APLIKASI STRUKTUR SHELL PADA SYDNEY OPERA HOUSE

dokumen-dokumen yang mirip
POKOK BAHASAN 7 STRUKTUR CANGKANG (SHELL STRUCTURE)

APLIKASI STRUKTUR SHELL PADA ROYAN MARKET HALL, ROYAN PERANCIS

APLIKASI STRUKTUR SHELL PADA ROYAN MARKET HALL, ROYAN

STRUKTUR PERMUKAAN BIDANG

STRUKTUR CANGKANG I. PENDAHULULUAN

TEATER IMAX KEONG EMAS, TAMAN MINI INDONESIA INDAH

plat lengkung atau plat lipat yang tebalnya kecil dibandingkan dengan dimensi

STRUKTUR LIPATAN. Dengan bentuk lipatan ini,gaya-gaya akibat benda sendiri dan gaya-gaya luar dapat di tahan oleh bentuk itu sendiri

BAB II TINJAUAN PUSTAKA

PENGANTAR KONSTRUKSI BANGUNAN BENTANG LEBAR

2.5.c Konsep Selembar kertas tipis dan datar tidak dapat menahan beban sendiri.

UJI PEMBEBANAN PADA SISTEM STRUKTUR CYLINDRICAL SHELL DITOPANG KOLOM

EKSPLORASI STRUKTUR CANGKANG UNTUK BANGUNAN TINGGI

STRUKTUR DAN KONSTRUKSI BANGUNAN IV

ELEMEN-ELEMEN STRUKTUR BANGUNAN

TUGAS 1 STRUKTUR BANGUNAN

I.1 Latar Belakang I-1

BAB I PENDAHULUAN. segi estetika dari bangunan tersebut. Salah satu bangunan yang direncanakan

BAB I PENDAHULUAN. kehadiran bangunan ke dalam tanah (Schodek,1998). Bentuk struktur permukaan

BAB II LANDASAN TEORI

BAB II TINJAUAN PUSTAKA

Meliputi pertimbangan secara detail terhadap alternatif struktur yang

Pengertian struktur. Macam-macam struktur. 1. Struktur Rangka. Pengertian :

BAB II TINJAUAN PUSTAKA

STRUKTURAL FUNICULAR: KABEL DAN PELENGKUNG

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

Fasilitas Olah Raga dan Rekreasi di Jakarta BAB III TINJAUAN KHUSUS PROYEK

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. dan perilakunya. Struktur membran cenderung dapat menyesuaikan diri

BAB II TINJAUAN PUSTAKA. desain untuk pembangunan strukturalnya, terutama bila terletak di wilayah yang

BAB III METODE PENELITIAN

BAB II TINJAUAN PUSTAKA. yang biasanya dari struktur cangkang terbagi tiga, yaitu : a) Permukaan Rotasional, yaitu bentuk permukaan yang berasal dari

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. Menurut PBI 1983, pengertian dari beban-beban tersebut adalah seperti yang. yang tak terpisahkan dari gedung,

BAB II TINJAUAN PUSTAKA. pergesekan lempeng tektonik (plate tectonic) bumi yang terjadi di daerah patahan

Struktur Beton. Ir. H. Armeyn, MT. Fakultas Teknik Sipil dan Perencanaan Jurusan Teknik Sipil dan Geodesi Institut Teknologi Padang

BAB II PELENGKUNG TIGA SENDI

BAB II TINJAUAN PUSTAKA

struktur. Pertimbangan utama adalah fungsi dari struktur itu nantinya.

BAB II TINJAUAN PUSTAKA. harus dilakukan berdasarkan ketentuan yang tercantum dalam Tata Cara

BAB II TINJAUAN PUSTAKA

STRUKTUR BENTANG LEBAR & ME

Kuliah ke-6. UNIVERSITAS INDO GLOBAL MANDIRI FAKULTAS TEKNIK Jalan Sudirman No. 629 Palembang Telp: , Fax:

BAB II TINJAUAN PUSTAKA. pembebanan yang berlaku untuk mendapatkan suatu struktur bangunan

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut.

BAB III METEDOLOGI PENELITIAN. dilakukan setelah mendapat data dari perencanaan arsitek. Analisa dan

BAB I PENDAHULUAN. 1.1 Umum. Berkembangnya kemajuan teknologi bangunan bangunan tinggi disebabkan

STUDI PEMBUATAN BEKISTING DITINJAU DARI SEGI KEKUATAN, KEKAKUAN DAN KESTABILAN PADA SUATU PROYEK KONSTRUKSI

Perancangan Arsitektur V Bangunan Bentang Lebar

BAB III METODOLOGI. Laporan Tugas Akhir

PERTEMUAN IX DINDING DAN RANGKA. Oleh : A.A.M

BAB II DASAR TEORI. 2.1 Pengertian rangka

STRUKTUR BANGUNAN BENTANG LEBAR :

BAB 1 PENDAHULUAN Latar Belakang Isi Laporan

BAB II TINJAUAN PUSTAKA. yang berlaku untuk mendapatkan suatu struktur bangunan yang aman

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. yang berlaku untuk mendapatkan suatu struktur bangunan yang aman

BAB I PENDAHULUAN. Pada bangunan tinggi tahan gempa umumnya gaya-gaya pada kolom cukup besar untuk

BAB II TINJAUAN PUSTAKA. Pada perencanaan bangunan bertingkat tinggi, komponen struktur

TEKNOLOGI BAHAN BUATAN YOYOGI NATIONAL GYMNASIUM

PERENCANAAN PLAT LANTAI PADA KEGIATAN PEMBANGUNAN GEDUNG ISLAMIC CENTER KOTA METRO

BAB II DASAR-DASAR DESAIN BETON BERTULANG. Beton merupakan suatu material yang menyerupai batu yang diperoleh dengan

berupa penuangan ide atau keinginan dari pemilik yang dijadikan suatu pedoman

STUDI PERENCANAAN STRUKTUR BETON BERTULANG PADA GEDUNG SUPERMARKET PRASADA DENGAN MENGGUNAKAN METODE SK SNI T DI KABUPATEN BLITAR.

BAB II TINJAUAN PUSTAKA

BAB III LANDASAN TEORI. A. Pembebanan Pada Pelat Lantai

T I N J A U A N P U S T A K A

BAB II TINJAUAN PUSTAKA

MODUL-2 : PERANCANGAN ARSITEKTUR

Struktur dengan Bentuk yang Bertahan Sendiri

BAB VII TINJAUAN KHUSUS

BAB I PENDAHULUAN. A. Latar Belakang. Di dalam perencanaan desain struktur konstruksi bangunan, ditemukan dua

BAB III METODOLOGI PENELITIAN

BAB I PENDAHULUAN. Dewasa ini seiring dengan berkembangnya pengetahuan dan teknologi,

BAB VI KONSTRUKSI KOLOM

BAB II TINJAUAN PUSTAKA

BAB III METODOLOGI PERENCANAAN

ABSTRAKSI. Basuki Jurusan Teknik Sipil Fakultas Teknik Universitas Muhammdiyah Surakarta Jalan A.Yani Tromol Pos I Pabelan Kartasura Surakarta 57102

ANALISIS LINIER STRUKTUR CANGKANG PADA SILO SEMEN DENGAN METODE ELEMEN HINGGA

BAB IV PEMODELAN STRUKTUR

BAB II TINJAUAN PUSTAKA. geser membentuk struktur kerangka yang disebut juga sistem struktur portal.

KAJIAN TEORI MEMBRAN PADA ANALISIS PLAT CANGKANG TIPIS PADA STRUKTUR TANGKI STORAGE SILINDRIS

Pendahuluan Struktur Bangunan.

BAB II TINJAUAN PUSTAKA. yang aman. Pengertian beban di sini adalah beban-beban baik secara langsung

PERBANDINGAN KUAT LENTUR DUA ARAH PLAT BETON BERTULANGAN BAMBU RANGKAP LAPIS STYROFOAM

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

Analisis Balok Anak Konstruksi Propped pada Portal Tingkat Dua berdasarkan Variasi Jarak Balok dan Portal (Aspek Tehnis dan Biaya)

BAB IV PERMODELAN STRUKTUR

BAB III ANALISA PERENCANAAN STRUKTUR

MENGGAMBAR RENCANA PELAT LANTAI BANGUNAN

BAB III METODOLOGI PENELITIAN

BAB III ELABORASI TEMA

BAB III. Sport Hall/Ekspresi Struktur TINJAUAN KHUSUS. Laporan Skripsi dan Tugas Akhir. Pengertian Tema

SISTEM STRUKTUR PADA BANGUNAN GEDUNG BERTINGKAT

STATIKA I. Reaksi Perletakan Struktur Statis Tertentu : Balok Sederhana dan Balok Majemuk/Gerbe ACEP HIDAYAT,ST,MT. Modul ke: Fakultas FTPD

BAB III LANDASAN TEORI. A. Pembebanan

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT

BAB III METODOLOGI PENELITIAN

BAB I PENDAHULUAN. membutuhkan penanganan yang serius, terutama pada konstruksi yang terbuat

Transkripsi:

Ruang Terbuka dalam Perancangan Kota APLIKASI STRUKTUR SHELL PADA SYDNEY OPERA HOUSE Haryanto *) Abstraksi Sydney opera house, dengan rancangan yang futuristik dan hightect inovation merupakan suatu bentuk tantangan dalam bidang arsitektur yang berhasil diwujudkan. Keberhasilan ini telah menghadirkan suatu motivasi dalam dunia arsitektur masa depan dengan menghadirkan karya arsitektur yang mengagumkan. Dirancang oleh arsitek Denmark Jorn Utzon pada tahun 1959 selama 14 tahun ini terbentang di atas tanah seluas 1,8 Ha dengan ketinggian atap mencapai 67 m diatas permukaan laut dengan desain sperical geometry yang terdiri dari 2.194 bagian beton pre-cast. Shell yang dipakai pada atap Sydney Opera House merupakan shell free form. Dimana bentuk shell yang ada tidak mengikuti pola geometri tetapi terikat secara structural. Meskipun bentuk geometri tetap ada tetapi bukan merupakan factor utama. Gaya- gaya yang dialami struktur shell ini tetap diperhitungkan sesuai dengan kaidah strukturalnya. Namun tidak membatasi arsiteknya dalam mengeksplorasi ide dan gagasan dalam berkarya. Hal tersebut tercermin dalam desain Sydney opera house yang mampu menjadi inspirasi dalam karya-karya arsitektur selanjutnya.. Kata Kunci : Struktur Shell, Bangunan bentang lebar PENDAHULUAN Definisi struktur dalam konteks hubungannya dengan bangunan adalah sebagai sarana untuk menyalurkan beban dan akibat penggunaannya dan atau kehadiran bangunan ke dalam tanah (Scodek,1998). Terdapat lima golongan bentuk struktur (Sutrisno, 1983), yaitu struktur massa, struktur rangka, struktur permukaan bidang ( struktur lipatan dan cangkang), struktur kabel dan boimorfik. Bentuk struktur permukaan bidang yang merupakan struktur cangkang atau shell, di alam dapat ditemukan pada bentuk perisai dari tumbuh-tumbuthan maupun binatang, meskipun bentuknya tipis, tapi kuat dan kokoh. Seperti kulit labu yang kering, kulit telur, kulit kerang dan tempurung kepala kita. Ciri-ciri dari perisai yang kokoh adalah bentuknya yang lengkung dan berbahan keras dan padat. Pengertian ini oleh manusia diwujudkan sebagai struktur cangkang. Pernyataan dari pengertian alam tersebut menjadi suatu struktur buatan manusia. Meskipun terdapat ikatan-ikatan yang membatasinya, abad demi abad manusia akhirnya mampu melonggarkan batasan tersebut seiring dengan kemajuan teknologi. Karenanya pada masa kini bentuk yang dihasilkan dalam struktur cangkang masih harus berbentuk geometrik yang dapat dimengerti dan diterjemahkan dalam kemampuan matematis untuk dapat *) Ir. (UNDIP), MSA (ITB) Staf Pengajar Jurusan Arsitektur Fakultas Teknik Universitas Diponegoro, Semarang 1

Vol. 5 No. 1 - Juni 2005 MODUL ISSN 0853 2877 dilaksanakan. Pada dasarnya bentuk-bentuk struktur adalah persamaan antara fungsi, material, dan hukum-hukum statis. Cangkang pada umumnya menerima beban merata yang dan dapat menutup ruangan besar dibandingkan denga tipisnya pelat cangkang tadi. Oleh karena itu struktur cangkang paling baik digunakan pada bangunan dengan bentang besar tanpa pembagian pada interior seperti stadion, stasiun, pasar, masjid exibition hall, dang bangunan bentang besar lainnya. Bangunan dengan struktur cangkang yang akan dibahas adalah sydney Opera House, dibangun pada tahun 1957 di Benellong point. Dibuka pertama kali oleh Ratu Elizabeth II pada tahun 1973. Bangunan ini digunakan untuk pertunjukan teater, musik, opera, tarian modern, ballet, pameran dan film. Sydney Opera House merupakan bangunan dengan struktur cangkang berbentuk spherical geometry dengan bentang kurang lebih 185 m dan 120 m yang terdiri dari ruang-ruang sebagai berikut: Concert Hall Opera Theatre Drama Theatre Playhouse, studio, reception hall, foyer Studio latihan Restoran Ruang ganti Ruang-ruang yang sangat kompleks dihubungkan dengan baik di bawah atap shell. PENGERTIAN SHELL Menurut Joedicke (1963) struktur shell adalah plat yang melengkung ke satu arah atau lebih yang tebalnya jauh lebih kecil datipada bentangnya. Sedangkan menurut Schodeck (1998), shell atau cangkang adalh bentuk struktural tiga dimensional yang kaku dan tipis yang mempunyai permukaan lengkung. Sejalan dengan pengertian di atas, menurut Ishar (1995), cangkang atau shell bersifat tipis dan lengkung. Jadi, struktur yang tipis datar atau lengkung tebal tidak dapat dikatakan sebagai shell. Istilah cangkang oleh Salvadori dan Levy (1986) disebut kulit kerang. Sebuah kulit kerang tipis merupakan suatu membran melengkung yang cukup tipis untuk mengerahkan tegangantegangan lentur yang dapat diabaikan pada sebagian besar permukaannya, akan tetapi cukup tebal sehingga tidak akan menekuk di bawah tegangan tekan kecil, seperti yang akan terjadi pada suatu membran ideal. Di bawah beban, suatu kulit kerang tipis adalah stabil di setiap beban lembut yang tidak menegangkan pelat secara berlebihan, karena kulit kerang tidak perlu merubah bentuk 2

Aplikasi Struktur Shell Pada Sydney Opera House untuk menghindari timbulnya tegangantegangan tekan. Sifat-Sifat Lokal Permukaan Kulit Kerang Dalam usaha untuk memperoleh suatu pengertian yang sempurna mengenai kelakuan struktural dari struktur-struktur lengkung dua dimensi, seperti mambran dan kulit kerang adalah penting untuk pertama kalinya mengenali sifat-sifat geometris dari permukaan mereka.sifat- sifat ini dapat dibagi dalam dua kategori, yaitu: a. Sifat- sifat lokal, yang menentukan geometri dari permukaan segera sekitar suatu titik b. Sifat- sifat umum, yang menerangkan bentuk dari permukaan sebagai suatu keseluruhan. Permukaan- permukaan dibagi kedalam tiga kategori yang berbeda tergantung kapada variasi dari kelengkungan mereka disekitar satu titik: 1. Kalau kelengkungan pada suatu titik dalam semua arah mempunyai tanda sama, maka permukaan disebut sinklastik pada titik tersebut. Gambar 1. Tampak Sydney Opera House Kalau kelengkungan pada suatu titik dalam semua arah mempunyai tanda yang sama kecuali pada satu arah, yaitu nol, maka permukaan itu disebut juga dapat direbahkan (developable) pada titik tersebut. 2. Kalau kelengkungan pada suatu titik adalah positif dalam arah- arah tertentu dan negatif dalam arah- arah lainnya, permukaan disebut sebagai antiklastik atau suatu permukaan pelana (saddle surface) pada titik tersebut. Gambar 2. Kelengkungan permukaan Shell Kalsifikasi Shell Menurut Ishar (1995), struktur shell dibagi kedalam beberapa kategori, yaitu: Shell silindrical 3

Vol. 5 No. 1 - Juni 2005 MODUL ISSN 0853 2877 Shell rotasi Shell conoida Shell hyperbolis parabola Shell dengan bentuk bebas (free form shell) Sedangkan menurut Joedicke (1963), bentuk struktur shell dibagi menurut tipe kelengkungan permukaannya sebagai berikut: 1. Singly curved shell, terbentuk dari perpindahan garis lurus yang melebihi bentuk lengkung Gambar 3. Bentuk Singly curved shell 2. Doubly curved shell with principle curves in the same direction (domical shell)dibentuk dengan memutar bidang lengkung terhadap sumbu pada bidang tersebut dan membentuk lengkungan kearah sumbunya. 3. Doubly curved shell with principle curves in opposite direction (hiperbolik paraboloid) Gambar 4. Hiperbolic Paraboliid 4. Doubly curved shell with principle curve in the same and opposite direction yang memberikan contoh prinsip- prinsip alternatif arah lengkungan. Teori Dan Analisa Desain Cangkang Kulit kerang yang tipis dapat memikul suatu beban lembut dengan tegangan- tegangan membran, dan bahwa tegangan- tegangan membran, yang dikerahkan didalam suatu kulit kerang terutama tergantung kepada kondisi- kondisi tumpuan perbatasannya. Syarat- syarat yang harus dipenuhi untuk menimbulkan tegangan membran murni didalam sebuah kulit kerang, antar lain: Gaya- gaya reaksif pada perbatasan kulit kerang harus sama dan berlawanan dengan gaya- gaya membran pada perbatasan yang ditimbulkan oleh beban Tumpuan harus mengijinkan perbatasan kulit kerang untuk mengalami perindahan yang ditimbulkan oleh regangan membran 4

Aplikasi Struktur Shell Pada Sydney Opera House Kalau salah satu atau keduanya tidak terpenuhi, maka akan timbul teganagn lentur didalam kulit kerang yang disebabkan oleh: 1. Gaya meridional, merupakan gaya internal pada cangkang aksimetris yang terbagi rata dan dinyatakan dalam gaya per satuan luas. 2. Gaya- gaya melingkar, dinyatakan sebagai gaya persatuan panjang yang dapat diperoleh dengan meninjau keseimbangan dalam arah transversal. 3. Distribusi gaya, distribusi gaya melingkar dan meredional dapat diperoleh dengan memplot persamaan kedua gaya tersebut. Gaya meredional selalu bersifat tekan, sementara gaya melingkar mengalami transisi pada sudut 51 0 49 diukur dari garis vertikal diukur dari garis vertikal. 4. Gaya terpusat, beban ini harus dihindari dari struktur cangkang. 5. Kondisi tumpuan, kondisi ini sangat mempengaruhi perilaku dan desain struktur. Secara ideal tumpuannya tidak boleh menimbulkan momen lentur pada permukaan cangkang. Jadi kondisi jepit harus dihindari. Menggunakan hubungan sendi sama saja dengan memberikan gaya pada tepi cangkang, yang berarti akan menimbulkan momen lentur. 6. tegangan membran didalam kulit kerang tipis,merupakan suatu membran melengkung yang cukup tipis untuk mengerahkan tegangantegangan lentur yang dapat diabaikan pada sebagian besar permukaannya, akan tetapi cukup tebal sehingga tidak akan menekuk di bawah tegangantegangan tekan kecil, seperti yang akan terjadi pada suatu membran ideal. Di bawah beban, suatu kulit kerang tipis mengerahkan tegangantegangan membran, yaitu tegangan tarik, tegangan tekan dan tegangan geser singggung. Suatu kulit kerang tipis adalah stabil di bawah setiap beban lembut yang tidak menegangkan pelat secara berlebihan, karena kulit kerang tidak perlu merubah bentuk untuk menghindari timbulnya tegangan-tegangan tekan. Suatu kulit kerang harus ditumpu dengan selayaknya. Suatu tumpuan layak adalah suatu tumpuan yang : (a) mengerahkan reaksi-reaksi membran, yaitu reaksi-reaksi yang bekerja dalam bidang yang menyinggung kulit kerang pada perbatasan dan (b) memungkinkan perpindahan perpindahan membran yang pada perbatasan 5

Vol. 5 No. 1 - Juni 2005 MODUL ISSN 0853 2877 kulit kerang, yaitu perpindahan-perpindahan yang di timbulkan oleh regangan-regangan akibat tegangan-tegangan membran. Apabila reaksi-reaksi tumpuan tidak pada bidang singgung kulit kerang atau kalau perpindahan perpindahan membran dihalangi oleh tumpuan-tumpuan, maka kulit kerang akan mengerahkan tegangan-tegangan lentur perbatasan. Kalau bentuk kulit kerang dan kondisi kondisi tumpuan, kedua-duanya dipillih secara tidak tepat, maka kulit kerang mungkin akan mengarahkan tegangantegangan lentur meliputi seluruh permukaannya. kulit kerang yang didesain secara tidak tepat semacam ini tidak dapat bekerja sebagai kulit kerang tipis, jadi tidak mampu sebagian terbesar dari beban melalui tegangan-tegangan membran. Material Menurut Salvadori dan Levy (1986 ), kulit kerang tipis atau cangkang terbuat dari bahan-bahan seperti logam, kayu, dan plastik yang mampu menahan tegangan tekan dan ada kalanya tegangan tarik. Akan tetapi beton bertulang merupakan suatu bahan ideal untuk struktur kulit kerang tipis karena mudahnya beton dituang atau dibentuk menjadi bentukbentuk lengkung. SYDNEY OPERA HOUSE Gambar 5. Tampak Sydney Opera House Dibangun di kawasan Benellong Point diatas teluk Sydney yang dulunya difungsikan sebagai gudang penyimpanan kereta trem. oleh Jorn Utzon diubah menjadi suatu mahakarya yang indah dan dikenang sepanjang masa pada tahun 1957 untuk memenuhi ambisi pemerintah setempat. Gambar 6. Susunan keramik Swedia yang melapisi atap 6

Aplikasi Struktur Shell Pada Sydney Opera House Gambar 7. Proses pembangunan yang memakan waktu 14 tahun Karena pada waktu itu Sydney tidak memiliki gedung pertunjukan yang memadai. Sydney Opera House berdiri di atas tanah seluas 2,2 Ha dan luas bangunan 1,8 Ha dengan bentang bangunan 185 m x 120 m dan ketinggian atap mencapai 67 meter di atas permukaan laut. Atap terbuat dari 2194 bagian beton precast yang masing-masing seberat 15,5 ton. Gambar 8. Denah Sydney Opera House Kesemuanya disatukan dengan kabel baja sepanjang 350 km. Berat atap keseluruhan mencapai 27.230 ton yang dilapisi 1. 656. 056 keramik Swedia. Berat bangunan 161.000 ton ditopang oleh 580 kostruksi baja yang ditanam pada kedalaman 25 m di bawah permukaan laut. Penyangga atap terdiri dari 32 kolom beton yang masing-masing 2,5 meter persegi dengan struktur dinding Gambar 9. Atap yang dilapisi keramik swedia curtain wall. Sydney Opera House memiliki lebih dari 1000 ruang yang diantaranya adalah: 1. Concert Hall, merupakan ruang utama terbesar denga kapasitas 2679 orang. 2. Opera Theatre, terdiri dari 1547 kursi. 3. Drama Theatre, dengan kapasitas 544 orang. 4. Playhouse, Studio, Reception Hall, Foyer, digunakan untuk seminar, kuliah, denga kapasitas 398 orang. 5. Lima Auditorium, lima studio, 7

Vol. 5 No. 1 - Juni 2005 MODUL ISSN 0853 2877 empat restaurant, enam bar theatre, 60 ruang ganti,perpustakaan, kantor administrasi dan ruang utilitas. TINJAUAN STRUKTUR SHELL PADA SYDNEY OPERA HOUSE Atap pada merupakan bentuk metafora dengan menerapkan system shell free form. Dimana bentuk shell yang ada tidak mengikuti pola geometri tetapi terikat secara structural yang dalam hal ini bentuk geometri tetap ada tetapi bukan merupakan factor utama.. Shell pada Sydney opera house terbentuk dari proses rotasional kearah vertical dengan lengkung dua arah (vertical dan horizontal)/ double curved shell dengan permukaan lengkung sinklastik. Gaya- gaya yang bekerja pada pada tap shell Sydney opera house antara lain adalah: 1. Gaya meredional, Gaya meredional pada atap Sydney opera house berasal dari berat itu sendiri yang kemudian gaya itu disalurkan melalui tulangan baja Gambar 11. Skema pembebanan pada shell di Sydney Opera House kekolom penyangga atap. Gaya meredional yang bekerja pada atap diatasi dengan mempertebal permukaan dan membentuk permukaannya menyerupai sirip- sirip dengan tujuan agar permukaan lebih kaku F meredional Tulangan yang berbentuk sirip- sirip Gambar 10. Jumlah komponen vertikal dari gaya meredional dalam bidang yang timbul secara internal didalam cangkang sama dengan beban mati dan hidup vertikal Gambar 12. Skema pembebanan secara vertical pada Sydney Opera House 8

Aplikasi Struktur Shell Pada Sydney Opera House 2. Gaya rotasional, Gaya rotasional bekerja kearah vertical mengikuti lengkung atap kemudian beban disalurkan ketanah melaui tiga kolom yang ada. Beban tekan dan tarik disalurkan melalui tulangan atap. 3. Beban lentur Pertemuan atap dan dinding dibuat lebih tebal agar dapat menyokong gaya yang bekerja pada arah vertical dan horizontal dari gaya meredional, yang juga agar dapat menahan gaya dorong keluar yang terjadi. reaksi tekan maupun tarik. Perpindahan gaya tekan tarik yang bekerja pada permukaan cangkang. Perpindahan- perpindahan membrane pada perbatasan kulit kerang yang timbul akibat tegangan dan regangan membrane diatasai dengan memperkaku sudut- sudut pertemuan permukaan shell Momen tahanan internal = momen eksternal Resultan gaya melingkar tekan Gambar 13. Momen yang terjadi pada Struktur Sydney Opera House 4. Kondisi tumpuan Kondisi tumpuan pada atap Sydney opera house sudah memenuhi syarat tumpuan layak yang diizinkan untuk shell struktur, yaitu : tumpuan yang disalurkan kekolom mampu mengerahkan reaksi dari membrane baik itu Penebalan pada kaki tumpuan atap Gambar 14. Regangan dan tegangan yang terjadi pada tumpuan atap KESIMPULAN Tegangan- tegangan membrane yang terjadi sedemikian kecil sehingga dalam kasus Sydney Opera House, ketebalan kulit kerang ditentukan oleh gangguan- gangguan lentur perbatasan, meskipun demikian tegangan- 9

Vol. 5 No. 1 - Juni 2005 MODUL ISSN 0853 2877 tegangan yang ada harus tetap dievaluasi dalam usaha untuk: 1. Tegangan- tegangan tarik yang mungkin terjadi dan menyediakan tulangan tarik yang cukup kuat disepanjang lengkungan atap 2. Tegangan tekan tertinggi terjadi pada puncak atap yang diselesaikan dengan membuat perkuatan. Sedangkan untuk tekanan tekuk terjadi pada sudut pertemuan atap Daftar Pustaka 1. Candela, The Shell Builder, Colin Faber Reinhold Publishing Corp, New York 2. Ishar, H.K; 1995, Pedoman Umum Merancang Bangunan, Gramedia Pustaka Utama, Jakarta 3. Joedicke, Jurgen, 1963, Shell Architecture, Reinhold Publishing Corporation, New York 4. Schodeck, Daniel L; 1980, Structure, USA Prantise Hall- Inc 5. Sutrisno, R; 1983,Bentuk Struktur Bangunan Dalam Arsitektur Modern, Gramedia, Jakarta 6. Salvadori, Mario, M. Levy,1986, Desain Struktur Dalam Arsitetektur (Terjemahan), Erlangga, Jakarta 7. www. greatbuildings.com 8. www.sydneyoperahouse.com 10