ANALISIS PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTMH) PADA DAERAH ALIRAN SUNGAI ONGKAK MONGONDOW DI DESA MUNTOI KABUPATEN BOLAANG MONGONDOW

dokumen-dokumen yang mirip
PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

PERENCANAAN PEMBANGKIT LISTRIK TENAGA MIKROHIDRO DI BENDUNGAN SEMANTOK, NGANJUK, JAWA TIMUR

KAJI ANALITIK POTENSI DAYA LISTRIK PLTMH DI AIR TERJUN MUARA JAYA DESA ARGAMUKTI KABUPATEN MAJALENGKA PROVINSI JAWA BARAT

Survei, Investigasi dan Disain Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) di Kabupaten Sumba Tengah, Provinsi NusaTenggara Timur

BAB III PENGUMPULAN DATA DAN PEMBUATAN RANCANG BANGUN SIMULATOR PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH)

DAFTAR ISI LEMBAR PENGESAHAN... KATA PENGANTAR...

GALIH EKO PUTRA Dosen Pembimbing Ir. Abdullah Hidayat SA, MT

Pembangkit Listrik Tenaga Air. BY : Sulistiyono

PERENCANAAN PEMBANGKIT LISTRIK TENAGA MIKROHIDRO DI SALURAN IRIGASI MATARAM

BAB II TINJAUAN PUSTAKA

BAB III METODOLOGI DAN PENGUMPULAN DATA

BAB I PENDAHULUAN. juga untuk melakukan aktivitas kehidupan sehari-hari yang berhubungan dengan

II. TINJAUAN PUSTAKA. Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi

LAMPIRAN A DESKRIPSI PROYEK

BAB II DASAR TEORI. 2.1 Pembangkit Listrik Tenaga Mikrohidro. Pembangkit listrik kecil yang dapat menggunakan tenaga air pada saluran

BAB III METODE PEMBAHASAN

PROTOTIPE PEMBANGKIT LISTRIK MIKROHIDRO (PLTMh) DENGAN MEMANFAATKAN ALIRAN SUNGAI LATUPPA

PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH )

HYDRO POWER PLANT. Prepared by: anonymous

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro

EVALUASI PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH) KAPASITAS 40 kva DESA RIRANG JATI KECAMATAN NANGA TAMAN KABUPATEN SEKADAU

SIMULATOR PEMBANGKIT LISTRIK TENAGA PIKO HIDRO UNTUK MODUL PRAKTIKUM DI LABORATORIUM KONVERSI ENERGI

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang. Air merupakan sumber kehidupan bagi manusia. Kita tidak dapat dipisahkan dari

ANALISA DAYA PEMBANGKIT LISTRIK TENAGA MINIHIDRO TUKAD BALIAN, TABANAN MENGGUNAKAN SIMULINK

DESAIN DAN ANALISIS PEMBANGKIT LISTRIK MIKROHIDRO

Inisialisasi Kerjasama Fakultas Teknik Universitas Lampung dan Universitas Muhammadiyah Malang (UMM)

EVALUASI KINERJA PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO AEK SIBUNDONG KECAMATAN SIJAMAPOLANG KABUPATEN HUMBANG HASUNDUTAN PROPINSI SUMATERA UTARA

PERENCANAAN PEMBANGUNAN SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH) DI KINALI PASAMAN BARAT

BAB IV DESAIN STRUKTUR MEKANIKAL ELEKTRIKAL PLTMH JORONG AIA ANGEK

BAB III PEMILIHAN TURBIN DAN PERANCANGAN TEMPAT PLTMH. Pemilihan jenis turbin ditentukan berdasarkan kelebihan dan kekurangan dari

STUDI PERENCANAAN PEMBANGKIT LISTRIK TENAGA MIKROHIDRO DI DESA GUNUNG RINTIH KECAMATAN STM HILIR KABUPATEN DELI SERDANG

BAB I PENDAHULUAN. Potensi air sebagai sumber energi terutama digunakan sebagai penyediaan energi

DAFTAR ISI. Halaman Judul... i. Lembar Pengesahan Dosen Pembimbing... ii. Lembar Pernyataan Keaslian... iii. Lembar Pengesahan Penguji...

PERENCANAAN PUSAT LISTRIK TENAGA MINI HIDRO PERKEBUNAN ZEELANDIA PTPN XII JEMBER DENGAN MEMANFAATKAN ALIRAN KALI SUKO

SURVEY POTENSI PLTM KANANGGAR DAN PLTM NGGONGI

BAB I PENDAHULUAN. manusia dapat menikmati listrik. Akibat sulitnya lokasi yang tidak dapat

Jurnal Ilmiah TEKNIK DESAIN MEKANIKA Vol. 6 No. 3, Juli 2017 ( )

TUGAS AKHIR - TE STUDI PENGONTROL BEBAN ELEKTRONIK PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO SELOLIMAN, TRAWAS KABUPATEN MOJOKERTO

Listrik Mikro Hidro Berdasarkan Potensi Debit Andalan Sungai

Jurusan Teknik Elektro, Fakultas Teknik Universitas Udayana

Energi dan Ketenagalistrikan

II. TINJAUAN PUSTAKA. Mikrohidro hanyalah sebuah istilah. Mikro artinya kecil sedangkan Hidro

1. PENDAHULUAN 2. TUJUAN

II. TINJAUAN PUSTAKA

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB IV HASIL ANALISIS. Ketinggian jatuh air merupakan tinggi vertikal dimana air mengalir dari atas

SESSION 8 HYDRO POWER PLANT. 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA

EVALUASI KINERJA PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO BANTAL PADA PABRIK GULA ASSEMBAGOES KABUPATEN SITUBONDO

PERANCANGAN DAN PEMBANGUNAN PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO

BAB III METODE PENELITIAN

I. PENDAHULUAN. Kebutuhan tenaga listrik di Indonesia tumbuh rata-rata sebesar 8,4% per

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

PEMBANGKIT LISTRIK TENAGA AIR (PLTA)

MODEL FISIK KINCIR AIR SEBAGAI PEMBANGKIT LISTRIK

HUBUNGAN TENAGA AIR TERHADAP KELUARAN DAYA LISTRIK DAN ASPEK EKONOMIS DI PLTMH GUNUNG SAWUR 2 LUMAJANG

Tahapan Perencanaan Pembangkit Listrik Tenaga Mikrohidro

BAB I PENDAHULUAN. (hydropower) adalah energi yang diperoleh dari air yang mengalir. Energi yang

Optimasi Energi Terbarukan (Mikrohidro)

Kajian Kelayakan Ekonomis Pembangkit Listrik Tenaga Mikro Hidro Gunung Sawur 1 dan Gunung Sawur 2 Di Lumjang

PEMANFAATAN GENERATOR MAGNET PERMANEN KECEPATAN RENDAH PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

STUDI AWAL PERENCANAAN S

Analisa Supply-demand pada Pembangkit Listrik Tenaga Mikro Hidro 32 KW di Desa Praingkareha, Kabupaten Sumba Timur

MENUJU PROPINSI SUMATERA BARAT KECUKUPAN ENERGI BERBASIS AIR EXTENDED ABSTRACT

BAB II LANDASAN TEORI...

BAB I PENDAHULUAN. penting bagi masyarakat. Salah satu manfaatnya adalah untuk. penerangan. Keadaan kelistrikan di Indonesia sekarang ini sangat

BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS 1.1 KETERSEDIAAN DEBIT AIR PLTM CILEUNCA

STUDI AWAL PERENCANAAN SISTEM MEKANIKAL DAN KELISTRIKAN PEMBANGKIT LISTRIK TENAGA MINI-HIDRO

PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN

TUGAS AKHIR. Analisa Dan Perancangan Pembangkit Listrik Tenaga Mikro Hindro ( PLTMH ) Berdasarkan Perhitungan Beban

Jurusan Fisika, Fakultas MIPA Universitas Negeri Jakarta Jl. Pemuda No.10, Rawamangun, Jakarta Timur *

NASKAH PUBLIKASI ANALISA POTENSI AIR TERJUN UNTUK PEMBANGKIT LISTRIK MIKROHIDRO DI KAWASAN WISATA GIRIMANIK

Latar Belakang. Permasalahan. Tujuan

MASDIWATI MINATI PUTRI DOSEN PEMBIMBING : Ir. SOEKIBAT ROEDY SOESANTO Ir. ABDULLAH HIDAYAT, M.T.

NASKAH PUBLIKASI. Disusun untuk Memenuhi Tugas dan Syarat-syarat Guna Memperoleh. Gelar Sarjana Strata-satu Jurusan Teknik Elektro Fakultas Teknik

IHFAZH NURDIN EKA NUGRAHA, WALUYO, SYAHRIAL Jurusan Teknik Elektro Institut Teknologi Nasional (ITENAS), Bandung

LAMPIRAN B BATASAN TEKNIS

II. TINJAUAN PUSTAKA

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I. PENDAHULUAN. manusia dan makhluk hidup lainnya. Dengan air, maka bumi menjadi planet

BAB V STUDI POTENSI. h : ketinggian efektif yang diperoleh ( m ) maka daya listrik yang dapat dihasilkan ialah :

BAB II PEMBANGKIT LISTRIK TENAGA AIR

Kata Kunci debit air, ketinggian jatuh air (head), PLTMH Gunung Sawur unit 3, potensi daya, pipa pesat, turbin air, generator I.

BAB 3 STUDI LOKASI DAN SIMULASI

Jl. Banda Aceh-Medan Km. 280 Buketrata - Lhokseumawe Abstrak

BAB II LANDASAN TEORI

ANALISA KETINGGIHAN DAN DEBIT AIR PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO PADA DAERAH TERPENCIL

ABSTRAK. energi listrik, khususnya di pedesaan yang tidak terjangkau oleh jaringan listrik PLN. PLTMH merupakan alternatif yang sangat potensial bila

PERENCANAAN PEMBANGKIT LISTRIK TENAGA MINI HIDRO (PLTM) PALUMBUNGAN, PURBALINGGA Design of Mini Hydro Power Plant at Palumbungan, Purbalingga

Kata Kunci : PLTMH, Sudut Nozzle, Debit Air, Torsi, Efisiensi

STUDI POTENSI PLTMH KAMPUNG NYOMPLONG-BOGOR

BAB II LANDASAN TEORI. semakin populer sebagai alternatif sumber energi, terutama di wilayah yang

PECHA KUCHA. Pemanfaatan Energi Terbarukan Dalam Mendukung Terciptanya Permukiman yang Berkelanjutan TOWARDS SUSTAINABLE HUMAN SETTLEMENTS

REVITALISASI PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH) (KASUS DAERAH PACITAN) (279A)

BAB 2 LANDASAN TEORI. 1. Pembangkit Listrik Tenaga Surya (PLTS), 2. Pembangkit Listrik Tenaga Diesel (PLTD), 3. Pembangkit Listrik Tenaga Angin,

STUDI KELAYAKAN POTENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO DI DESA SETREN KECAMATAN SLOGOIMO KABUPATEN WONOGIRI ABSTRAKSI

BAB I PENDAHULUAN BAB I PENDAHULUAN

BAB I PENDAHULUAN. Universitas Sumatera Utara

OKTOBER KONTROL DAN PROTEKSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO By Dja far Sodiq

Gambar 1.1 Skema jaringan irigasi dan lokasi bangunan terjun di Saluran Primer Kromong

Transkripsi:

Jurnal Penelitian Saintek, Vol. 16, Nomor 2, Oktober 2011 ANALISIS PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTMH) PADA DAERAH ALIRAN SUNGAI ONGKAK MONGONDOW DI DESA MUNTOI KABUPATEN BOLAANG MONGONDOW Parabelem T.D. Rompas Fakultas Teknik Universitas Negeri Manado Kampus Universitas Negeri Manado, Tondano 95618, Sulawesi Utara Abstrak Pembangkit listrik tenaga mikrohidro (PLTMH) pada daerah aliran sungai Ongkak Mongondow di desa Muntoi kabupaten Bolaang Mongondow telah dianalisis. Tujuan penelitian adalah untuk mendapatkan kemampuan tenaga air yang dihasilkan dari PLTMH dan besar energi listrik yang diperoleh dalam 1 tahun. Pengumpulan data dilakukan dengan observasi langsung di lapangan. Hasil penelitian menunjukkan bahwa kemampuan tenaga air sebesar 19,5 kw adalah daya yang terpasang atau daya listrik yang dihasilkan akibat tenaga air. Energi total yang diperoleh dalam 1 tahun adalah 170,829 MWh. Kata kunci: energi listrik, tenaga air, mikrohidro Abstract The microhydro power plant (PLTMH) has been analyzed. The objectives of the research are to get water power capasity of PLTMH and electric energy in a year. The data was collected by direct observation in the field. It s found that water power capasity of PLTMH and electric energy in a year are 19.5 kw and 170.829 MWh. Keywords:electric energy, water power, microhydro PENDAHULUAN Daerah Sulawesi Utara yang mempunyai topografi bergunung dan mempunyai banyak sungai merupakan potensi sumber energi yang sangat besar untuk pembangkit yang bila direncanakan secara matang dapat mengatasi masalah krisis energi. Namun demikian krisis sumber daya energi ini belum dipecahkan secara integral menggunakan potensi sumber energi air di daerah yang masih cukup besar (Indartono dan Setyo, 2008). Masih banyak desa-desa yang jauh dari perkotaan masih belum mendapatkan pasokan listrik secara memadai. Banyak Kota dan Kecamatan yang mengandalkan PLTD dan hanya beroperasi malam hari saja dari jam 6-12 malam. Dan manakala minyak susah didapatkan akan terjadi pemadaman secara luas (Sucipto, 2009). Salah satu solusi yang sedang marak dikembangkan di Indonesia saat ini adalah pembangkit mikrohidro. Cakupan masalah analisis PLTMH pada daerah aliran sungai Ongkak Mongon- 160

Analisis Pembangkit (Parabelem T.D. Rompas) dow di desa Muntoi kabupaten Bolaang Mongondow yang dibahas adalah: 1. Analisis kemampuan tenaga air yang dihasilkan dari PLTMH 2. Analisis energi listrik dalam 1 tahun Mikrohidro adalah istilah yang digunakan untuk instalasi pembangkit listrik yang menggunakan energi air. Kondisi air yang bisa dimanfaatkan sebagai sumber daya (resources) penghasil listrik adalah memiliki kapasitas aliran dan ketinggian tertentu dan instalasi. Semakin besar kapasitas aliran maupun ketinggiannya dari istalasi maka semakin besar energi yang bisa dimanfaatkan untuk menghasilkan energi listrik (Hendar dan Ujang, 2007). Biasanya Mikrohidro dibangun berdasarkan kenyataan bahwa adanya air yang mengalir di suatu daerah dengan kapasitas dan ketinggian yang memadai (Anonim, 2008). Istilah kapasitas mengacu kepada jumlah volume aliran air persatuan waktu (flow capacity) sedangan beda ketinggian daerah aliran sampai ke instalasi dikenal dengan istilah head. Mikrohidro juga dikenal sebagai white resources dengan terjemahan bebas bisa dikatakan "energi putih". Dikatakan demikian karena instalasi pembangkit listrik seperti ini menggunakan sumber daya yang telah disediakan oleh alam dan ramah lingkungan (http://niasonline.net/2006/10/12/ kajian-unido-tentang-potensi-pembangkitlistrik-tenaga-mikrohidro-pltm-di-nias/). Suatu kenyataan bahwa alam memiliki air terjun atau jenis lainnya yang menjadi tempat air mengalir. Dengan teknologi sekarang maka energi aliran air akan dibangun) dapat diubah menjadi energi listrik (Anonim, 2003). Gambar 1 menunjukkan betapa ada perbedaan yang berarti antara biaya pembuatan dengan listrik yang dihasilkan (http:// dunia-listrik.blogspot.com/2008/09/panduanpembangunan-pembangkit-listrik.html). Keuntungan ekonomis dari pembangkit listrik tenaga mikrohidro dapat dicapai manakala disertai dengan perencanaan yang matang. Dan dengan melibatkan peran masyarakat setempat secara aktif, sejak awal pembangunan proyek dan terintegrasi baik dari aparat maupun warga desanya. Prinsip dasar mikrohidro adalah memanfaatkan energi potensial yang dimiliki oleh aliran air pada jarak ketinggian tertentu dari tempat instalasi pembangkit listrik. Sebuah skema mikrohidro memerlukan dua hal yaitu, debit air dan ketinggian jatuh (head) untuk menghasilkan tenaga yang dapat dimanfaatkan (Gambar 2). Hal ini adalah sebuah sistem konversi energi dari 161

Jurnal Penelitian Saintek, Vol. 16, Nomor 2, Oktober 2011 Gambar 1. Skala Ekonomi dari Mikrohidro (berdasarkan data tahun 1985) Keterangan Gambar 1: Average cost for conventional hydro = Biaya rata-rata untuk hidro konvensional. Band for micro hydro = Kisaran untuk mikro-hidro Capital cost = Modal Capacity = Kapasitas (kw) Gambar 2. Mikrohidro Tipe Cross Flow bentuk ketinggian dan aliran (energi potensial) ke dalam bentuk energi mekanik dan energi listrik. Daya yang masuk (Pgross) merupakan penjumlahan dari daya yang dihasilkan (Pnet) ditambah dengan faktor kehilangan energi (loss) dalam bentuk suara atau panas. Daya yang dihasilkan merupakan perkalian dari daya yang masuk dikalikan dengan efisiensi konversi ( ) (Anonim, 2008). Prinsip mikro hidro: 1. Energi yang digunakan untuk menggerakkan turbin didapatkan dari dua cara: a. Dengan head; memanfaatkan beda ketinggian permukaan air (energi potensial sungai) b. Tanpa head; memanfaatkan aliran sungai (energi kinetik sungai) 2. Head = Jarak vertikal/besarnya ketinggian jatuhnya air. 162

Analisis Pembangkit (Parabelem T.D. Rompas) 3. Semakin besar head umumnya akan semakin baik karena air yang dibutuhkan semakin sedikit dan peralatan semakin kecil, dan turbin bergerak dengan kecepatan tinggi. 4. Masalahnya adalah tekanan pada pipa dan kekuatan sambungan pipa harus kuat dan diperhatikan dengan cermat. Daya kotor adalah head kotor (H bruto ) yang dikalikan dengan debit air (Q) dan juga dikalikan dengan sebuah faktor gravitasi (g = 9,81 m/dt 2 ), sehingga persamaan dasar dari pembangkit listrik (http://www.alpensteel. com/article/50-104-energi-sungai) adalah: P = Q H bruto g Ση (kw) dimana H bruto (tinggi jatuh air kotor) (m), dan Q (debit air) (m 3 /dt). Perhitungan daya listrik pada sistem PLTMH: Daya poros turbin P t = Q x H eff x g x t Daya yang ditransmisikan ke generator P trans = Q x H eff x g x t x belt Daya yang dibangkitkan generator P g = Q x H eff x g x t x belt x gen dimana: Q = debit air, m 3 /dt, H eff = tinggi jatuh air efektif (efektif head), m, H eff = H Bruto H losses, H losses = kehilangan tinggi jatuh air = 10% x H bruto, t = efisiensi turbin (0,76 untuk turbin crossflow T-14 dan 0,75 untuk turbin propeller open flume lokal), belt = efisiensi transmisi (0,98 untuk flat belt dan 0,95 untuk V belt), gen = efisiensi generator (0,89). Daya yang dibangkitkan generator ini yang akan disalurkan ke pengguna. Dalam perencanaan jumlah kebutuhan daya di pusat beban harus di bawah kapasitas daya terbangkit, sehingga tegangan listrik stabil dan sistem menjadi lebih handal (berumur panjang). Jenis instalasi untuk daerah pegunungan pada umumnya terdiri dari komponen sebagai berikut (Sinaga, 2009): 1. Pintu Pengambilan (Intake/Diversion) 2. Bak Pengendapan (Desilting Tank) 3. Saluran Penghantar ( headrace) 4. Bak Penenang (Forebay) 5. Pipa pesat (Penstock) 6. Gedung Pembangkit (Power House) 7. Saluran Buang (Tailrace) 8. Jaringan Transmisi (Grid Line) Perhitungan diameter pipa pesat (pipa air jatuh): D= (Q/0,25 v) Dimana 163

Jurnal Penelitian Saintek, Vol. 16, Nomor 2, Oktober 2011 Dalam penentuan tebal pipa pesat diperhitungkan gaya akibat tekanan air dalam pipa yang arahnya tegak lurus aliran air, sehingga tebal pipa pesat adalah: dimana: Po = x Heff adalah gaya tekan air, D= diameter pipa, = berat jenis air, = koefisien profil, baja = tegangan bahan pipa baja. Turbin yang direncanakan adalah turbin crossflow type X- Flow T-14 D300 Low head Series yang memiliki spesifikasi dengan tinggi jatuh efektif 3-9 m dan debit 200 800 l/dt (lihat Gambar 2). Efisiensi yang digunakan berdasarkan spesifikasi jenis turbin yang digunakan adalah: efisiensi turbin ( t) = 0,76; efisiensi generator ( g) = 0,89; dan efisiensi transformator ( tr) = 0,95, sehingga efisiensi total yang dihasilkan adalah: = t x g x tr. Tinggi jatuh air efektif yang sebenarnya (H eff ) akan dihitung dari H bruto dikurangi H losses. H losses adalah tinggi air jatuh akibat kehilangan-kehilangan energi seperti: karena saringan kasar, pada entrance (mulut masuk pipa), karena gesekan sepanjang pipa, dan karena belokan pipa. Kehilangan-kehilangan energi itu adalah sebagai berikut: H r = (s/b) 4/3 (v 2 /2g) sin dimana: h r = Kehilangan energi karena saringan(m), = Koefisien profil, s = Lebar profil dari arah aliran (m), b = Jarak antar profil saringan (m), v = Kecepatan aliran air (m/dt), = Sudut kemiringan saringan. Kehilangan energi pada entrance: H e = K e ( v 2 /2g) dimana: H e = Kehilangan energi pada entrance (m), K e = Koefisien bentuk mulut, v = Selisih kecepatan sebelum dan sesudah entrance (m/dt). Kehilangan energi karena gesekan sepanjang pipa: H f = f (L/D)(v 2 /2g) dimana: H f = Kehilangan energi karena gesekan sepanjang pipa (m), f = Koefisien gesek pipa. Kehilangan energi karena belokan pipa: H 1 = K b v 2 /2g dimana: H l = Kehilangan energi karena belokan pipa (m), K b = Koefisien kehilangan energi yang nilainya tergantung r/d. Total kehilangan energi: H losses = H r +H e + H f + H l Total energi dalam 1 tahun yang diperoleh: E1 = P 80 x 80% x 365 x 24 164

Analisis Pembangkit (Parabelem T.D. Rompas) Gambar 3. Probabilitas (%) vs Debit Air (l/dt) E2 = (P 80 + P 90 )/2 x 10% x 365 x 24 E3 = (P 90 + P 100 )/2 x 10% x 365 x 24 dimana P 80, P 90, dan P 100 adalah daya terpasang yang diperoleh dari Gambar 3 berdasarkan nilai debit air pada nilai probabilitas 80%, 90%, dan 100%. Sehingga total energi yang diperoleh dalam 1 tahun adalah: E = E1 + E2 + E3 (kwh). Gambar 4 menunjukan beberapa komponen yang digunakan untuk Pem- Gambar 4. Komponen-komponen Besar dari sebuah Skema Mikrohidro 165

Jurnal Penelitian Saintek, Vol. 16, Nomor 2, Oktober 2011 bangkit Listrik Tenaga Mikrohidro baik komponen utama maupun bangunan penunjang antara lain (Energiterbarukan. net, 2008): 1. Dam/Bendungan Pengalih (intake). Dam pengalih berfungsi untuk mengalihkan air melalui sebuah pembuka di bagian sisi sungai ke dalam sebuah bak pengendap. 2. Bak Pengendap (Settling Basin). Bak pengendap digunakan untuk memindahkan partikel-partikel pasir dari air. Fungsi dari bak pengendap adalah sangat penting untuk melindungi komponen-komponen berikutnya dari dampak pasir. 3. Saluran Pembawa (headrace). Saluran pembawa mengikuti kontur dari sisi bukit untuk menjaga elevasi dari air yang disalurkan. 4. Pipa Pesat (Penstock). Penstock dihubungkan pada sebuah elevasi yang lebih rendah ke sebuah roda air, dikenal sebagai sebuah turbin. 5. Turbin. Turbin berfungsi untuk mengkonversi energi aliran air menjadi energi putaran mekanis. 6. Pipa Hisap. Pipa hisap berfungsi untuk menghisap air, mengembalikan tekanan aliran yang masih tinggi ke tekanan atmosfer. 7. Generator. Generator berfungsi untuk menghasilkan listrik dari putaran mekanis. 8. Panel kontrol. Panel kontrol berfungsi untuk menstabilkan tegangan. 9. Pengalih Beban (Ballast load). Pengalih beban berfungsi sebagai beban sekunder (dummy) ketika beban konsumen mengalami penurunan. Kinerja pengalih beban ini diatur oleh panel kontrol. Penggunaan beberapa komponen disesuaikan dengan tempat instalasi (kondisi geografis, baik potensi aliran air serta ketinggian tempat) serta budaya masyarakat. Sehingga terdapat kemungkinan terjadi perbedaan desain mikrohidro serta komponen yang digunakan antara satu daerah dengan daerah yang lain. Secara umum ada dua jenis generator yang digunakan pada PLTMH, yaitu generator sinkron dan generator induksi (Energiterbarukan.net, 2008). Generator sinkron bekerja pada kecepatan yang berubahubah. Untuk dapat menjaga agar kecepatan generator tetap, digunakan speed governor elektronik. Generator jenis ini dapat digunakan secara langsung dan tidak membutuhkan jaringan listrik lain sebagai penggerak awal. Sangat cocok digunakan di desa terpencil 166

Analisis Pembangkit (Parabelem T.D. Rompas) 3. Speed : 375 750 RPM Gambar 5. Generator dengan sistem isolasi (http://www.alpensteel. com/article/50-104-energi-sungai-hydropower/496-merancang-mikrohidro.pdf). Pada generator jenis induksi tidak diperlukan sistem pengaturan tegangan dan kecepatan (lihat Gambar 5). Namun demikian, jenis generator ini tidak dapat bekerja sendiri karena memerlukan suatu sistem jaringan listrik sebagai penggerak awal. Generator jenis ini lebih cocok digunakan untuk daerah yang telah dilalui jaringan listrik (Grid System). Batasan umum generator untuk minimikrohidro power adalah: 1. Output: 50 kva sampai dengan 6250 kva 2. Voltage: 415, 3300, 6600, dan 11000 Volt. Perputaran gagang dari roda dapat digunakan untuk memutar sebuah alat mekanik (seperti sebuah penggilingan biji, pemeras minyak, mesin bubut kayu dan sebagainya), atau untuk mengoperasikan sebuah generator listrik. Mesin-mesin atau alat-alat, dimana diberi tenaga oleh skema hidro, disebut dengan Beban (Load), dalam Gambar 2 dimana bebannya adalah sebuah penggergajian kayu. METODE PENELITIAN Alat yang digunakan adalah: 1) Stopwatch dan ember dengan volume 25 liter air; 2) Gulungan meter dengan panjang maksimum 25 meter, dan 3) Pengukur elevasi. Metode pengamatan langsung di lapangan melalui pengukuran-pengukuran seperti kecepatan air sungai dan luas penampang tegak lurus aliran air sungai untuk mendapatkan debit air sungai yang mengalir sebagai data awal dalam analisis kemampuan tenaga air sungai, kemudian untuk menganalisis energi listrik diambil data awal pengukuran tinggi jatuh air (direncanakan 7,5 m) termasuk pengukuran jarak dari titik bendungan air ke air jatuh. 167

Jurnal Penelitian Saintek, Vol. 16, Nomor 2, Oktober 2011 Gambar 6. Obyek Analisis PLTMH di Sungai Ongkak Mongondow Teknik pengukuran langsung dengan prosedur sebagai berikut: pertama mengukur kecepatan air dan kedua mengukur luas penampang tegak lurus aliran air sungai sehingga didapat debit air (luas penampang dikali kecepatan air, m3 /s), dan terakhir mengukur tinggi jatuh air untuk mendapatkan panjang saluran air dari bendungan air ke air jatuh. Penelitian ini mencakup analisis kemampuan tenaga air yang dihasilkan dari PLTMH dan analisis energi listrik dalam 1 tahun. Disain power house, detail per hitungan bangunan sipil, disain spesifikasi turbin dan generator, dan analisis ekonomi, tidak diikutsertakan dalam analisis. Obyek pengamatan adalah daerah pembangunan pembangkit listrik mikrohidro di aliran sungai Ongkak Mongondow desa Muntoi Kabupaten Bolaang Mongondow. Pembangunan PLTMH yang dianalisis letaknya adalah pada N 00 46 46 E 124 14 15 untuk bendungan dan N 00 47 54,9 E - 124 13 27,8 untuk power house di daerah aliran sungai Ongkak mongondow desa Tabel 1. Hasil Analisis Kemampuan Tenaga Air dan Tinggi Jatuh Air Q (m 3 /dt) H bruto (m) H losses (m) H eff (m) P(kW) P (kw) 0,458 7,5 0,75 6,75 30,3 19,5 168

Analisis Pembangkit (Parabelem T.D. Rompas) Tabel 2. Hasil Analisis Energi Listrik H eff (m) Q 80 (m 3 /dt) Q 90 (m 3 /dt) Q 100 (m 3 /dt) E(MWh) 0,643 7 0,458 0,407 0,254 170,829 Muntoi Kabupaten Bolaang Mongondow. Lebar sungai kira-kira 45 meter dengan rencana saluran miring sepanjang 2 kmk. Gambar 6 menunjukkan obyek analisis PLTMH sebagai lokasi rencana pembangunan PLTMH dan akan dibangun untuk bendungan (inset). HASIL DAN PEMBAHASAN Hasil analisis kemampuan tenaga air dan tinggi jatuh air menurut perhitungan secara kotor sebelum dianalisis lebih lanjut dapat dilihat pada Tabel 1. Hasil analisis energi listrik dapat dilihat pada Tabel 2. Debit air (Q) pada tabel 1 adalah debit air yang direncanakan akan masuk pada pipa pesat dengan ketinggian jatuh air 7,5 m dan jika kita menghitung debit air minimum sebesar 20% dari debit air itu maka didapat 91,6 l/dt. Daya yang dihasilkannya tanpa memperhitungkan efisiensi total sebesar 30,3 kw dan jika kita memperhitungkan efisiensi total sebesar 0,643 maka daya yang terpasang sebesar 19,5 kw. Tabel 2 menunjukkan hasil analisis energi listrik yang dihitung berdasarkan efisiensi total, gaya gravitasi, tinggi jatuh air efektif yang sebenarnya dan diperoleh dari selisih antara tinggi jatuh air kotor dan total kehilangan tinggi jatuh air (0,5 m yang sebelumnya direncanakan 0,75 m), dan debit air (Q) yang diperoleh dari kurva durasi pada Gambar 3. Energi total yang diperoleh selama 1 tahun dengan tinggi jatuh air efektif yang sebenarnya sebesar 7 m adalah 170,829 MWh dengan daya yang terpasang sebesar 19,5 kw. Bila dibandingkan dengan hasil penelitian oleh Sucipto dalam jurnal kesimpulan.com terbitan Minggu, 02 Agustus 2009 tentang Inovasi Sucipto dengan Pembangkit Listrik Tenaga Mikrohidro (PLTMH) Gunung Sawur. Ia membuat PLTMH dengan penelitian berulang kali dengan percobaan trial and error sehingga mendapatkan daya yang terpasang sebesar 13 kw. Begitu pula dengan hasil penelitian PLTMH dari Jorfri B. Sinaga (2009) yang membuat rancangan turbin melalui program visual basic untuk PLTMH dan hasil rancangannya ditemukan daya listrik sebesar 23,8 kw dengan tinggi jatuh air sebesar 10,7 m sedangkan dalam penelitian ini sebesar 7,5 169

Jurnal Penelitian Saintek, Vol. 16, Nomor 2, Oktober 2011 m didapat daya sebesar 19,5 kw. Hal itu menunjukkan bahwa penelitian ini bisa diaplikasikan dalam keadaan yang sebenarnya untuk PLTMH di desa Muntoi kabupaten Bolaang Mongondow propinsi Sulawesi Utara. Total energi listrik yang diperoleh dalam 1 tahun sebesar 170.829 kwh (Tabel 2). Bila kita menghitung nilai jual listrik ke PLN dengan memperhitungkan total biaya pengeluaran/tahun sebesar Rp. 90 juta maka nilai jual listrik itu sebesar Rp. 527/kWh. KESIMPULAN Pembangkit Listrik Tenaga Mikro Hidro pada daerah aliran sungai di desa Muntoi kabupaten Bolaang Mongondow telah dianalisis dan dapat disimpulkan sebagai berikut: 1. Kemampuan tenaga air sebesar 19,5 kw adalah daya yang terpasang atau daya listrik yang dihasilkan akibat tenaga air. 2. Tinggi jatuh air efektif yang sebenarnya sebesar 7 m dengan daya yang dihasilkan sebesar kira-kira 9,5 kw pada debit air 0,458 m 3 /dt. 3. Energi total yang diperoleh dalam 1 tahun adalah 170,828 MWh. DAFTAR PUSTAKA Analisa Perhitungan Mikrohidro. http:// www.alpensteel.com/article/50-104- energi-sungai-pltmh--micro-hydro-power/ 166--analisa-perhitungan-mikrohidro. html. Diakses tanggal 05 Mei 2011. Anonim. (2008). Manual pembangunan pembangkit listrik tenaga mikrohidro. IBEKA- JICA. Jakarta. Anonim. (2003). Pedoman pengelolaan pengoperasian dan pemeliharaan PLTMH Leuwi Kiara, Kabupaten Tasikmalaya. Bandung: Dinas Pertambangan dan Energi. Energiterbarukan.net. (2008). Panduan pembangunan pembangkit listrik mikro hidro. http://dunia-listrik.blogspot.com/ 2008/09/panduan-pembangunanpembangkit-listrik.html. Diakses tanggal 09 April 2011. Hendar dan Ujang. (2007). Desain, manufacturing dan instalasi turbin propeller open flume Ø 125 Mm di C.V. Cihanjuang Inti Teknik Cimahi-Jawa Barat. Bogor: Fakultas Teknologi Pertanian IPB. Indartono dan Setyo, Y. (2008). Krisis energi di Indonesia: Mengapa dan harus bagaimana. http://www.tempointeraktif. com/hg/nusa/. Kjolle and Arne. (2001). Hydropower in norway, mechanical equipment. Trondheim: Norwegian University of Science and Technology. 170

Analisis Pembangkit (Parabelem T.D. Rompas) Nias. (2006). Kajian UNIDO tentang potensi pembangkit listrik tenaga mikrohidro (PLTM) di Nias. http://niasonline. net/2006/10/12/kajian-unido-tentangpotensi-pembangkit-listrik-tenagamikrohidro-pltm-di-nias/. Diakses tanggal 25 Maret 2011. Sucipto. (2009). Inovasi Sucipto dengan pembangkit listrik tenaga mikrohidro (PLTMH) Gunung Sawur. Jurnal kesimpulan.com (Minggu, 02 Agustus 2009). http://www.kesimpulan.com/2009/ 08/inovasi-sucipto-dengan-pembangkit. html. Diakses tanggal 15 April 2011. Sinaga, B.J. (2009). Perancangan turbin air untuk sistem pembangkit listrik tenaga mikro hidro (Studi kasus Desa Way Gison Kecamatan Sekincau Kabupaten Lampung Barat). J. Sainsdan Inovasi No.5, Vol 1, hal.64-75. 171