Perhitungan Ulang Beban Pendinginan Pada Ruang Auditorium Gedung Manggala Wanabakti Blok III Kementerian Kehutanan Jakarta

dokumen-dokumen yang mirip
BAB III METODOLOGI PENGAMBILAN

BAB IV ANALISA DATA PERHITUNGAN BEBAN PENDINGIN

BAB III METODOLOGI DATA PERHITUNGAN BEBAN PENDINGIN

ANALISA KEBUTUHAN BEBAN PENDINGIN DAN DAYA ALAT PENDINGIN AC UNTUK AULA KAMPUS 2 UM METRO. Abstrak

STUDI KINERJA MESIN PENGKONDISI UDARA TIPE TERPISAH (AC SPLIT) PADA GERBONG PENUMPANG KERETA API EKONOMI

BAB II DASAR TEORI. 2.1 Pengertian Sistem Heat pump

Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin. Galuh Renggani Wilis, ST.,MT

BAB III DATA ANALISA DAN PERHITUNGAN PENGKONDISIAN UDARA

PENGARUH TEKANAN TERHADAP PENGKONDISIAN UDARA SISTEM EKSPANSI UDARA

BAB IV ANALISIS DAN PERHITUNGAN

DAFTAR PUSTAKA. W. Arismunandar, Heizo Saito, 1991, Penyegaran Udara, Cetakan ke-4, PT. Pradnya Paramita, Jakarta

JTM Vol. 04, No. 1, Februari

BAB III DASAR PERANCANGAN INSTALASI AIR CONDITIONING

Laporan Tugas Akhir 2012 BAB II DASAR TEORI

BAB IV HASIL PENGUJIAN DAN PEMBAHASAN

Analisis Konsumsi Energi Listrik Pada Sistem Pendingin Ruangan (Air Conditioning) Di Gedung Direktorat Politeknik Negeri Pontianak

HUBUNGAN TEGANGAN INPUT KOMPRESOR DAN TEKANAN REFRIGERAN TERHADAP COP MESIN PENDINGIN RUANGAN

BAB II DASAR TEORI. pengembangan dari teknologi mesin pendingin. Alat ini dipakai bertujuan untuk

BAB II LANDASAN TEORI. tropis dengan kondisi temperatur udara yang relatif tinggi/panas.

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda

BAB III PERENCANAAN, PERHITUNGAN BEBAN PENDINGIN, DAN PEMILIHAN UNIT AC

BAB II LANDASAN TEORI

BAB 9. PENGKONDISIAN UDARA

Analisis Konsumsi Energi Listrik Pada Sistem Pengkondisian Udara Berdasarkan Variasi Kondisi Ruangan (Studi Kasus Di Politeknik Terpikat Sambas)

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara

BAB II DASAR TEORI. Gambar 2.1 sistem Blast Chiller [PT.Wardscatering, 2012] BAB II DASAR TEORI

PERBANDINGAN UNJUK KERJA FREON R-12 DAN R-134a TERHADAP VARIASI BEBAN PENDINGIN PADA SISTEM REFRIGERATOR 75 W

Ahmad Farid* dan Moh. Edi.S. Iman Program Studi Teknik Mesin, Universitas Pancasakti Tegal Jl. Halmahera km 1, Tegal *

BAB II LANDASAN TEORI

Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik padasistem Water Chiller dengan Penerapan Metode Cooled Energy Storage

Pengantar Sistem Tata Udara

PENGARUH DEBIT ALIRAN AIR TERHADAP PROSES PENDINGINAN PADA MINI CHILLER

KAJI EKSPERIMENTAL KARAKTERISTIK TERMODINAMIKA DARI PEMANASAN REFRIGERANT 12 TERHADAP PENGARUH PENDINGINAN

BAGIAN II : UTILITAS TERMAL REFRIGERASI, VENTILASI DAN AIR CONDITIONING (RVAC)

BAB II LANDASAN TEORI

benar kering. Kandungan uap air dalam udara pada untuk suatu keperluan harus dibuang atau malah ditambahkan. Pada bagan psikometrik ada dua hal yang p

Gambar 2.21 Ducting AC Sumber : Anonymous 2 : 2013

ANALISA PENGARUH ARUS ALIRAN UDARA MASUK EVAPORATOR TERHADAP COEFFICIENT OF PERFORMANCE

BAB II DASAR TEORI 0,93 1,28 78,09 75,53 20,95 23,14. Tabel 2.2 Kandungan uap air jenuh di udara berdasarkan temperatur per g/m 3

ANALISA VARIASI BEBAN PENDINGIN UDARA KAPASITAS 1 PK PADA RUANG INSTALASI UJI DENGAN PEMBEBANAN LAMPU. Mustaqim, Rusnoto, Slamet Subedjo ABSTRACT

Jurnal Teknik Mesin (JTM): Vol. 05, No. 3, Oktober

PERHITUNGAN DAN METODE KONSTRUKSI SISTEM PENDINGINAN TERHADAP AUDITORIUM

BAB II TINJAUAN PUSTAKA

BAB II DASAR TEORI. BAB II Dasar Teori

Bab IV Analisa dan Pembahasan

BAB II DASAR TEORI 2012

BAB II DASAR TEORI. 2.1 Blood Bank Cabinet

PEMBUATAN ALAT PENGERING SERBUK TEMBAGA DENGAN MENGGUNAKAN SISTEM REFRIGERASI KOMPRESI UAP

PENGARUH KECEPATAN PUTAR POROS KOMPRESOR TERHADAP PRESTASI KERJA MESIN PENDINGIN AC

ANALISIS BEBAN PENDINGIN PADA RUANG KULIAH PRODI NAUTIKA JURUSAN KEMARITIMAN

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air

BAB II DASAR TEORI. BAB II Dasar Teori. 2.1 AC Split

OPTIMASI SISTEM PENGKONDISIAN UDARA PADA KERETA REL LISTRIK

Perancangan Desain Ergonomi Ruang Proses Produksi Untuk Memperoleh Kenyamanan Termal Alami

Bab IV Analisa dan Pembahasan

Pemanfaatan Sistem Pengondisian Udara Pasif dalam Penghematan Energi

EFEK PERUBAHAN LAJU ALIRAN MASSA AIR PENDINGIN PADA KONDENSOR TERHADAP KINERJA MESIN REFRIGERASI FOCUS 808

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

PENENTUAN EFISIENSI DAN KOEFISIEN PRESTASI MESIN PENDINGIN MERK PANASONIC CU-PC05NKJ ½ PK

BAB II TEORI DASAR. 2.1 Pengertian Sistem Tata Udara

STUDI EVALUASI SISTEM PENGKONDISIAN UDARA DI JURUSAN TEKNIK ELEKTRO KAMPUS BUKIT JIMBARAN DENGAN MENGGUNAKAN SOFTWARE

BAB II DASAR TEORI. 2.1 Cooling Tunnel

II. TINJAUAN PUSTAKA. apartemen, dan pusat belanja memerlukan listrik misalnya untuk keperluan lampu

Laporan Tugas Akhir 2012 BAB II DASAR TEORI

KAJI EKSPERIMENTAL KARAKTERISTIK PIPA KAPILER DAN KATUP EKSPANSI TERMOSTATIK PADA SISTEM PENDINGIN WATER-CHILLER

BAB III PERANCANGAN SISTEM

PERANCANGAN SISTEM PENDINGIN UNTUK PEMBEKUAN IKAN PADA KONTAINER KAPASITAS 8 TON

PENGARUH MEDIA PENDINGIN AIR PADA KONDENSOR TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN

Jurnal Kajian Teknik Mesin Vol. 2 No. 1 April

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR

BAB II DASAR TEORI BAB II DASAR TEORI

BAB I PENDAHULUAN. semakin bertambahnya ketinggian jelajah (altitude) pesawat maka tekanan dan

DINAMIKA Jurnal Ilmiah Teknik Mesin

PERHITUNGAN KEBUTUHAN COOLING TOWER PADA RANCANG BANGUN UNTAI UJI SISTEM KENDALI REAKTOR RISET

STUDI ANALISA OPTIMASI PENGHEMATAN ENERGI PADA SISTEM TATA UDARA DI TERMINAL KARGO BANDARA SOEKARNO HATTA. Budi Yanto Husodo 1,Novitri Br Sianturi 2

Seminar Nasional Mesin dan Industri (SNMI4) 2008 ANALISIS PERBANDINGAN UNJUK KERJA REFRIGERATOR KAPASITAS 2 PK DENGAN REFRIGERAN R-12 DAN MC 12

ANALISA AUDIT KONSUMSI ENERGI SISTEM HVAC (HEATING, VENTILASI, AIR CONDITIONING) DI TERMINAL 1A, 1B, DAN 1C BANDARA SOEKARNO-HATTA

BAB II LANDASAN TEORI

Pengaruh Debit Udara Kondenser terhadap Kinerja Mesin Tata Udara dengan Refrigeran R410a

BAB II TINJAUAN PUSTAKA

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iii. DAFTAR GAMBAR... viii. DAFTAR TABEL... x. DAFTAR NOTASI... xi Rumusan Masalah...

BAB II LANDASAN TEORI

ANALISA PEMBEBANAN PADA COLD STORAGE ROOM 33 DENGAN MENGGUNAKAN REFRIGERANT R 12 DI PT

Analisis Beban Thermal Rancangan Mesin Es Puter Dengan Kompresor ½ PK Untuk Skala Industri Rumah Tangga

PENGARUH LAJU ALIRAN UDARA TERHADAP KINERJA SISTEM REFRIGERASI PADA TATA UDARA SENTRAL. M. Nuriyadi ABSTRACT

Termodinamika II FST USD Jogja. TERMODINAMIKA II Semester Genap TA 2007/2008

TUGAS AKHIR PERANCANGAN SISTEM PENDINGIN UNTUK KAPAL NELAYAN KAPASITAS 8 TON

Kata kunci : pemanasan global, bahan dan warna atap, insulasi atap, plafon ruangan, kenyamanan

BAB II DASAR TEORI BAB II DASAR TEORI

RANCANG BANGUN INSTALASI TATA UDARA RUANG AUDITORIUM DIREKTORAT JENDRAL AHU KEMENKUMHAM

BAB I PENDAHULUAN. 1.1 Latar Belakang Penelitian. Air Conditioning (AC) adalah suatu mesin pendingin sebagai sistem pengkondisi

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB II DASAR TEORI Prinsip Kerja Mesin Refrigerasi Kompresi Uap

Heroe Poernomo 1) Jurusan Teknik Permesinan Kapal, Politeknik Perkapalan Negeri Surabaya, Indonesia

MULTIREFRIGERASI SISTEM. Oleh: Ega T. Berman, S.Pd., M,Eng

BAB II DASAR TEORI 2.1 Cooling Tunnel

PENGARUH KECEPATAN UDARA PENDINGIN KONDENSOR TERHADAP KOEFISIEN PRESTASI AIR CONDITIONING

PENGHITUNGAN BEBAN KALOR PADA GEDUNG AULA UNIVERSITAS SULTAN FATAH DEMAK

BAB II DASAR TEORI. Laporan Tugas Akhir BAB II DASAR TEORI

STUDI ANALISA OPTIMASI PENGHEMATAN ENERGI PADA SISTEM TATA UDARA DI TERMINAL KARGO BANDARA SOEKARNO HATTA. Budi Yanto Husodo 1,Novitri Br Sianturi 2

Transkripsi:

ISSN: 40-33 Perhitungan Ulang Beban Pendinginan Pada Ruang Auditorium Gedung Manggala Wanabakti Blok III Kementerian Kehutanan Jakarta Sabaruddin Harahap, Abdul Hamid, Imam Hidayat Program Studi Teknik Mesin, Fakultas Teknik Universitas Mercu Buana, Jakarta Email. sabaruddinharahap@rocketmail.com Abstrak -- Ruang Auditorium Gedung Manggala Wanabakti diresmikan sejak 4 Agustus 983 yang merupakan salah satu ruang yang multifungsi diantaranya sebagai ruang rapat/kongres, seminar, wisuda, pameran dan pegelaran, serta resepsi pernikahan. Perhitungan beban pendinginan pada gedung ini menggunakan metode CLTD (Cooling Load Temperature Difference). Perhitungan beban pendinginan berdasarkan data sekunder yang kemudian hasilnya dibandingkan dengan kapasitas beban pendinginan terpasang. Dari hasil perhitungan beban pendingin di atas dapat disimpulkan bahwa kapasitas mesin AHU (Air Handling Unit) yang terpasang belum mencukupi dalam memenuhi kebutuhan sistem penyegaran udara pada ruang Auditorium Gedung Manggala Wanabhakti Kementerian Kehutanan RI. Kata Kunci: Beban pendinginan, set point, Air Handling Unit. Abstract -- Mangala Wanabakti Auditorium Hall inaugurated since August 4, 983, which is one multifunctional space such as conference / congress, seminars, graduation, exhibitions and performances, as well as wedding receptions. Cooling load calculation on this building using CLTD (Cooling Load Temperature Difference) method. Cooling load calculation based on secondary data results are then compared with the installed capacity of the cooling load. Based on calculation of the cooling load can be concluded that the capacity of the machine AHU (Air Handling Unit) installed yet sufficient to meet the needs of air refresher system in the Mangala Wanabhakti Auditorium Hall of Ministry of Forestry. Keywords: Cooling load calculation, Set Point, Air Handling Unit.. PENDAHULUAN Pengkondisian udara adalah perlakuan terhadap udara untuk mengatur suhu, kelembaban, kebersihan dan pendistribusiannya secara serentak guna mencapai kondisi nyaman yang diperlukan oleh orang yang berada di dalam suatu ruangan. Selain itu, pengkondisian udara dapat didefinisikan suatu proses mendinginkan udara sehingga mencapai temperatur dan kelembaban yang ideal. Pada saat ini AC (Air Conditioning) sudah banyak dimanfaatkan untuk keperluan sehari hari dan sudah menjadi kebutuhan yang harus dipenuhi, salah satunya adalah pada gedung perkantoran dan auditorium, karena selain untuk mendapatkan kondisi udara yang nyaman, juga dapat meningkatkan produktiftas manusia. Dalam pemasangan dan penggunaannya, sistem tata udara memerlukan biaya yang tidak sedikit. Pemakaian tata udara yang tidak tepat dengan kebutuhannya akan mengakibatkan pemborosan, baik itu energi maupun biaya yang cukup mahal. Setiap bangunan atau ruangan selain mempunyai kondisi beban pendinginan puncak juga mempunyai beban total pendinginan ruangan, yang biasanya berubah-ubah setiap jamnya. Berdasarkan hal tersebut, suatu gedung atau ruangan yang akan dikondisikan dengan memasang sistem tata udara maka perlu diketahui terlebih dahulu beban maksimum dan beban parsial yang ada dan harus ditanggulangi dengan tepat agar dapat dipakai peralatan yang tepat untuk dipasang. Sehingga, tidak terjadi pemborosan energi dan biaya, serta kemungkinan kurangnya kapasitas mesin yang menyebabkan tidak tercapainya kondisi yang diinginkan. Untuk mengatasi hal tersebut diperlukan perhitungan besaran beban yang tepat pada sistem pengkondisian udara dan menentukan beban yang diterima oleh mesin tersebut. Ruang Auditorium Gedung Manggala Wanabakti diresmikan sejak 4 Agustus 983 merupakan salah satu ruang yang multifungsi diantaranya sebagai ruang rapat/kongres, Sabaruddin H., Perhitungan Ulang Beban Pendinginan 49

SINERGI Vol. 8, No. 3, Oktober 04 seminar, wisuda, pameran dan pegelaran, serta resepsi pernikahan. Alasan dilakukannya perhitungan ulang beban pendingin pada Ruang Auditorium Gedung Manggala Wanabakti ini adalah dikarenakan kondisi awal sistem pengkondisian udara pada gedung ini beroperasi dengan baik dimana setpoint suhu di dalam ruangan masih dapat tercapai sesuai dengan kondisi di lapangan. Namun saat ini, kondisi suhu udara pada ruang Auditorium saat digunakan pada acara-acara tidak sesuai dengan set point suhu yang diharapkan sehingga para penghuni/ pengguna merasa kurang nyaman. Hal ini diperkuat dengan adanya komplain dan keluhan dari para pengguna ruang Auditorium. Tujuan dari penulisan ini adalah untuk menghitung ulang beban pendinginan dan membandingkan jumlah beban pendingin hasil perhitungan dengan kondisi yang terpasang pada sisitem pengkonsisian udara ruang Auditorium gedung Manggala Wanabakti Blok III Kementerian Kehutanan Jakarta.. TEORI DASAR Sistem Pengkondisian Udara Sistem Pengkondisian Udara adalah suatu proses mendinginkan udara sehingga dapat mencapai temperatur dan kelembaban yang sesuai dengan yang dipersyaratkan terhadap kondisi udara suatu ruangan tertentu, mengatur aliran udara dan kebersihannya. Prinsip Sistem Pengkondisian Udara Berdasarkan hukum thermodinamika pertama, panas Q yang dikeluarkan dari siklus temperatur tinggi sama dengan jumlah panas Q yang dikeluarkan pada temperatur rendah dan kerja W. Q = Q + W... () Input energi yang dibutuhkan untuk mengangkat panas Q dari temperatur rendah ke temperatur tinggi membutuhkan kerja mekanik. Sistem pendingin tidak bisa dilepaskan dari terjadinya proses perpindahan panas dimana panas yang diproduksi oleh ruangan yang akan dikonddisikan temperaturnya akan deserap oleh sistem pendingin dan kemudian akan dilepaskan ke lingkungan. Siklus Pendingin Siklus pendingin terdiri dari empat proses, yaitu: ) Evaporasi (Penguapan) Merupakan proses pertukaran panas udara ruangan dengan refrigerant. Pada tahap ini terjadi pertukaran kalor di evaporator, dimana kalor dari lingkungan atau media yang didinginkan diserap oleh refrigerant cair dalam evaporator sehingga refrigerant cair yang berasal dari katup ekspansi yang bertekanan dan bertemperatur rendah berubah fasa dari fasa cair menjadi uap yang mempunya tekanan dan temperatur tinggi. Maka besar kalor yang diserap oleh refrigerant adalah: Q C = ṁ (h h )... () dimana Q C ṁ : Banyaknya kalor yang diserap di evaporator persatuan waktu (kj/s) : Laju aliran massa refrigerant (kg/s) (h h ) : Efek refrigerasi (kj/kg) ) Kompresi Kompresi memiliki dua fungsi, yaitu: Pertama, untuk menghisap refrigerant dari evaporator dan menekannya ke kondenser. Kedua, untuk meningkatkan tekanan refrigerant. Pada tahap ini terjadi di kompressor dimana refrigerant yang berfasa uap dengan temperatur dan tekanan rendah dikompresi secara isotrapic sehingga temperatur dan tekanannya menjadi tinggi, besar kapasitas pemanasan dapat ditulis dengan persamaan : Q W = ṁ (h 3 h )... (3) dimana Q w : Kapasita pemanasan (kj/s) persatuan waktu (kg/s) ṁ : Laju aliran massa refrigerant (kj/s) (h 3 h ) : Kerja kompresi (kj/kg) 3) Kondensasi (Pengembunan) Memiliki dua fungsi, yaitu: Pertama, untuk membuang panas yang disimpan refrigerant pada evaporator. Kedua, untuk mengubah fasa refrigerant dari uap menjadi cairan. Pada tahap ini terjadi didalam kompressor, dimana panas dari refrigerant yang berfasa uap dari kompressor dibuang ke lingkungan sehingga refrigerant tersebut mengalami kondensasi. Pada tahap ini terjadi perubahan fasa dari fasa uap superheat menjadi fasa cair jenuh, pada fasa cair jenuh ini tekanan dan temperaturnya masih tinggi. Besarnya kalor yang dilepaskan di kondensor adalah: 50 Sabaruddin H., Perhitungan Ulang Beban Pendinginan

ISSN: 40-33 q c = h 3 h 4... (4) Dimana q c : Kalor yang dilepas di kondensor (kj/kg) h 3 : Entalphi refrigerant yang keluar dari kompressor (kj/kg) h : Entalphi refrigerant cair jenuh (kj/kg) 4) Ekspansi Mengubah cairan refrigerant yang panas menjadi cairan yang dingin dengan menurunkan tekanannya. Pada tahap ini terjadi di katup ekspansi dimana refrigerant diturunkan tekanannya yang diikuti dengan turunnya temperatur entalphi. Udara panas dari ruangan Prosedur yang ditempuh dalam penelitian ini antara lain: Observasi langsung untuk pengambilan data pada ruang yang dikondisikan dengan sistem pendingin dengan memperhatikan beban internal dan eksternal dengan dasar teori pada sumber pustaka yang ada. Pengolahan data dan perhitungan data. Evaluasi hasil perhitungan jumlah beban pada mesin terpasang dengan hasil data dilapangan. Mengambil kesimpulan dari hasil penelitian. 4. HASIL DAN PEMBAHASAN Beberapa data didapatkan dari data sekunder. Tabel memperlihatkan data ruangan yang dianalisa. Tabel. Data Ruangan DATA RUANGAN Luas Lantai 4.448,8 m EKSPANSI Cairan EVAPORASI Tinggi ruangan (Tinggi tembok) Tinggi ruangan (Lantai sampai plafon) 9,34 m,74 m Caira n pana KOMPRESI Uap panas Uap dingi n KONDENSASI Gambar. Siklus Pendingin Udara dingin 3. METODOLOGI Perhitungan beban pendinginan ini menggunakan metode metode CLTD (Cooling Load Temperature Difference). Perhitungan beban pendinginan berdasarkan data sekunder yang kemudian hasilnya dibandingkan dengan kapasitas beban pendinginan terpasang. Data sekunder yang dipakai meliputi: Luas lantai, luas permukaan bangunan, volume bangunan, luas permukaan kaca, masing-masing dibedakan antara yang dikondisikan dan tidak. Luas permukaan selubung/fasade, terdiri dari luas dinding dan kaca. Luas tiap-tiap material bangunan arah hadapnya. Jenis bahan, tebal material selubung bangunan dan atap. Nilai U untuk material yang digunakan baik dinding, kaca dan atap. Nilai koefisien peneduh (SC). Waktu pengoperasian ruang perkantoran dimulai pada pukul 06.00 WIB sampai dengan pukul 0.00 WIB. Penerangan untuk ruangan menggunakan jenis lampu yang berbeda-beda tergantung fungsi dan letak penempatan lampu dengan lama operasi sebanyak jam atau sama dengan jam operasional kantor. Data lampu penerangan ditampilkan pada Tabel. Tabel. Data lampu Penerangan DATA LAMPU NO JENIS LAMPU JUMLAH Center Pin Spot Light 000 Watt Unit Mercury 400 Watt 55 Unit 3 Floor Receptacle 3500 Watt Unit 4 Ceiling Spot Light 000 Watt Unit 5 Foot Light 60 Watt 7 Unit 6 Border Light 50 Watt 7 Unit 7 Suspension Light 500 Watt 8 Unit 8 Lower Horison Light 00 Watt 7 Unit 9 Down Light 00 Watt 65 Unit 0 Reflector Lamp 300 Watt 6 Unit Jumlah Lampu 630 Unit Sabaruddin H., Perhitungan Ulang Beban Pendinginan 5

SINERGI Vol. 8, No. 3, Oktober 04 Dalam ruang perkantoran khususnya ruang Auditorium tentu tidak terlepas dari penggunaan alat perkantoran. Penggunaan peralatan tersebbut tentu menghasilkan kalor yang harus diperhitungkan dalam perhitungan beban pendingin. Tabel 3 memperlihatkan data peralatan yang digunakan. Table 3. Data Peralatan DATA PERALATAN NO NAMA ALAT/BARANG JUMLAH Laptop Unit Proyektor Unit 3 Speaker Aktif 6 Unit 4 Mixer 4 Channel Unit 5 Amplifire 7 Unit 6 Speaker Ceiling 4 Unit 7 Microphone 0 Unit 8 Kamera CCTV Unit 9 Video Shooting Unit posisi gedung berada yang akan berpengaruh pada iklim, jenis bahan yang dipakai dalam konstruksi bangunan serta temperatur lingkungan Dalam menentukan perolehan kalor, dasar yang dipakai pada beban terpanas dari rata-rata beban terpanas dalam satu tahun (ASHRAE, 00) dan (Handbook, 965). Langkah-langkah perhitungan beban: Penentuan letak dan posisi gedung Penentuan dimensi ruangan Menentukan kondisi rancangan yang terdiri dari : a. Temperatur basah (wet temperature) b. Temperatur kering (dry temperature) c. Kelembaban Menentukan temperatur maksimal di luar sebagai acuan dari perhitungan beban Menganbil data beban yang diperlukan baik untuk beban internal maupun eksternal Menghitung beban pendingin Dari data sekunder yang ada dapat dihitung Beban Pendinginan maksimum ruangan auditorium. Hasil perhitungan terlihat pada Tabel 5, Tabel 6, dan Tabel 7. Manusia dalam aktifitasnya tentu mengeluarkan kalor dari dalam tubuhnya yang harus diperhitungkan dalam perhitungan beban pendingin. Asumsi jumlah penghuni sebanyak.50 orang yang rinciannya terlihat pada Tabel 4. Tabel 4. Data Jumlah Penghuni DATA PENGHUNI RUANGAN NO PENGHUNI JUMLAH Tamu undangan acara yang hadir.50 Orang Tim Pengelola Gedung 5 Orang 3 Tim Pushumas Kehutanan 8 Orang 4 Tim Cleaning Service 0 Orang 5 Karyawan yang bertugas 5 Orang 6 Tim Kesenian 7 Orang 7 Dan lain-lain 5 Orang 3 4 5 Tabel 5. Jumlah Beban Pendinginan Jenis Perhitungan kcal/jam kj/jam Beban Kalor Perhitungan Beban Kalor Sensibel Daerah Parimeter Tambahan kalor oleh transmisi radiasi matahari melalui jendela Beban transmisi kalor melalui jendela Infiltrasi beban kalor sensibel Beban transmisi kalor melalui dinding dan atap tersimpan dari ruangan dengan penyegaran udara (pendinginan) terputus-putus.67,075 4.886,309.85,03 4.96,484 5.04 6.977, 846 3.89,75 556.395, 366 5.08,685 6.9, Sub Total 65.35,54 69.43,03 Jumlah.50 Orang Kapasitas mesin terpasang untuk ruang auditorium dengan 4 unit AHU adalah: 0,08 TR atau setara dengan 68, PK dengan daya sebesar 00 kw. Untuk menghitung semua beban terutama beban eksternal akan dipengaruhi oleh beberapa faktor diantaranya: letak dan 5 Sabaruddin H., Perhitungan Ulang Beban Pendinginan

ISSN: 40-33 3 4 Tabel 6. Jumlah Beban Pendinginan (Lanjutan) laten oleh infiltrasi Beban Kalor Laten Daerah Parimeter 393.074,6.645.74,735 Beban Kalor Sensibel Daerah Interior dari partisi dari langit-langit dari lantai 348, 64.459,577.3,49 5.76,99 9.858,633 4.76, 5 Sub Total.430,496 93.9 Beban Kalor Sensibel Karena Adanya Sumber Kalor Interior 3 sensibel dari penghuni sensibel dari peralatan sensibel dari lampu penerangan 56.06,5 34.7,475 9,384 39,90 69,95.7,484 Sub Total 56.34,8 35.889,5 laten dari penghuni (sumber penguapan interior) Beban Kalor Laten Daerah Interior 3.395 3.444,586 Tabel 7. Jumlah Beban Pendinginan (Lanjutan) Beban Kalor Sensibel Mesin Tambahan kalor (heat gain) sensibel oleh 36.363,64 5.47,9 udara luar masuk Kenaikan beban oleh kebocoran 4.666,94 78.634,8 saluran udara Sub Total 79.09,834 laten mesin oleh udara luar masuk Kenaikan beban oleh kebocoran saluran udara Sub Total Jumlah Perhitungan Beban Pendinginan Beban Kalor Laten Mesin 50,9 3,49 6.966, 59.439,605 6.556,8 57.73,573 809.4,87 3.387.79,37 Total Beban Pendinginan Pada Ruang Auditorium Gedung Manggala Wanabakti Blok III yang diperoleh adalah sebagai berikut: Kalor beban = 809.4,87 kcal/jam Safety factor = 809.4,87kcal/jam x 5 % = 40.457,4 kcal/jam Sehingga Jumlah beban pendinginan, = 809.4,87kcal/jam + 40.457,4 kcal/jam = 849.600 kcal/jam = 3.557.05,8 kj/jam = 3.37.05,6 Btu/jam Perhitunganbeban 849.600 kcal / Dipasaran kompresor PK biasanya diperhitungkan 9.000 Btu/jam, maka : Kompresor yang dibutuhkan sebesar = 3.37.05,6 Btu / jam 9000 Btu/jam = 374,58 PK.000 Btu / jam jam 304, kcal / jam Sedangkan daya listrik yang dibutuhkan = 374,58 PK x 746 Watt = 79.435,49 Watt = 79,435 kw Keterangan : TR =.000 Btu/ jam = 3.04, Kcal/ jam = 3,567 kw Kapasitas Pendingin hasil perhitungan pada ruang Auditorium Gedung Manggala Wanabakti Blok III adalah 374,58 PK dengan daya listrik sebesar 79,435 kw, sedangkan Kapasitas beban mesin terpasang pada Ruang Auditorium Gedung Manggala Wanabakti Blok III yang terdiri dari 4 (empat) unit AHU (Air Handling Unit) adalah 68, PK dengan daya listrik sebesar 00 kw. Sehingga dari perhitungan kapasitas beban pendinginan di atas dapat diketahui selisih kapasitas beban yang terpasang dengan beban pendingin hasil perhitungan sebagai berikut: = Kapasitas beban terpasang Kapasitas beban pendingin hasil analisa = 374,58 PK - 68, PK = 3,48 PK. Dan selisih daya listrik = 79,435 kw 00 kw = 79,435 kw Sabaruddin H., Perhitungan Ulang Beban Pendinginan 53

SINERGI Vol. 8, No. 3, Oktober 04 Dengan demikian dari hasil perhitungan beban pendingin di atas dapat disimpulkan bahwa kapasitas mesin AHU (Air Handling Unit) yang terpasang belum mencukupi kebutuhan yang ada. 5. KESIMPULAN Jumlah total beban pendinginan pada Ruang Auditorium Gedung Manggala Wanabhakti pada beban puncak sebesar 3.387.79,37 kj/jam (374,58 PK) dengan kebutuhan daya listrik sebesar 79,435 kw, sedangkan Kapasitas beban mesin terpasang pada Ruang Auditorium Gedung Manggala Wanabakti Blok III yang terdiri dari 4 (empat) unit AHU (Air Handling Unit) adalah 68, PK dengan kebutuhan daya listrik sebesar 00 kw. Sehingga terjadi kekurangan beban pendinginan sebesar 3,48 PK dan kekurangan kebutuhan daya listrik sebesar 79,435 kw. Berdasarkan hasil perhitungan beban pendingin di atas dapat disimpulkan bahwa kapasitas mesin AHU (Air Handling Unit) yang terpasang belum mencukupi dalam memenuhi kebutuhan sistem penyegaran udara pada ruang Auditorium Gedung Manggala Wanabhakti Kementerian Kehutanan RI. DAFTAR PUSTAKA America Society of Heating Refrigerant and Air Conditioning Engineers. ASHRAE Handbook Fundamental. Atlanta. 00. Arismunandar, Wiranto dan Heizo Saito., Penyegaran Udara, Cet. 6. Jakarta: PT. Pradnya Paramita, 00. Handbook of Air Conditioning System Design, Carier Air Conditioning Company. McGraw- Hill Company, 965. Pita, Edward.G., Air Conditioning Principles and System an Energy Approach, John Wiley & Sons, New York, 98. Stoecker, W.F and jones, J.W. Refrigerasi dan Pengkondisian Udara, Edisi ke-. Terjemahan oleh Ir. Supratman Hara. Jakarta : Erlangga, 989 Sumanto. Dasar-dasar Mensin Pendingin. Yogyakarta: Andi., 994. Sunarno. Mekanikal Elektrikal, Edisi ke-. Yogyakarta: Andi, 005 54 Sabaruddin H., Perhitungan Ulang Beban Pendinginan