Studi Fisika, Institut Teknologi Bandung, Indonesia [email protected] Asisten: (CH. A. Andre Mailoa /12126) Tanggal Praktikum: ) Abstrak Teknologi Nuklir sebagai sumber pembangkit tenaga listrik mengalami banyak perkembangan. Karenanya diperlukan suatu prosedur keselamtan agar prosesnya aman dan tidak merugikan. Reaksi fisi merupakan proses fisis dari inti atom yang sebagai sumber energy ini. Banyak unsur yang terbentuk dari reaksi fisi Uranium, salah satunya Xenon. Keberadaan Xenon inilah yang dapat menyebabkan adanya efek Xenon sehingga daya pada reaktor berubah jika jumlahnya berlebih. Dalam praktikum ini akan dilakukan simulasi sederhana menggunakan Microsoft Excel untuk mengamati proses terjadinya Efek xenon secara perhitungan teoritik. Melalui simulasi didapatkan bahwa kecelakaan akibat Efek xenon dapat dihindari dengan adanya penambahan reaktivitas eksternal dari luar reaktor. Kata Kunci: Daya reaktor, Temperatur, Xenon, Iodin, Fluks, ULOF, UTOP I. Pendahuluan 1.1 Tujuan Melakukan simulasi sederhana terhadap kecelakaan pada reaktor nuklir dengan menentukan parameter pada efek osilasi Xenon menggunakan Ms. Excel sehingga dapat dianalisis dan memahami kecelakaan reaktor akibat efek Xenon. 1.2 Teori Dasar Secara umum penyebab kecelakaan reaktor nuklir dapat diidentifikasi karena, reaktivitas positif sehingga reaktor mengalami kenaikan dya secara cepat (kasus Chernobyl), kegagalan system thermal hidrolik utama saat PLTN beroperasi (kasus TMI II), problem pembuangan panas sisa (kasus Fukushima). Reaksi fisi merupakan reaksi pembelahan inti atom berat (dalam simulasi ini digunakan U-235) akibat penembakan neutron sehingga menghasilkan inti atom ringan, dan partikel lain (neutron, foton) yang memicu terjadinya reaksi berikutnya (berantai). Reaksi fisi ini menghasilkan daya keluaran yang sangat besar sehingga dapat dimanfaatkan untuk membangkitkan listrik melalui reaktor nuklir pada PLTN. Gambar 1. Skema reaksi fisi pada U-235 Dari skema diatas, kita dapat melihat produk fisi akan meluruh menjadi Te-135 dan Xe-135 secara langsung, namun Te-135 akan meluruh menjadi I-135 kemudian menjadi Xe Hal ini mengakibatkan penumpukan jumlah Xe-135 yang sangat kuat menyerap neutron sehingga terjadi perubahan daya reaktor secara drastic (efek Xenon). Jumlah Xenon dalam reaktor nuklir, dimana secara analitik dapat dituliskan sebagai berikut : 1) laju perubahan jumlah I-135 2) laju perubahan jumlah Xe-135
2 3) reaktivitas negative akibat Xe-135 4) rapat daya rata-rata Dengan rumus : III. Data dan Pengolahan Jumlah populasi Xenon dan Iodin Dengan menggunakan persamaan (1), (2) dapat diperoleh grafik populasi Xenon dan Iodin terhadap waktu : t Vs Xe Gambar 2. Populasi Xenon dalam keadaan normal 1E+16 t Vs I II. Metode Percobaan dan Hipotesa 2.1 Metode Percobaan Pada praktikum ini dimodelkan jumlah Xenon, Iodin, nilai p dan P axe menggunakan persamaan (1), (2), (3), dan (4) dalam selang waktu 2 jam selang,1 jam (grafik kondisi stabil). Lalu dilakukan perubahan fluks untuk %,5%,25%,dan 5% pada jam ke 1 sampai 2. Plot grafik tersebut terhadap waktu dan dibandingkan terhadap grafik saat kondisi stabil. diambil nilai P axe untuk mendapat nilai reaktivitas eksternal. Simulasi kedua digunakan untuk mencari daya reaktor dan temperature reaktor, kemudian diplot terhadap waktu dengan selang waktu. 2.2 Hipotesa Adnya perubahan nilai fluks, maka populasi Xenon akan mengalami perubahan. Hal ini akan menyebabkan daya yang dihasilkan pun berubah Gambar 3. Populasi Iodin dalam keadaan normal t Vs Xe Gambar 4. Populasi Xenon terhadap waktu dengan perubahan fluks % 1 2 3
3 Gambar 5. Populasi Xenon terhadap waktu dengan perubahan fluks 5% Gambar 6. Populasi Xenon terhadap waktu dengan perubahan fluks 25% Gambar 7. Populasi Xenon terhadap waktu dengan perubahan fluks 5% Gambar 8. Populasi Iodin terhadap waktu dengan perubahan fluks % t Vs I Gambar 9. Populasi Iodin terhadap waktu dengan perubahan fluks 5% Gambar1. Populasi Iodin terhadap waktu dengan perubahan fluks 25% Gambar 11. Populasi Iodin terhadap waktu dengan perubahan fluks 5% Reaktivitas negatif Reaktivitas negatif terhadap waktu dapat ditunjukkan oleh grafik hubungan keduanya :,1,5 -,5 -, Gambar 12. Reaktivitas terhadap waktu dengan perubahan fluks %,1,5 -,5 -,1 t Vs ro(t),5,1,15,5,1,15 Gambar 13. Reaktivitas terhadap waktu dengan perubahan fluks 5%
4 ,1,5 -,5 -,1 Gambar 14. Reaktivitas terhadap waktu dengan perubahan fluks 25%,1,5 -,5 -,1 Gambar 15. Reaktivitas terhadap waktu dengan perubahan fluks 5% Reaktivitas Positif Selisih titik minimum dan titik ketika dilakukan perubahan daya, Reaktivitas negatif yang telah diperoleh ditambah dengan konstanta (selisih titik minimum dan titik ketika dilakukan perubahan daya) sehingga dihasilkan grafik : Potong di 16.1,1,5 -,5 -,1 -,15 Gambar 16. Reaktivitas terhadap waktu dengan perubahan fluks % Potong di 16.7,5,1,15,5,1, rho ext,1,5 -,5 -,1 -,15 Gambar 17. Reaktivitas terhadap waktu dengan perubahan fluks 5% potong di 14,1,5 -,5 -,1 -,15 Gambar 18. Reaktivitas terhadap waktu dengan perubahan fluks 25% Potong di 16.7,1,5 -,5 -,1 -, plus rho ext plus rho ext plus rho ext Gambar 19. Reaktivitas terhadap waktu dengan perubahan fluks 5% Hubungan daya dan temperatur terhadap waktu Reaktivitas total daya dengan mencari terlebih dahulu ext Berikut grafik hubungan daya terhadap waktu untuk masing-maisng perubahan daya:
5 P Vs t Hubungan temperatur terhadap suhu untuk masing-masing perubahan daya : 6 4 2,5,1, t Vs T Gambar 2. P vs t dengan perubahan fluks % Gambar 21. P vs t dengan perubahan fluks 5% ,5,1,15 Gambar 22. P vs t dengan perubahan fluks 25% ,5,1,15,5,1,15 Gambar 23. P vs t dengan perubahan fluks 5% Gambar 24. T vs t dengan perubahan fluks % 6 4 2,5,1,15 Gambar 25. T vs t dengan perubahan fluks 5% 6 4 2,5,1,15 Gambar 26. T vs t dengan perubahan fluks 25% 6 4 2,5,1,15,5,1,15 Gambar 27. T vs t dengan perubahan fluks 5%
6 Hubungan temperatur coolant terhadap suhu untuk masing-masing perubahan daya : 432 Gambar 28. C vs t dengan perubahan fluks % t Vs C,5,1,15 Gambar 29. C vs t dengan perubahan fluks 5% Gambar 3. C vs t dengan perubahan fluks 25% ,5,1,15,5,1,15,5,1,15 Gambar 31. C vs t dengan perubahan fluks 5% IV. Pembahasan Osilasi xenon pada simulasi terjadi karena adanya perubahan fluks neutron akibat dari perubahan daya yeng diberikan. Perubahan fluks neutron akan semakin besar sehingga xenon akan meluruh dengan cepat, ketika jumlah xenon yang semakin kecil menyebabkan daya yang diproduksi semakin besar. Adanya ketidakstabilan daya, karena xenon merupakan absorber neutron yang sangat kuat (cross section) yang jauh lebih besar daripada U-235, Sehingga neutron yang seharusnya dipakai untuk reaksi fisi akan terserap oleh Xenon. Saat daya berkurang maka jumlah fluks neutron juga akan berkurang, sehingga reaktivitas di dalam reaktor akan berkurang pada selang waktu tertentu dan daya menurun. Namun temperature pada pendingin akan bertambah lebih cepat karena penangkapan neutron oleh Xenon. Waktu optimal untuk menyalakan kembali reaktor dari kondisi shutdown ketika jumlah xenon berkurang menjadi sama dengan jumlah Xenon sebelum reaktor mengalami shutdown yakni sekitar 5-6 jam setelah reaktor dimatikan. Dapat dilihat pada grafik reaktivitas feedback, yaitu pada nilai reaktivitas yang stabil. Osilasi daya terhadap efek xenon mempengaruhi kecelakaan reaktor. Ini disebabkan karena ketika fluks menurun maka jumlah xenon akan meningkat dan daya yang diproduksi semakin banyak. Ini mengakibatkan temperatur pendingin dan bahan bakar meningkat dan terjadilah ledakan pada reaktor. Pada fast reaktor hampir seluruh neutron yang ada digunakan untuk reaksi fisi, sehingga untuk reaktor jenis ini bahan bakar yang digunakan merupakan bahan bakar yang telah diperkaya. Karena banyaknya unsur lain yang menyerap neutron, mengakibatkan efek Xenon memiliki pengaruh yang relatif sangat kecil. Kecelakaan pada reaktor yang terjadi pada Chernobyl disebabkan oleh kesalahan operator. Untuk keslahan operator terjadi akibat penarikan batang kendali untuk meningkatkan daya keluaran dari reaktor. Namun saat temperatur pendingin berada pada temeperatur tinggi, kecepatan memasukkan batang proteksi saat keadaan darurat yang lama mengakibatakan penguapan seluruh cairan dan mengakibatkan adanya tekanan gas yang berlebih sehingga terjadi ledakan pada reaktor. Adapun dari segi desainnya, penggunaan bahan pendingin dan moderator yang berbeda
7 mengakibatkan adanya reaktivitas uap (perubahan jumlah gelembung uap pada reaktor air didih yang megakibatkan perubahan reaktivitas) yang bernilai positif ( menambah laju reaksi pembelahan inti), kemudian waktu untuk memasukkan batang proteksi dalam kondisi darurat adalah 18 detik, tidak adanya detektor yang dapat digunakan untuk mengetahuui daya total dan distribusi daya secara spasial, dan ukuran teras yang terlalu besar mengakibatkan sulitnya mengendalikan daya. ULOF (unprotected loss of flow), merupakan kecelakaan reaktor nuklir yang disebabkan oleh hilangnya aliran akibat tidak berfungsinya pompa. Hal ini menyebabkan temperature pendingin naik karena antara daya dan laju aliran pendingin tidak seimbang. Kesetimbangan system akan dicapai jika, nilai mutlak dari reaktivitas feedback negative akibat kenaikan temperature sama dengan reaktivitas feedback positif karena penurunan temperature bahan bakar. Contohnya kecelakaan reaktor di fukushima yang disebabkan adanya kegagalan system pendingin karena tsunami. UTOP (unprotected rod run out Transient over power), merupakan kecelakaan akibat oleh tertariknya seluruh batang kendali tanpa proteksi. Pada saat seluruh batang kendali tertarik keluar, maka daya akan naik (reaktivitas positif), sehingga terjadi kerusakan pada pompa pendingin primer. Kemudian antara daya reaktor dan aliran pendingin primer menjadi tidak seimbang, dan mengakibatkan kecelakaan yang lebih besar daripada ULOF. Contohnya kasus Chernobyl. Ketika fluks neutron divariasikan, maka dari grafik yang didapatkan jumlah xenon yang dihasilkan akan berubah juga. Semakin besar variasi fluks, maka jumlah xenon yang dihasilkan akan semakin semakin sedikit. Ini disebabkan karena ketika fluks neutron %, maka jumlah xenon yang dapat bereaksi fisi selanjutnya akan semakin sedikit. Sehingga jumlah xenon akan semakin banyak pada reaktor. Daya dapat berubah secara drastis dikarenakan fluks neutron yang berubah secara drastis pula. Perubahan fluks neutron secara drastis ini menyebabkan penambahan jumlah xenon yang sangat besar yang menyebabkan perubahan daya yang sangat besar. Perubahan ini berlangsung secara drastis karena perubahan fluks neutronnya pun berlangsung secara drastis. V. Simpulan Efek xenon mengakibatkan perubahan daya pada reaktor dan peningkatan temperature drastis, dapat dimodelkan kecelakaan chernobyl dengan komputer. Kecelakaan terjadi karena perubahan fluks neutron secara tiba-tiba (mesin reaktor dimatikan), menjadi nol, sehingga jumlah xenon meningkat drastis namun neutron telah habis sehingga terjadi penumpukan xenon serta meningatnya temperatur pendingin dan bahan bakar, menyebabkan reaktor panas dan meledak. Untuk menghindari kecelakaan akibat efek Xenon diperlukan penambahan reaktivitas dari luar system reaktor VI. Pustaka [1] diakses pada :35 [2] reaktor-chernobyl-desain, diakses pada :
REAKTOR PEMBIAK CEPAT
REAKTOR PEMBIAK CEPAT RINGKASAN Elemen bakar yang telah digunakan pada reaktor termal masih dapat digunakan lagi di reaktor pembiak cepat, dan oleh karenanya reaktor ini dikembangkan untuk menaikkan rasio
ANALISA KESELAMATAN REAKTOR CEPAT DENGAN DAUR ULANG AKTINIDA. Mohammad Taufik *
ANALISA KESELAMATAN REAKTOR CEPAT DENGAN DAUR ULANG AKTINIDA Mohammad Taufik * ABSTRAK ANALISA KESELAMATAN REAKTOR CEPAT DENGAN DAUR ULANG AKTINIDA. Telah dilakukan simulasi untuk melakukan analisa keselamatan
2. Reaktor cepat menjaga kesinambungan reaksi berantai tanpa memerlukan moderator neutron. 3. Reaktor subkritis menggunakan sumber neutron luar
- Pembangkit Listrik Tenaga Nuklir (PLTN) merupakan stasiun pembangkit listrik thermal di mana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik. - PLTN dikelompokkan
TUGAS MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)
TUGAS MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) Di Susun Oleh: 1. Nur imam (2014110005) 2. Satria Diguna (2014110006) 3. Boni Marianto (2014110011) 4. Ulia Rahman (2014110014) 5. Wahyu Hidayatul
I. PENDAHULUAN. hampir 50 persen dari kebutuhan, terutama energi minyak dan gas bumi.
1 I. PENDAHULUAN A. Latar Belakang Masalah energi merupakan salah satu hal yang sedang hangat dibicarakan saat ini. Di Indonesia, ketergantungan kepada energi fosil masih cukup tinggi hampir 50 persen
REAKTOR AIR BERAT KANADA (CANDU)
REAKTOR AIR BERAT KANADA (CANDU) RINGKASAN Setelah perang dunia kedua berakhir, Kanada mulai mengembangkan PLTN tipe reaktor air berat (air berat: D 2 O, D: deuterium) berbahan bakar uranium alam. Reaktor
PARAMETER YANG DIPERTIMBANGKAN SEBAGAI KONDISI BATAS UNTUK OPERASI NORMAL
LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR... TAHUN... TENTANG BATASAN DAN KONDISI OPERASI REAKTOR NONDAYA PARAMETER YANG DIPERTIMBANGKAN SEBAGAI KONDISI BATAS UNTUK OPERASI NORMAL
RISET KECELAKAAN KEHILANGAN AIR PENDINGIN: KARAKTERISTIK TERMOHIDRAULIK
RISET KECELAKAAN KEHILANGAN AIR PENDINGIN: KARAKTERISTIK TERMOHIDRAULIK RINGKASAN Apabila ada sistem perpipaan reaktor pecah, sehingga pendingin reaktor mengalir keluar, maka kondisi ini disebut kecelakaan
BAB I PENDAHULUAN I. 1. Latar Belakang
BAB I PENDAHULUAN I. 1. Latar Belakang Pengembangan pemanfaatan energi nuklir dalam berbagai sektor saat ini kian pesat. Hal ini dikarenakan energi nuklir dapat menghasilkan daya dalam jumlah besar secara
TUGAS. Di Susun Oleh: ADRIAN. Kelas : 3 IPA. Mengenai : PLTN
TUGAS Mengenai : PLTN Di Susun Oleh: ADRIAN Kelas : 3 IPA MADRASAH ALIYAH ALKHAIRAT GALANG TAHUN AJARAN 2011-2012 BAB I PENDAHULUAN 1.1. Latar Belakang Masyarakat pertama kali mengenal tenaga nuklir dalam
NUCLEAR CHEMISTRY & RADIOCHEMISTRY
Fakultas Keguruan dan Ilmu Pendidikan, Universitas Sebelas Maret, Surakarta Lecture Presentation NUCLEAR CHEMISTRY & RADIOCHEMISTRY By : NANIK DWI NURHAYATI, S,Si, M.Si Program Studi Pendidikan Kimia Jurusan
BAB I PENDAHULUAN 1.1. Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Konsumsi energi listrik dunia dari tahun ke tahun terus meningkat. Dalam hal ini industri memegang peranan penting dalam kenaikan konsumsi listrik dunia. Di Indonesia,
BAB III KARAKTERISTIK DESAIN HTTR DAN PENDINGIN Pb-Bi
BAB III KARAKTERISTIK DESAIN HTTR BAB III KARAKTERISTIK DESAIN HTTR DAN PENDINGIN Pb-Bi 3.1 Konfigurasi Teras Reaktor Spesifikasi utama dari HTTR diberikan pada tabel 3.1 di bawah ini. Reaktor terdiri
PENTINGNYA REAKTOR PEMBIAK CEPAT
PENTINGNYA REAKTOR PEMBIAK CEPAT RINGKASAN Reaktor pembiak cepat (Fast Breeder Reactor/FBR) adalah reaktor yang memiliki kemampuan untuk melakukan "pembiakan", yaitu suatu proses di mana selama reaktor
BAB I PENDAHULUAN. umat manusia kepada tingkat kehidupan yang lebih baik dibandingkan dengan
BAB I PENDAHULUAN A. Latar Belakang Masalah Kemajuan ilmu pengetahuan dan teknologi yang sangat pesat dewasa ini, termasuk juga kemajuan dalam bidang teknologi nuklir telah mengantarkan umat manusia kepada
REAKTOR GRAFIT BERPENDINGIN GAS (GAS COOLED REACTOR)
REAKTOR GRAFIT BERPENDINGIN GAS (GAS COOLED REACTOR) RINGKASAN Reaktor Grafit Berpendingin Gas (Gas Cooled Reactor, GCR) adalah reaktor berbahan bakar uranium alam dengan moderator grafit dan berpendingin
Analisis Termal Hidrolik Gas Cooled Fast Reactor (GCFR)
Bab 2 Analisis Termal Hidrolik Gas Cooled Fast Reactor (GCFR) 2.1 Pembangkit Listrik Tenaga Nuklir Prinsip kerja dari pembangkit listrik tenaga nuklir secara umum tidak berbeda dengan pembangkit listrik
CONTOH KEJADIAN AWAL TERPOSTULASI. Kejadian Awal Terpostulasi. No. Kelompok Kejadian Kejadian Awal
LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR NONDAYA CONTOH KEJADIAN AWAL TERPOSTULASI Kejadian Awal Terpostulasi No. Kelompok
PENGENALAN DAUR BAHAN BAKAR NUKLIR
PENGENALAN DAUR BAHAN BAKAR NUKLIR RINGKASAN Daur bahan bakar nuklir merupakan rangkaian proses yang terdiri dari penambangan bijih uranium, pemurnian, konversi, pengayaan uranium dan konversi ulang menjadi
LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR NONDAYA
LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR NONDAYA - 2 - CONTOH KEJADIAN AWAL TERPOSTULASI Kejadian Awal Terpostulasi No. Kelompok
MAKALAH APLIKASI NUKLIR DI INDUSTRI
MAKALAH APLIKASI NUKLIR DI INDUSTRI REAKSI NUKLIR FUSI DISUSUN OLEH : Mohamad Yusup ( 10211077) Muhammad Ilham ( 10211078) Praba Fitra P ( 10211108) PROGAM STUDI FISIKA INSTITUT TEKNOLOGI BANDUNG 2013
REAKTOR AIR DIDIH (BOILING WATER REACTOR, BWR)
REAKTOR AIR DIDIH (BOILING WATER REACTOR, BWR) RINGKASAN Reaktor Air Didih adalah salah satu tipe reaktor nuklir yang digunakan dalam Pembangkit Listrik Tenaga Nuklir (PLTN). Reaktor tipe ini menggunakan
SYNOPSIS REAKTOR NUKLIR DAN APLIKASINYA
SYNOPSIS REAKTOR NUKLIR DAN APLIKASINYA PENDAHULUAN Disamping sebagai senjata nuklir, manusia juga memanfaatkan energi nuklir untuk kesejahteraan umat manusia. Salah satu pemanfaatan energi nuklir secara
MODUL 2 TELEMETRI. Asisten: (Zamzam Multazam/ ) (M Rifqi/ ) Tanggal Praktikum: ( ) Abstrak
MODUL 2 TELEMETRI Muhammad Ilham, Annisa Khair, Mohamad Yusup, Praba Fitra Perdana, Nata Adriya, Rizki Budiman 10211078, 10211005, 10211077, 10211108, 10211060, 10211004 Program Studi Fisika, Institut
BAB IV HASIL DAN PEMBAHASAN Geometri Aqueous Homogeneous Reactor (AHR) Geometri AHR dibuat dengan menggunakan software Visual Editor (vised).
BAB IV HASIL DAN PEMBAHASAN Penelitian ini telah dilakukan dengan membuat simulasi AHR menggunakan software MCNPX. Analisis hasil dilakukan berdasarkan perhitungan terhadap nilai kritikalitas (k eff )
PEMBANGKIT PENGENALAN (PLTN) L STR KTENAGANUKLTR
PENGENALAN (PLTN) PEMBANGKIT L STR KTENAGANUKLTR I _ Sampai saat ini nuklir khususnya zat radioaktif telah dipergunakan secara luas dalam berbagai bidang seperti industri, kesehatan, pertanian, peternakan,
KONSEP DESAIN NEUTRONIK REAKTOR AIR TEKAN BERBAHAN BAKAR PLUTONIUM-URANIUM OKSIDA (MOX) DENGAN INTERVAL PENGISIAN BAHAN BAKAR PANJANG ASIH KANIASIH
KONSEP DESAIN NEUTRONIK REAKTOR AIR TEKAN BERBAHAN BAKAR PLUTONIUM-URANIUM OKSIDA (MOX) DENGAN INTERVAL PENGISIAN BAHAN BAKAR PANJANG ASIH KANIASIH DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN
EVALUASI TINGKAT KESELAMATAN HIGH TEMPERATURE REACTOR 10 MW DITINJAU DARI NILAI SHUTDOWN MARGIN.
EVALUASI TINGKAT KESELAMATAN HIGH TEMPERATURE REACTOR 10 MW DITINJAU DARI NILAI SHUTDOWN MARGIN Rizki Budi Rahayu 1, Riyatun 1, Azizul Khakim 2 1 Prodi Fisika, FMIPA, Universitas Sebelas Maret, Surakarta
PENGENALAN PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)
PENGENALAN PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) Masyarakat pertama kali mengenal tenaga nuklir dalam bentuk bom atom yang dijatuhkan di Hiroshima dan Nagasaki dalam Perang Dunia II tahun 1945. Sedemikian
PERHITUNGAN INTEGRAL RESONANSI PADA BAHAN BAKAR REAKTOR HTGR BERBENTUK BOLA DENGAN MENGGUNAKAN PROGRAM VSOP
PERHITUNGAN INTEGRAL RESONANSI PADA BAHAN BAKAR REAKTOR HTGR BERBENTUK BOLA DENGAN MENGGUNAKAN PROGRAM VSOP Elfrida Saragi PPIN BATAN Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Indonesia 15310 Email
BADAN TENAGA NUKLIR NASIONAL
BADAN TENAGA NUKLIR NASIONAL PUSAT TEKNOLOGI AKSELERATOR DAN PROSES BAHAN Jl. Babarsari Kotak Pos 6101 Ykbb, Yogyakarta 55281, Tel (62)(0274) 488435 Ringkasan Laporan Pelaksanaan Kegiatan Tahap Pertama
Oleh ADI GUNAWAN XII IPA 2 FISIKA INTI DAN RADIOAKTIVITAS
Oleh ADI GUNAWAN XII IPA 2 FISIKA INTI DAN RADIOAKTIVITAS 1 - Dengan menyebut nama Allah yang Maha Pengasih lagi Maha Penyayang - " Dan Kami ciptakan besi yang padanya terdapat kekuatan yang hebat dan
2. Prinsip kerja dan Komponen Utama PLTN
PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) DAN JENIS-JENIS REAKTOR PLTN (Yopiter L.A.Titi, NRP:1114201016, PascaSarjana Fisika FMIPA Institut Teknologi Sepuluh November (ITS Surabaya) 1. Pendahuluan Nuklir
REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK)
REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK) RINGKASAN RBMK berasal dari bahasa Rusia "Reaktory Bolshoi Moshchnosti Kanalynye" (hi-power pressure-tube reactors: Reaktor pipa tekan berdaya
BAB I PENDAHULUAN di Bandung dan Reaktor Kartini yang berada di Yogyakarta. Ketiga reaktor
1 BAB I PENDAHULUAN A. Latar Belakang Masalah Seiring dengan berkembangnya teknologi dan peradabaan manusia, kebutuhan terhadap energi mengalami peningkatan yang cukup tinggi. Untuk mencukupi kebutuhan-kebutuhan
LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 4 TAHUN 2014 TENTANG BATASAN DAN KONDISI OPERASI INSTALASI NUKLIR NONREAKTOR
KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 4 TAHUN 2014 TENTANG BATASAN DAN KONDISI OPERASI INSTALASI NUKLIR NONREAKTOR PARAMETER
REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK)
REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK) RINGKASAN RBMK berasal dari bahasa Rusia "Reaktory Bolshoi Moshchnosti Kanalynye" (hi-power pressure-tube reactors: Reaktor pipa tekan berdaya
MITIGASI DAMPAK KEBAKARAN
LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2012 TENTANG KETENTUAN DESAIN SISTEM PROTEKSI KEBAKARAN DAN LEDAKAN INTERNAL PADA REAKTOR DAYA MITIGASI DAMPAK KEBAKARAN III.1.
LAMPIRAN FAKTOR-FAKTOR YANG HARUS DIPERTIMBANGKAN UNTUK MENETAPKAN KONDISI-KONDISI BATAS UNTUK OPERASI YANG AMAN
LAMPIRAN FAKTOR-FAKTOR YANG HARUS DIPERTIMBANGKAN UNTUK MENETAPKAN KONDISI-KONDISI BATAS UNTUK OPERASI YANG AMAN A.1. Daftar parameter operasi dan peralatan berikut hendaknya dipertimbangkan dalam menetapkan
BAB IV DATA DAN ANALISIS HASIL PERHITUNGAN DESAIN HTTR
BAB IV DATA DAN ANALISIS BAB IV DATA DAN ANALISIS HASIL PERHITUNGAN DESAIN HTTR 4.1 Parameter Desain Teras Reaktor 4.1.1 Komposisi bahan bakar pada teras reaktor Dalam pendesainan reaktor ini pertama kali
FAQ tentang Pembangkit Listrik Tenaga Nuklir (PLTN)
PERTANYAAN : FAQ tentang Pembangkit Listrik Tenaga Nuklir (PLTN) BAGAIMANAKAH HUBUNGAN ANTARA ENERGI NUKLIR DENGAN FENOMENAPEMANASAN AKIBAT GAS KARBONDIOKSIDA (CO 2 ) JAWABAN RINGKAS Strategi pengurangan
MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)
MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) Di Susun Oleh: 1. AFRI YAHDI : 2013110067 2. M.RAZIF : 2013110071 3. SYAFA RIDHO ILHAM : 2013110073 4. IKMARIO : 2013110079 5. CAKSONO WIDOYONO : 2014110003
TUGAS 2 MATA KULIAH DASAR KONVERSI ENERGI
TUGAS 2 MATA KULIAH DASAR KONVERSI ENERGI Dosen : Hasbullah, S.Pd., MT. Di susun oleh : Umar Wijaksono 1101563 PROGRAM STUDI S1 TEKNIK ELEKTRO JURUSAN PENDIDIKAN TEKNIK ELEKTRO FAKULTAS PENDIDIKAN TEKNOLOGI
I. PENDAHULUAN. Telah dilakukan beberapa riset reaktor nuklir diantaranya di Serpong
I. PENDAHULUAN 1.1 Latar Belakang Kebutuhan listrik di Indonesia semakin meningkat, sedangkan bahan bakar fosil akan segera habis. Oleh karena itu dibutuhkan pembangkit listrik yang dapat digunakan sebagai
I. PENDAHULUAN. penduduk dunia yaitu sekitar 7 miliar pada tahun 2011 (Worldometers, 2012),
1 I. PENDAHULUAN A. Latar Belakang Seiring dengan perkembangan zaman dan semakin meningkatnya jumlah penduduk dunia yaitu sekitar 7 miliar pada tahun 2011 (Worldometers, 2012), maka peningkatan kebutuhan
REAKTOR PENDINGIN GAS MAJU
REAKTOR PENDINGIN GAS MAJU RINGKASAN Reaktor Pendingin Gas Maju (Advanced Gas-cooled Reactor, AGR) adalah reaktor berbahan bakar uranium dengan pengkayaan rendah, moderator grafit dan pendingin gas yang
BAB IV HASIL DAN ANALISIS
BAB IV HASIL DAN ANALISIS Gambar 4.1 Lokasi PT. Indonesia Power PLTP Kamojang Sumber: Google Map Pada gambar 4.1 merupakan lokasi PT Indonesia Power Unit Pembangkitan dan Jasa Pembangkitan Kamojang terletak
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Memasuki era globalisasi, ilmu pengetahuan dan teknologi mengalami perkembangan yang sangat pesat. Perkembangan ini dapat memiliki dampak yang positif dan negatif bagi
REACTOR SAFETY SYSTEMS AND SAFETY CLASSIFICATION
REACTOR SAFETY SYSTEMS AND SAFETY CLASSIFICATION Puradwi I.W. Bidang Analisis Risiko dan Mitigasi Sistem P2TKN-BATAN NATIONAL BASIC PROFESSIONAL TRAINING COURSE ON NUCLEAR SAFETY PUSAT PENDIDIKAN DAN PELATIHAN
BAB I PENDAHULUAN A. Latar Belakang
BAB I PENDAHULUAN A. Latar Belakang Kebutuhan akan energi semakin bertambah dari tahun ke tahun, sementara sumber yang ada masih berbanding terbalik dengan kebutuhan. Walaupun energi radiasi matahari (energi
Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional
Pusat Pendidikan dan Pelatihan Badan Tenaga Nuklir Nasional 1 Pokok Bahasan STRUKTUR ATOM DAN INTI ATOM A. Struktur Atom B. Inti Atom PELURUHAN RADIOAKTIF A. Jenis Peluruhan B. Aktivitas Radiasi C. Waktu
BAB I PENDAHULUAN BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada masa mendatang penggunaan bahan bakar berbasis minyak bumi harus dikurangi karena semakin menipisnya cadangan minyak bumi dan dampak
REAKSI INTI. HAMDANI, S.Pd
REAKSI INTI HAMDANI, S.Pd Reaktor atom Matahari REAKSI INTI Reaksi Inti adalah proses perubahan yang terjadi dalam inti atom akibat tumbukan dengan partikel lain atau berlangsung dengan sendirinya. isalkan
BAB I PENDAHULUAN Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Reaktor Kartini merupakan reaktor nuklir tipe TRIGA Mark II (Training Research and Isotop Production by General Atomic) yang mempunyai daya maksimum 250 kw dan beroperasi
ANALISIS DAN KRITERIA PENERIMAAN
SALINAN KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 2 TAHUN 2012 TENTANG DESAIN PROTEKSI BAHAYA INTERNAL SELAIN KEBAKARAN DAN
BERBAGAI TIPE PEMBANGKIT LISTRIK TENAGANUKLIR
BERBAGAI TIPE PEMBANGKIT LISTRIK TENAGANUKLIR RINGKASAN Beberapa tipe Pembangkit Listrik Tenaga Nuklir (PLTN) adalah Reaktor Air Tekan (Pressurized Water Reactor, PWR), Reaktor Air Tekan Rusia (VVER),
Analisis Neutronik pada Gas Cooled Fast Reactor (GCFR) dengan Variasi Bahan Pendingin (He, CO 2, N 2 )
Analisis Neutronik pada Gas Cooled Fast Reactor (GCFR) dengan Variasi Bahan Pendingin (He, CO 2, N 2 ) Riska*, Dian Fitriyani, Feriska Handayani Irka Jurusan Fisika Universitas Andalas *[email protected]
MAKALAH FISIKA DAN KIMIA DASAR 2B DAMPAK MASALAH LINGKUNGAN LEDAKAN REAKTOR NUKLIR FUKUSHIMA
MAKALAH FISIKA DAN KIMIA DASAR 2B DAMPAK MASALAH LINGKUNGAN LEDAKAN REAKTOR NUKLIR FUKUSHIMA Anggota Kelompok: Pratama Arief Ramadhan (55415378) Danando Syah Putra (51415559) Kelas 1IA07 Jurusan Teknik
BAB I PENDAHULUAN Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Reaktor nuklir membutuhkan suatu sistem pendingin yang sangat penting dalam aspek keselamatan pada saat pengoperasian reaktor. Pada umumnya suatu reaktor menggunakan
BAB I PENDAHULUAN. Semakin maraknya krisis energi yang disebabkan oleh menipisnya
BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan Semakin maraknya krisis energi yang disebabkan oleh menipisnya cadangan minyak bumi, gas dan batubara di Indonesia,membuat kita harus segera memikirkan
Reactor Safety System and Safety Classification BAB I PENDAHULUAN
DAFTAR ISI BAB I PENDAHULUAN... 1 1.1. Tujuan Keselamatan... 3 1.2. Fungsi Keselamatan Dasar... 3 1.3. Konsep Pertahanan Berlapis... 6 BAB II SISTEM KESELAMATAN REAKTOR DAYA PWR DAN BWR... 1 2.1. Pendahuluan...
Asisten: (Ghina Kamila/ ) Tanggal Praktikum: ( )
MODUL 4 TEKNIK VAKUM Muhammad Ilham, Rizki, Moch. Arif Nurdin,Septia Eka Marsha Putra, Hanani, Robbi Hidayat. 10211078, 10210023, 10211003, 10211022, 10211051, 10211063. Program Studi Fisika, Institut
Hasbullah, M.T. Electrical Engineering Dept., Energy Conversion System FPTK UPI 2009
Hasbullah, M.T Electrical Engineering Dept., Energy Conversion System FPTK UPI 2009 Konversi Energi (Energy Conversion) : Perubahan bentuk energi dari yang satu menjadi bentuk energi lain. Hukum konservasi
KEPUTUSAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 04-P/Ka-BAPETEN/I-03 TENTANG PEDOMAN PELATIHAN OPERATOR DAN SUPERVISOR REAKTOR NUKLIR
KEPUTUSAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 04-P/Ka-BAPETEN/I-03 TENTANG PEDOMAN PELATIHAN OPERATOR DAN SUPERVISOR REAKTOR NUKLIR KEPALA BADAN PENGAWAS TENAGA NUKLIR, Menimbang : bahwa sesuai dengan
2014, No MANAJEMEN TERAS. Langkah-langkah Manajemen Teras terdiri atas:
8 LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 2 TAHUN 2014 TENTANG MANAJEMEN TERAS SERTA PENANGANAN DAN PENYIMPANAN BAHAN BAKAR NUKLIR PADA REAKTOR NONDAYA MANAJEMEN TERAS Langkah-langkah
II. TINJAUAN PUSTAKA. mekanisme yang banyak digunakan untuk menghasilkan energi nuklir melalui
7 II. TINJAUAN PUSTAKA A. Konsep Dasar Reaktor Secara umum, energi nuklir dapat dihasilkan melalui dua macam mekanisme, yaitu pembelahan inti atau reaksi fisi dan penggabungan beberapa inti melalui reaksi
5. KIMIA INTI. Kekosongan elektron diisi elektron pada kulit luar dengan memancarkan sinar-x.
1 5. KIMIA INTI A. Unsur Radioaktif Unsur radioaktif secara sepontan memancarkan radiasi, yang berupa partikel atau gelombang elektromagnetik (nonpartikel). Jenis-jenis radiasi yang dipancarkan unsur radioaktif
PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 2 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN OPERASI REAKTOR NONDAYA
PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 2 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN OPERASI REAKTOR NONDAYA DENGAN RAHMAT TUHAN YANG MAHA ESA KEPALA BADAN PENGAWAS TENAGA NUKLIR, Menimbang :
K3 KEBAKARAN. Pelatihan AK3 Umum
K3 KEBAKARAN Pelatihan AK3 Umum Kebakaran Hotel di Kelapa Gading 7 Agustus 2016 K3 PENANGGULANGAN KEBAKARAN FENOMENA DAN TEORI API SISTEM PROTEKSI KEBAKARAN FENOMENA & TEORI API Apakah...? Suatu proses
BAB III DAUR ULANG PLUTONIUM DAN AKTINIDA MINOR PADA BWR BERBAHAN BAKAR THORIUM
BAB III DAUR ULANG PLUTONIUM DAN AKTINIDA MINOR PADA BWR BERBAHAN BAKAR THORIUM 3.1. Siklus Bahan Bakar Nuklir Siklus bahan bakar nuklir (nuclear fuel cycle) adalah rangkaian kegiatan yang meliputi pemanfaatan
PENENTUAN PREDIKSI WAKTU EKSPERIMEN PERPINDAHAN KALOR PENDIDIHAN MENGGUNAKAN BUNDEL UJI QUEEN-1
PENENTUAN PREDIKSI WAKTU EKSPERIMEN PERPINDAHAN KALOR PENDIDIHAN MENGGUNAKAN BUNDEL UJI QUEEN-1 Giarno, G.Bambang Heru, Joko Prasetyo W Pusat Teknologi dan Keselamatan Reaktor Nuklir - BATAN ABSTRAK PENENTUAN
Spesifikasi Teknis Teras Reaktor Nuklir Kartini dan Eksperimental Setup Fasilitas Uji In-vitro dan In-vivo Metode BNCT
Spesifikasi Teknis Teras Reaktor Nuklir Kartini dan Eksperimental Setup Fasilitas Uji In-vitro dan In-vivo Metode BNCT Drs. Widarto Peneliti Madya Reaktor Riset Kartini Tipe TRIGA (Training Riset Isotop
ANALISIS TRANSIEN AKIBAT KEHILANGAN ALIRAN PENDINGIN PADA TERAS SILISIDA RSG-GAS MENGGUNAKAN KODE EUREKA-2/RR
ANALISIS TRANSIEN AKIBAT KEHILANGAN ALIRAN PENDINGIN PADA TERAS SILISIDA RSG-GAS MENGGUNAKAN KODE EUREKA-2/RR Oleh Muh. Darwis Isnaini Pusat Teknologi Reaktor dan Keselamatan Nuklir - BATAN ABSTRAK ANALISIS
Generation Of Electricity
Generation Of Electricity Kelompok 10 : Arif Budiman (0906 602 433) Junedi Ramdoner (0806 365 980) Muh. Luqman Adha (0806 366 144) Saut Parulian (0806 366 352) UNIVERSITAS INDONESIA FAKULTAS TEKNIK ELEKTRO
FORMAT DAN ISI BATASAN DAN KONDISI OPERASI REAKTOR NONDAYA. I. Kerangka Format Batasan dan Kondisi Operasi Reaktor Nondaya
LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR... TAHUN... TENTANG BATASAN DAN KONDISI OPERASI REAKTOR NONDAYA FORMAT DAN ISI BATASAN DAN KONDISI OPERASI REAKTOR NONDAYA I. Kerangka Format
Definisi PLTN. Komponen PLTN
Definisi PLTN PLTN adalah sebuah pembangkit daya thermal yang menggunakan satu atau beberapa reaktor nuklir sebagai sumber panasnya. Prinsip kerja sebuah PLTN hampir sama dengan sebuah Pembangkilt Listrik
BAB I PENDAHULUAN I-1
BAB I PENDAHULUAN Dalam bab ini akan diuraikan mengenai latar belakang masalah dari penelitian, perumusan masalah yang diangkat dalam penelitian ini, tujuan dan manfaat dari penelitian yang dilakukan,
PENCEGAHAN KEBAKARAN. Pencegahan Kebakaran dilakukan melalui upaya dalam mendesain gedung dan upaya Desain untuk pencegahan Kebakaran.
LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2012 TENTANG KETENTUAN DESAIN SISTEM PROTEKSI KEBAKARAN DAN LEDAKAN INTERNAL PADA REAKTOR DAYA PENCEGAHAN KEBAKARAN Pencegahan Kebakaran
2011, No BAB I KETENTUAN UMUM Pasal 1 Dalam Peraturan Kepala Badan Pengawas Tenaga Nuklir ini, yang dimaksud dengan: 1. Reaktor nondaya adalah r
BERITA NEGARA REPUBLIK INDONESIA No.534, 2011 BADAN PENGAWAS TENAGA NUKLIR. Keselamatan Operasi Reaktor Nondaya. Prosedur. Pelaporan. PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA NOMOR
DINAMIKA PROSES TANGKI [DPT]
MODUL PRAKTIKUM LABORATORIUM INSTRUKSIONAL TEKNIK KIMIA DINAMIKA PROSES TANGKI [DPT] Disusun oleh: Moch. Syahrir Isdiawan B. Raissa Alistia Dr. Tri Partono Adhi Dr. Winny Wulandari Dr. Ardiyan Harimawan
TENIK PENGUKURAN TINGKAT DAYA PEMBANGKIT LISTRIK TENAGA NUKLIR TIPE CANDU
TENIK PENGUKURAN TINGKAT DAYA PEMBANGKIT LISTRIK TENAGA NUKLIR TIPE CANDU DJARUDDIN HASIBUAN Pusat Reaktor Serba Guna (PRSG)-BATAN Kawasan Puspitek Serpong Tangerang 15310, Banten Telp. 021-7560908 Abstrak
KARAKTERISTIK PRODUK FISI SAAT TERJADI KECELAKAAN PARAH DAN EVALUASI SOURCE TERM
KARAKTERISTIK PRODUK FISI SAAT TERJADI KECELAKAAN PARAH DAN EVALUASI SOURCE TERM RINGKASAN Penelitian karakterisitk produk fisi pada saat terjadi kecelakaan parah pada reaktor air ringan, dan evaluasi
BAB I Jenis Radiasi dan Interaksinya dengan Materi
BAB I Jenis Radiasi dan Interaksinya dengan Materi Radiasi adalah pancaran energi yang berasal dari proses transformasi atom atau inti atom yang tidak stabil. Ketidak-stabilan atom dan inti atom mungkin
BAB III PERSAMAAN PELURUHAN DAN PERTUMBUIIAN RADIOAKTIF
BAB III PERSAMAAN PELURUHAN DAN PERTUMBUIIAN RADIOAKTIF 1. PELURUHAN EKSPONENSIAL Proses peluruhan merupakan statistik untuk nuklida yang cukup banyak, maka banyaknya peluruhan per satuan waktu (dn/dt)
FISIKA TERMAL Bagian I
FISIKA TERMAL Bagian I Temperatur Temperatur adalah sifat fisik dari materi yang secara kuantitatif menyatakan tingkat panas atau dingin. Alat yang digunakan untuk mengukur temperatur adalah termometer.
Desain Reaktor Air Superkritis (Supercritical Cooled Water Reactor) dengan Menggunakan Bahan Bakar Uranium-horium Model Teras Silinder
JURNAL Teori dan Aplikasi Fisika Vol. 04, No.01, Januari Tahun 2016 Desain Reaktor Air Superkritis (Supercritical Cooled Water Reactor) dengan Menggunakan Bahan Bakar Uranium-horium Model Teras Silinder
BERITA NEGARA REPUBLIK INDONESIA
BERITA NEGARA REPUBLIK INDONESIA No.85, 2014 BAPETEN. Penanganan. Penyimpanan. Bahan Bakar Nuklir. Reaktor Non Daya. Manajemen Teras. PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 2 TAHUN 2014 TENTANG
PENGARUH JENIS MATERIAL REFLEKTOR TERHADAP FAKTOR KELIPATAN EFEKTIF REAKTOR TEMPERATUR TINGGI PROTEUS
PENGARUH JENIS MATERIAL REFLEKTOR TERHADAP FAKTOR KELIPATAN EFEKTIF REAKTOR TEMPERATUR TINGGI PROTEUS Disusun oleh : TEGUH RAHAYU M0209052 SKRIPSI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS
BAB I PENDAHULUAN. Pembangkit Listrik Tenaga Nuklir (PLTN) telah banyak dibangun di beberapa negara di
BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian Pembangkit Listrik Tenaga Nuklir (PLTN) telah banyak dibangun di beberapa negara di dunia, yang menghasilkan energi listrik dalam jumlah yang besar. PLTN
