2. Teori Dasar. senyawa tersebut adalah Methyl tertiary Buthyl Ether (MTBE), CH

dokumen-dokumen yang mirip
PENGARUH PERUBAHAN SAAT PENYALAAN (IGNITION TIMING) TERHADAP PRESTASI MESIN PADA SEPEDA MOTOR 4 LANGKAH DENGAN BAHAN BAKAR LPG

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

Pengaruh Suhu dan Tekanan Udara Masuk Terhadap Kinerja Motor Diesel Tipe 4 JA 1

ANALISIS PENCAMPURAN BAHAN BAKAR PREMIUM - PERTAMAX TERHADAP KINERJA MESIN KONVENSIONAL

BAB I PENDAHULUAN A. Latar Belakang Masalah

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB II DASAR TEORI 2.1 Motor Bensin Prinsip Dasar Motor Bensin

BAB II TINJAUAN PUSTAKA

Studi Eksperimental Pengaruh Campuran Bahan Bakar Premium dengan Prestone 0 to 60 Octane Booster terhadap Performance Motor 4 Langkah

PENGARUH PORTING SALURAN INTAKE DAN EXHAUST TERHADAP KINERJA MOTOR 4 LANGKAH 200 cc BERBAHAN BAKAR PREMIUM DAN PERTAMAX

ASPEK TORSI DAN DAYA PADA MESIN SEPEDA MOTOR 4 LANGKAH DENGAN BAHAN BAKAR CAMPURAN PREMIUM METHANOL

ANALISA KINERJA MESIN OTTO BERBAHAN BAKAR PREMIUM DENGAN PENAMBAHAN ADITIF OKSIGENAT DAN ADITIF PASARAN

Pengaruh Naphtalene Terhadap Perubahan Angka Oktan Bensin, Unjuk Kerja Motor dan Gas Buangnya

BAB II LANDASAN TEORI

PENGARUH PENAMBAHAN ADITIF PADA PREMIUM DENGAN VARIASI KONSENTRASI TERHADAP UNJUK KERJA ENGINE PUTARAN VARIABEL KARISMA 125 CC

BAB IV HASIL DAN PEMBAHASAN. t 1000

STUDI EKSPERIMENTAL KARAKTERISTIK KINERJA SEPEDA MOTOR DENGAN VARIASI JENIS BAHAN BAKAR BENSIN

Peningkatan Unjuk Kerja Motor Bensin Empat Langkah Dengan Penggunaan Methyl Tertiary Buthyl Ether Pada Bensin

BAB I PENDAHULUAN A. Latar Belakang Masalah

BAB III METODELOGI PENELITIAN

PENGARUH PENAMBAHAN ALKOHOL PADA PREMIUM UNTUK MENCAPAI BILANGAN OKTAN YANG SETARA DENGAN PERTAMAX

BAB II LANDASAN TEORI

BAB II TINJAUAN PUSTAKA

Performansi Sepeda Motor Empat Langkah Menggunakan Bahan Bakar dengan Angka Oktan Lebih Rendah dari Yang Direkomendasikan

PENGUJIAN PENGARUH MUTU BAHAN BAKAR BENSIN TERHADAP KEMAMPUAN KERJA MOTOR BENSIN

PENGARUH PENAMBAHAN ADITIF ABD 01 SOLAR KE DALAM MINYAK SOLAR TERHADAP KINERJA MESIN DIESEL

PENGUJIAN PENGGUNAAN KATALISATOR BROQUET TERHADAP EMISI GAS BUANG MESIN SEPEDA MOTOR 4 LANGKAH

BAB II KAJIAN PUSTAKA DAN LANDASAN TEORI. Observasi terhadap analisis pengaruh jenis bahan bakar terhadap unjuk kerja

BAB II TINJAUAN LITERATUR

UJI PERFORMANSI MESIN OTTO SATU SILINDER DENGAN BAHAN BAKAR PREMIUM DAN PERTAMAX PLUS

BAB II LANDASAN TEORI. Sebelum bahan bakar ini terbakar didalam silinder terlebih dahulu dijadikan gas


SWIRL SEBAGAI ALAT PEMBUAT ALIRAN TURBULEN CAMPURAN BAHAN BAKAR DAN UDARA PADA SALURAN INTAKE MANIFOLD

BAB II LANDASAN TEORI

Jurnal FEMA, Volume 2, Nomor 1, Januari 2014

BAB 1 PENDAHULUAN. jumlah banyak, mudah dibawa dan bersih. Untuk bahan bakar motor gasoline. mungkin belum dapat memenuhi persyaratan pasaran.

PENGARUH PENGGUNAAN BAHAN BAKAR SOLAR, BIOSOLAR DAN PERTAMINA DEX TERHADAP PRESTASI MOTOR DIESEL SILINDER TUNGGAL

PENGARUH JENIS BAHAN BAKAR TERHADAP UNJUK KERJA MOTOR BAKAR INJEKSI ABSTRAK

UJI PERFORMA PENGARUH IGNITION TIMING TERHADAP KINERJA MOTOR BENSIN BERBAHAN BAKAR LPG

BAB II LANDASAN TEORI. Sebelum bahan bakar ini terbakar didalam silinder terlebih dahulu dijadikan gas

PENGARUH CAMPURAN METANOL TERHADAP PRESTASI MESIN

Pengaturan Kondisi Idle dan Akselerasi pada Motor Berbahan Bakar Gas

Pengaruh Penggunaan dan Perhitungan Efisiensi Bahan Bakar Premium dan Pertamax Terhadap Unjuk Kerja Motor Bakar Bensin

BAB II TINJAUAN PUSTAKA

BAB II LANDASAN TEORI

PERENCANAAN MOTOR BAKAR DIESEL PENGGERAK POMPA

BAB I PENDAHULUAN. Hakekat motor bensin menurut jumlah langkah kerjanya dapat diklasifikasikan

kimia MINYAK BUMI Tujuan Pembelajaran

UJI KINERJA KOLOM ADSORPSI UNTUK PEMURNIAN ETANOL SEBAGAI ADITIF BENSIN BERDASARKAN LAJU ALIR UMPAN DAN KONSENTRASI PRODUK

BAB III METODOLOGI PENELITIAN

PENGUJIAN PENGARUH PENGGUNAAN OCTANE BOOSTER TERHADAP EMISI GAS BUANG MESIN BENSIN EMPAT LANGKAH

PENGARUH PERUBAHAN SUDUT PENYALAAN (IGNITION TIME) TERHADAP EMSISI GAS BUANG PADA MESIN SEPEDA MOTOR 4 (EMPAT) LANGKAH DENGAN BAHAN BAKAR LPG

VARIASI PENGGUNAAN IONIZER DAN JENIS BAHAN BAKAR TERHADAP KANDUNGAN GAS BUANG KENDARAAN

PENGARUH STROKE UP TERHADAP PERFORMA MESIN PADA SEPEDA MOTOR 4 LANGKAH YANG MENGGUNAKAN BAHAN BAKAR PERTAMAX, PERTAMAX PLUS DAN BENSOL

BAB II TINJAUAN PUSTAKA. seperti mesin uap, turbin uap disebut motor bakar pembakaran luar (External

PENGARUH FILTER UDARA PADA KARBURATOR TERHADAP UNJUK KERJA MESIN SEPEDA MOTOR

BAB II DASAR TEORI 2.1. Motor Bensin Penjelasan Umum

TUGAS AKHIR. DisusunOleh: MHD YAHYA NIM

PERFORMANSI MESIN SEPEDA MOTOR SATU SILINDER BERBAHAN BAKAR PREMIUM DAN PERTAMAX PLUS DENGAN MODIFIKASI RASIO KOMPRESI

BAB II DASAR TEORI 2.1 Pengertian Umum Mesin Bensin Prinsip Kerja Mesin Empat Langkah

Performa Mesin Sepeda Motor Empat Langkah Berbahan Bakar Premium dan Pertamax

PENGARUH PERUBAHAN NA DAN VOOR ONSTEKING TERHADAP KERJA MESIN

Ahmad Nur Rokman 1, Romy 2 Laboratorium Konversi Energi, Jurusan Teknik Mesin, Fakultas Teknik Universitas Riau 1

BAB II LANDASAN TEORI

MOTOR BAKAR TORAK. 3. Langkah Usaha/kerja (power stroke)

PERBANDINGAN KOMPRESI

ANALISIS UNJUK KERJA MESIN SEPEDA MOTOR TYPE X 115 CC SISTEM KARBURATOR DENGAN MENGGUNAKAN BAHAN BAKAR PREMIUM DAN CAMPURAN PREMIUM ETHANOL

FINONDANG JANUARIZKA L SIKLUS OTTO

ANALISA EMISI GAS BUANG KENDARAAN BERMOTOR 4 TAK BERBAHAN BAKAR CAMPURAN PREMIUM DENGAN VARIASI PENAMBAHAN ZAT ADITIF

BAB I PENDAHULUAN. penggunaannya, terlihat dari kebutuhan alat transportasi sebagai. penunjang perokonomian, hal ini dapat dilihat dengan semakin

KINERJA MESIN SEPEDA MOTOR SATU SILINDER DENGAN BAHAN BAKAR PREMIUM DAN ETANOL DENGAN MODIFIKASI RASIO KOMPRESI

I. PENDAHULUAN. Perkembangan teknologi otomotif saat ini semakin pesat, hal ini didasari atas

Mahasiswa Jurusan Teknik Mesin, Fakultas Teknik, Universitas Muhammadiyah Yogyakarta 2 3

Pengaruh Penggunaan Octane Booster Terhadap Emisi Gas Buang Mesin Bensin Empat Langkah

PENGARUH JUMLAH SEL PADA HYDROGEN GENERATOR TERHADAP PENGHEMATAN BAHAN BAKAR

PENGARUH PENGGUNAAN CDI PREDATOR DUAL MAP TERHADAP KARAKTERISTIK PERCIKAN BUNGA API DAN KINERJA MOTOR 4 LANGKAH 110 CC TRANSMISI AUTOMATIC

Syaiful Mukmin, Akhmad Farid, Nurida Finahari, (2012), PROTON, Vol. 4 No 2 / Hal 53-58

PENGARUH JENIS BAHAN BAKAR TERHADAP UNJUK KERJA SEPEDA MOTOR SISTEM INJEKSI DAN KARBURATOR

BAB II LANDASAN TEORI

Faizur Al Muhajir, Toni Dwi Putra, Naif Fuhaid, (2014), PROTON, Vol. 6 No 1 / Hal 24-29

BAB I PENDAHULUAN. Motor bakar merupakan salah satu jenis penggerak mula. Prinsip kerja

II. TEORI DASAR. kelompokaan menjadi dua jenis pembakaran yaitu pembakaran dalam (Internal

TUGAS AKHIR ANALISIS PERFORMA MESIN MENGGUNAKAN CAMPURAN BAHAN BAKAR PREMIUM DENGAN ETHANOL TERHADAP DAYA DAN


BAB II TINJAUAN PUSTAKA

Pengaruh Kerenggangan Celah Busi terhadap Konsumsi Bahan Bakar pada Motor Bensin

Prarancangan Pabrik Gasoline dari Metanol dengan Fixed Bed MTG Process dengan Kapasitas Ton/Tahun BAB I PENDAHULUAN

Jurnal Teknik Mesin. menggunakan alat uji percikan bunga api, dynotest, dan uji jalan.proses pengujian dapat dilihat dibawah ini.

ANALISA PENGARUH PENGATURAN VOLUME BIOETHANOL SEBAGAI CAMPURAN BAHAN BAKAR MELALUI MAIN JET SECARA INDEPENDENT TERHADAP EMISI PADA MESIN OTTO

KAJIAN EKSPRIMENTAL PENGARUH BAHAN ADITIF OCTANE BOSTER TERHADAP EMISI GAS BUANG PADA MESIN DIESEL

BAB I PENDAHULUAN. merupakan suatu campuran komplek antara hidrokarbon-hidrokarbon sederhana

Peningkatan Performance dengan Pendingin Udara Masuk pada Motor Diesel 4JA1

Denny Haryadhi N Motor Bakar / Tugas 2. Karakteristik Motor 2 Langkah dan 4 Langkah, Motor Wankle, serta Siklus Otto dan Diesel

Gambar 1. Motor Bensin 4 langkah

BAB IV PENGUJIAN ALAT

PENGARUH PENGGUNAAN ARAK BALI SEBAGAI BAHAN BAKAR PADA MESIN EMPAT LANGKAH DENGAN RASIO KOMPRESI BERVARIASI

PENGARUH PENGGUNAAN BLOWER ELEKTRIK TERHADAP PERFORMA MESIN SEPEDA MOTOR SISTEM INJEKSI

Pengaruh Pemanasan Bahan Bakar terhadap Unjuk Kerja Mesin

ANALISIS PROSES PEMBAKARAN SISTEM INJECTION PADA SEPEDA MOTOR DENGAN MENGGUNAKAN BAHAN BAKAR PREMIUM DAN PERTAMAX

MAKALAH DASAR-DASAR mesin

Transkripsi:

Oksigenat Methyl Tertiary Buthyl Ether Sebagai Aditif Octane Booster Bahan Bakar Motor Bensin (Philip Kristanto Oksigenat Methyl Tertiary Buthyl Ether Sebagai Aditif Octane Booster Bahan Bakar Motor Bensin Philip Kristanto Dosen Fakultas Teknologi Industri, Jurusan Teknik Mesin - Universitas Kristen Petra Abstrak Oksigenat Methyl Tertiary Buthyl Ether (, C H 12 O sebagai alternatif pengganti Tetra Ethyl Lead (TEL, Pb ( C 2 H 4 yang digunakan sebagai komponen peningkat angka oktan bahan bakar bensin. Namun, perlu dilakukan pengujian bagaimana pengaruh konsentrasinya terhadap angka oktan, sifat volatilitas bahan bakar dan unjuk kerja motor. Untuk motor yang menggunakan karburator, bahan bakar cair harus cukup mudah menguap untuk menyediakan campuran udara dan uap bahan bakar pada tempratur masuk dan menyediakan secara lengkap campuran udara dan uap bahan bakar didalam silinder sebelum terbakar. Kata kunci: Oksigenat, angka oktan, volatilitas. Abstract Oxygenates Methyl Tertiary Buthyl Ether (, C H 12 O as an alternative substance for Tetra Ethyl Lead (TEL, Pb( C 2 H 4 which is used as substance to increase octane number gasoline fuel. However, need to be tested how its concentration influence about octane number, volatility fuel and engine performance. For engines with carburettor, the liquid fuel must be volatile enough to produce a combustible fuel vapour air mixture at intake temperature and to produce completely fuel vapour air mixture inside the cylinder before combustion. Keywords: Oxygenates, octane number, volatility. Bhp Nm P T Daftar Notasi daya kuda poros, hp putaran motor, Rpm beban, Newton torsi, N - m 1.1 Latar Belakang 1. Pendahuluan Sesuai dengan perkembangan teknologi otomotif, pada dasawarsa terakhir ini tentunya perlu diimbangi dengan kualitas dari bahan bakar yang digunakan. Salah satu parameter untuk menentukan kualitas bahan bakar adalah angka oktannya. Jika angka okktan bahan bakar yang diigunakan terlalu rendah, maka timbul gejala ketukan (knocking pada motor dan selanjutnya akan mengurangi performansi motor secara keseluruhan. Untuk meningkatkan performa dari bahan bakar pada Catatan : Diskusi untuk makalah ini diterima sebelum tanggal 1 Juli 2002. Diskusi yang layak muat akan diterbitkan pada Jurnal Teknik Mesin Volume 4 Nomor 2 Oktober 2002. dasarnya ditambahkan sejumlah Tetra Ethyl Lead (TEL, Pb ( C 2 H 4 sebagai bahan aditif anti-ketukan. Pada proses pembakaraan bahan bakar yang mengandung senyawa TEL dihasilkan senyawa Pb anorganik, Pb0 (Oksida Pb pada gas buang dan pada umumnya dapat bertahan di atmosfir untuk kurun waktu yang cukup lama. Senyawa oksida Pb di udara dan di alam ini dapat masuk ke dalam tubuh manusia melalui pernafasan maupun rantai makanan. Dampak negatif yang ditimbulkan jika senyawa tersebut berada di dalam tubuh manusia akan mempengaruhi kecerdasaan dan menurunkan IQ terutama pada anak-anak, menimbulkan permasalahan tekanan darah tinggi maupun penyakit pembuluh darah jantung. Berdasarkan dampak negatif yang ditimbulkan akibat penggunaan TEL sebagai bahan aditif untuk bahan bakar, maka penggunaan TEL di negara maju dan sebagian negara sedang berkembang sudah dilarang. Beberapa senyawa alternatif non-logam, misalnya metanol, etanol, anilin dan eter pada dewasa ini dikembangkan untuk menggantikan TEL sebagai bahan aditif. Salah satu diantara 2

JURNAL TEKNIK MESIN Vol. 4, No. 1, April 2002: 2 31 senyawa tersebut adalah Methyl tertiary Buthyl Ether (, CH 3OC4H sebagai senyawa 9 organik yang tidak mengandung logam dan tidak membentuk senyawa peroksida yang berbahaya bagi lingkungan. Karakteristik bensin didasarkan pada beberapa parameter sesuai dengan penggunaannya dalam kendaraan bermotor. Beberapa karakteristik tersebut diantaranya adalah angka oktan, sifat volatilitas dari bahan bakar yang diberi tambahan. Untuk mengetahui kualitas dari senyawa bensin yang ditambahkan perlu dilakukan pengujian performansi motor bakar bensin yang menggunakan persenyawaan bahan bakar tersebut. berakhirnya langkah kompresi terjadi penyalaan karena percikan bunga api listrik dari busi, sehingga campuran udara-bahan bakar di sekitar busi terbakar. Kedua proses pembakaran ini mengakibatkan perambatan nyala api dimana masing-masing bergerak menjauhi titik nyalanya dan pada akhirnya terjadi pertemuan atau tumbukan antara kedua proses pembakaran terebut. Tumbukan antara kedua proses pembakaran ini menimbulkan suara berisik di dalam motor yang dikenal dengan fenomena ketukan (knocking. Peristiwa ini ditunjukkan dalam gambar 2. 1.2 Metodologi Penelitian Metodologi yang digunakan dalam penelitian ini meliputi: Persiapan sampel Sampel yang digunakan dalam pengujian ini: Bensin murni (tanpa Bensin murni + % volume Bensin murni + 10 % volume Bensin murni + 1 % volume Bensin murni + 20 % volume Bensin murni + 2 % volume Yang diukur pada masing-masing sampel ini adalah Research Octane Number (RON, temperatur destilasi, dan tekanan uap Reid. Pengujian Pengujian angka oktan, volatilitas dan tekanan uap Reid dari masing-masing sampel dilakukan di PPT Migas, Cepu, sedangkan pengujian performansi motor yang meliputi keluaran daya poros dan torsi motor dilakukan di Laboratorium Motor Bakar, Jurusan Teknik Mesin, Universitas Kristen Petra. 2. Teori Dasar 2.1 Fenomena Ketukan Ketukan (knocking merupakan suatu fenomena penyalaan spontan yang mengakibatkan pembakaran tidak normal di dalam silinder. Pada proses pembakaran normal penyalaan bunga api diawali dari busi sehingga terjadi pembakaran awal campuran udara-bahan bakar dan merambat hingga titik terjauh dari busi di ruang bakar (gambar 1. Pada proses pembakaran yang tidak normal dimana terjadi penyalaan awal (preignition bahan bakar karena meningkatnya suhu dan tekanan di dalam silinder karena proses kompresi. Disamping itu tepat pada saat akan Gambar 1. Pembakaran Sempurna Gambar 2. Proses pembakaran tidak sempurna Untuk meningkatkan daya pada motor dapat dilakukan dengan meningkatkan perbandingan kompresi, tetapi semakin tinggi perbandingan kompresi suatu motor maka temperatur yang dicapai pada saat langkah kompresi juga semakin tinggi. Pada saat terjadi percikan bunga api listrik dari busi, maka terjadilah gelombang ledakan yang diawali dari titik penyalaan. Akibatnya temperatur dari bagian campuran udara-bahan bakar di luar gelombang ledakan akan meningkat lebih tinggi lagi. Hal inilah yang mengakibatkan campuran udara-bahan bakar tersebut mempunyai kecenderungan untuk terbakar dengan sendirinya. 2.2 Angka Oktan Pada umumnya angka oktan suatu bahan bakar dinyatakan dengan besar prosen volume iso-oktana dalam campuran yang terdiri dari iso-oktana (jenis bahan bakar hidrokarbon yang tak mudah berdetonasi dan dinyatakan sebagai bahan bakar dengan angka oktan-100 dan normal-heptana (bahan bakar hidrokarbon 26

Oksigenat Methyl Tertiary Buthyl Ether Sebagai Aditif Octane Booster Bahan Bakar Motor Bensin (Philip Kristanto rantai lurus yang mudah berdetonasi dan dinyatakan sebagai bahan bakar dengan angka oktan-0 yang memiliki kecenderungan berdetonasi sama dengan bahan bakar tersebut. Angka oktan yang merupakan salah satu faktor utama untuk mengetahui kualitas bensin adalah nilai kertahanan suatu bahan bakar bersama dengan udara terhadap terjadinya penyalaan disaat langkah kompresi atau disebut dengan kemampuan anti-ketukan. Artinya, walaupun pada saat langkah kompresi temperatur campuran udara-bahan bakar meningkat, tetapi energi yang dihasilkan tidak cukup untuk membakar campuran tersebut. Proses pembakaran baru terjadi setelah busi menghasilkan loncatan bunga api listrik pada saat torak mendekati titik mati atas pada akhir langkah kompresi. Karena itu angka oktan juga berkaitan dengan perbandingan kompresi dari motor. Semakin tinggi angka oktan suatu bahan bakar, semakin tinggi pula ketahanannya terhadap penyalaan dini pada saat kompresi tinggi, tanpa dipengaruhi oleh penyalaan dari busi. Berhubungan dengan angka oktan ini maka ASTM (American Society for Testing and Materials menetapkan suatu standar penilaian anti ketukan dari suatu bahan bakar bensin. dengan standarisasi bahan bakar ini diharapkan industri otomotif dapat memproduksi motor yang dapat beroperasi tanpa terjadi ketukan dengan menggunakan kualitas bahan bakar yang sesuai. Untuk pengukuran angka oktan digunakan motor khusus yang bersilinder tunggal dimana perbandingan kompresinya dappat diubahubah, yang disebut dengan motor CFR (Cooperative Fuel Research. Ada dua metode dasar yang umum digunakan, yaitu research method menggunakan motor CFR F-1 yang hasilnya disebut dengan Research Octane Number (RON dan motor method menggunakan motor CFR F-2 dimana hasilnya disebut dengan Motor Octane Number (MON. Research method menghasilkan gejala ketukan lebih rendah dibandingkan motor research. 2.3 Volatilitas Bahan Bakar Sifat volatilitas (kemampuan menguap dari bahan bakar merupakan faktor utama yang harus dipenuhi berdasarkan spesifikasi bahan bakar yang ditetapkan. Faktor ini dibutuhkan agar untuk terbakar dengan normal di dalam ruang bakar, bahan bakar harus dapat menguap dengan teratur sesuai dengan laju yang dikehendaki, dan harus membuat campuran yang homogin dan terdistribusi merata dalam silinder ruang bakar. Untuk menentukan sifat volatilitas bahan bakar diperlukan uji destilasi ASTM berdasarkan metode ASTM D-86 terutama untuk kondisi start dingin (cold start, kondisi pemanasan (warm up dan distribusi campuran dalam silinder. Start dingin Kondisi start dingin dapat diukur melalui temperatur hasil uji destilasi 10% dan nilai Raid Vapour Pressure (RVP. Semakin rendah temperatur uji destilasi 10% atau semakin tinggi nilai RVP, maka akan semakin mudah motor dihidupkan dalam kedaaan dingin. Hal ini disebabkan karena dalam keadaan dingin jika bahan bakar yang menguap tidak cukup banyak, maka motor akan sulit dihidupkan atau membutuhkan waktu yang lama untuk melakukan pemanasan agar mencapai suhu operasi yang normal. Maka dari itu untuk kemudahan menghidupkan motor dalam keadaan dingin dibutuhkan bahan bakar yang menguap cukup banyak, tetapi dibatasi untuk destilasi 10% temperatur penguapannya maksimum 74 C dan nilai RVP maksimum 9 Psi. karena jika melampaui batasan tersebut akan terjadi sumbatan uap (vapour lock. Sumbatan uap ini dapat terjadi karena uap yang dihasilkan cukup banyak, sehingga pada saat motor menjadi panas, bahan bakar di dalam pompa salluran bahan bakar akan mendidih, akibatnya akan timbul gelembung-gelembung udara yang akan mengganggu aliran bahan bakar yang akan menuju ke ruang bakar. Pemanasan (warm up Sejak motor dihidupkan pada saat dingin sampai dapat diooperasikan dengan tenaga penuh membutuhkan waktu yang disebut dengan periode pemanasan (warm up. Standar untuk pemanasan ditentukan dari temperatur hasil uji destilasi 0% yang dibatasi antara 80 C sampai 12 C. Jika temperatur uji destilasi melampaui batasan tersebut maka bahan bakar cenderung mengandung fraksi ringan (bagian dari minyak bumi yang memiliki titik didih terendah dari bagian minyak bumi lainnya, sehingga pada pemakaian terjadi pengendapan es dalam karburator (icing carburator. Distribusi campuran dalam silinder Di dalam karburator, bahan bakar dicampur dengan udara menurut perbandingan tertentu. Dari sini campuran udara-bahan bakar akan masuk ke dalam ruang bakar. Dalam keadaan 27

JURNAL TEKNIK MESIN Vol. 4, No. 1, April 2002: 2 31 normal campuran udara-bahan bakar akan masuk secara merata dan sama banyaknya. Untuk menentukan distribusi campuran udarabahan bakar di dalam silinder dilakukan uji destilasi 90%. Semakin rendah temperatur hasil uji destilasi 90%, semakin baik distribusi campuran di dalam silinder, demikian pula sebaliknya. 2.4 Aditif Octane Booster Aditif octane Booster merupakan komponen dari senyawa yang digunakan untuk meningkatkan angka oktan dari bahan bakar dan sekaligus sebagai komponen anti-ketuk. Komponen yang digunakan sebagai bahan anti ketuk pada saat ini adalah Tetra Ethyl Lead (TEL, Pb ( C 2 H 4. Berdasarkan hasil riset senyawa TEL ini pertama-tama terurai pada temperatur sekitar 100 C dengan bantuan panas dari ruang bakar, melalui reaksi penguraian sebagai berikut: ( C2 H 4 Pb( C2H 3 C2H Pb + ( C2H 3 + Pb( C2 H 4 Pb2 ( C2H 6 C2H Pb + Pb 2 ( C 2 H 6 Pb ( C 2 H 4 + Pb( C 2 H 2 Pb ( C2 H 2 Pb + C2 H10 Reaksi radikal etil dengan TEL dapat menghasilkan alkana, alkena, hidrogen dan juga radikal Pb-trietil. Yang bertindak sebagai bahan anti ketuk adalah Pb-oksida, dimana Pboksida ini berada dalam bentuk radikal-radikal yang tersebar dalam ruang bakar dan sebagian akan melekat pada dinding silinder membentuk endapan, dan sebagian lagi akan keluar ke atmosfir bersama-sama dengan gas sisa pembakaran. Pb-oksida yang dibebaskan ke atmosfir inilah yang sangat berbahaya bagi lingkungan, sehingga perlu dicarikan bahan substitusi untuk menggantikan TEL sebagai aditif octane booster. 2. Methyl Tertiary Buthyl Ether ( Methhyl Tertiary Buthyl Ether ( merupakan salah satu senyawa organik yang tidak mengandung logam dan mampu bercampur secara memuaskan dengan hidrokarbon. pada saat ini sedang giatgiatnya dikembangkan pemakaiannya sebagai bahan utama untuk meningkatkan angka oktan dari bensin menggantikan TEL. Senyawa ini terdiri dari gugusan Methyl dan Buthyl tertier dengan rumus molekul CH 3OC 4H atau C H O 9 12, sedangkan rumus bangunnya adalah: Kisaran angka oktan adalah 116 118 RON, berat molekul 88 dan titik didihnya C, kalor pembakaran 8.400 kkal/kg. Karena kisaran angka oktan yang tinggi, maka dapat digunakan sebagai aditif octane booster untuk meningkatkan angka oktan bensin dasar. Disamping itu karena titik didihnya yang rendah, maka bersifat mudah menguap. Karena sifatnya yang mudah menguap maka ada batasan konsentrasi volume tertentu jika senyawa tersebut digunakan untuk meningkatkan angka oktan bensin dasar. Pembatasan ini perlu dilakukan untuk menghindari penguapan yang berlebihan dari bahan bakar secara siasia, disamping itu juga untuk menghindari terjadinya vapour lock sehingga menyumbat saluran udara masuk karburator. 3.1 Parameter Uji 3. Pengujian Parameter-parameter yang diuji: Angka oktan Volatillitas bahan bakar Tekanan uap Reid Performansi motor Sampel yang diuji: Bensin murni tanpa aditif octane booster (TEL Bensin murni + 10% Bensin murni + 1% Bensin murni + 20% Bensin murni + 2% 3.2 Prosedur pengujian Uji angka oktan Angka oktan bahan bakar diuji dengan mesin Cooperative Fuel Research (CFR dengan skema peralatan ditunjukkan dalam Gambar 3. Gambar 3. Skema Pengujian Angka Oktan 28

Oksigenat Methyl Tertiary Buthyl Ether Sebagai Aditif Octane Booster Bahan Bakar Motor Bensin (Philip Kristanto 3.3 Hasil Pengujian Dari hasil pengujian diperoleh data-data sebagai berikut: Angka oktan Tabel 1. Hasil Uji Angka Oktan Konsentrasi Angka oktan 0% 8.29 % 87.30 10% 88.70 1% 89.80 20% 92.20 2% 93.70 Uji Destilasi Tabel 2. Hasil uji destilasi Penguapan Temperatur ( C (% murni % 10 % 1 % 20 % 2 % 10 9 6 6 4 3 20 68 66 6 64 63 63 30 76 7 76 74 73 73 40 8 84 84 82 82 81 0 98 94 93 93 92 92 60 108 104 103 103 102 101 70 118 11 113 112 112 110 80 129 126 124 122 120 119 90 10 147 147 146 144 143 Uji Tekanan Uap Reid Tabel 3. Hasil Uji Tekanan Uap Reid Konsentrasi (% Tekanan Uap Reid (psi 0. 6.9 10 7.1 1 7.3 20 7. 2 7.7 Uji Performansi Motor Tabel 4. Hasil Uji Performansi Motor Untuk 0% (Pengapian sebelum TMA. Putaran 1000 120 100 170 2000 220 200 270 3000 (RPM Beban (N 21.3 31.1 3.3 37. 38.2 34.9 32.2 27. 20.2 Daya (Hp 2.86.21 7.10 8.80 10.2 10.3 10.79 10.13 8.14 Torsi (N-m 20.3 29.7 33.67 3.82 36.48 33.34 30.72 26.22 19.32 Tabel. Hasil Uji Performansi Motor Untuk % (Pengapian sebelum TMA Putaran 1000 120 100 170 2000 220 200 270 3000 (Rpm Beban (N 28.1 38.3 41.3 43.8 41.8 38.9 38 31.4 26.3 Daya (Hp 3.76 6.42 8.30 10.28 11.2 11.73 12.72 11.7 10.8 Torsi (N-m 26.83 36.7 39.42 41.82 39.87 37.12 36.23 29.9 2.12 Tabel 6. Hasil Uji Performansi Motor untuk 10% (Pengapian 11 sebelum TMA Putaran 1000 120 100 170 2000 220 200 270 3000 (Rpm Beban (N 37.4 47.8 1.2 2.1 48.8 46.3 44.2 38.4 28.7 Daya (Hp.02 8.02 10.29 12.22 13.09 13.98 14.81 14.17 11. Torsi (N-m 3.7 4.6 48.84 49.72 46.62 44.23 42.19 36.7 27.42 Tabel 7. Hasil Uji Performansi Motor untuk 1% (Pengapian 14 Putaran 1000 120 100 170 2000 220 200 270 3000 (Rpm Beban (N 0.7 7.2 60.8 9 4.8 1 49.2 41.8 31. Daya (Hp 6.79 9.9 12.23 13.84 14.69 1.39 16.48 1.4 12.66 Torsi (N-m 48.37 4.63 8.08 6.32 2.29 48.72 46.93 39.88 30.06 Tabel 8. Hasil Uji Performansi Motor untuk 20% (Pengapian 1 sebelum TMA. Putaran 1000 120 100 170 2000 220 200 270 3000 (Rpm Beban (N 60.6 66.1 68.9 66. 62.7 9.3.6 48 37.3 Daya (Hp 8.12 11.08 13.8 1.61 16.82 17.89 18.63 17.69 14.98 Torsi (N-m 7.84 63.13 6.77 63.1 9.88 6.62 3.0 4.82 3.7 Tabel 9. Hasil Uji Performansi Motor untuk 2% (Pengapian 17 sebelum TMA. Putaran 1000 120 100 170 2000 220 200 270 3000 (Rpm Beban (N 7 62. 64. 62.3 7.2 3 0.4 44.8 32.8 Daya (Hp 7.64 10.47 12.98 14.61 1.3 1.98 16.88 16.2 13.21 Torsi (N-m 4.42 9.67 61.64 9.48 4.64 0.9 48.07 42.79 31.37 4. Analisa Data 4.1 Pengujian angka oktan Pada grafik 1 ditunjukkan bahwa semakin besar konsentrasi yang ditambahkan pada bensin tanpa aditif octane booster (angka oktan hasil pengukuran 8.29 RON semakin meningkat angka oktan dari senyawa campuran tersebut. Dengan demikian senyawa oksigenat Methyl Tertiary Buthyl Ether memiliki kemampuan untuk meningkatkan angka oktan dari bahan bakar bensin dan sekaligus dapat berfungsi sebagai aditif octane booster. Dari grafik 1 tersebut terlihat bahwa untuk setiap penambahan konsentrasi sebesar % volume, rata rata terjadi penambahan angka oktan sebesar 1.632 y. Tentunya = 1.632 x angka oktan tersebut harus disesuaikan dengan perbandingan kompresi dari motor bensin yang menggunakan bahan bakar tersebut. Untuk menghindari terjadinya keterlambatan penyalaan karena penggunaan bahan bakar dengan angka oktan yang tinggi, maka perlu memaju- 29

JURNAL TEKNIK MESIN Vol. 4, No. 1, April 2002: 2 31 kan sudut pengapian, tetapi bukan berarti tanpa batas. Jika sudut pengapian terus dimajukan maka kerja negatif yang terjadi pada motor akan semakin besar, dan pada akhirnya justru akan menurunkan performansi motor. Hasil pengukuran unjuk kerja motor bensin DAIHATSU, type: CB-23, perbandingan kompresi 9. dengan menggunakan dinamometer didapatkan bahwa kurva daya tertinggi dihasilkan pada konsentrasi 20% dengan mengatur sudut pengapian 1 sebelum TMA. Jika konsentrasi ditambah menjadi 2%, maka sudut pengapian dimajukan menjadi 17 sebelum TMA, tetapi justru daya motor yang dihasilkan lebih rendah dibandingkan konsentrasi 20%. Hal ini disebabkan perbandingan kompresi pada motor kurang tinggi, akibat kondisi ruang bakar yang tidak memungkinkan untuk penggunaan bahan bakar dengan konsentrasi 2%. Angka oktan 96 94 92 90 88 86 84 82 80 y = 1.629x + 83.713 0% % 10% 1% 20% 2% Penambahan pemanasan berdasarkan dihasilkan temperatur penguapan terendah terjadi pada konsentrasi 2 %, yaitu sebesar 92 C. Nilai ini masih berada pada kisaran suhu untuk kondisi pemanasan yaitu antara 88 C - 12 C. Pada uji destilasi 90% untuk menentukan distribusi campuran udara-bahan bakar di dalam silinder, didapatkan hasil konsentrasi yang sama, yaitu pada konsentrasi 2%, dengan temperatur penguapan yaitu 143 C. Karena semakin rendah temperatur hasil uji destilasi 90%, semakin baik distribusi campuran udara-bahan bakar di dalam silinder, maka konsentrasi 2 % menghasilkan distribusi campuran yang terbaik diantara kelima sampel yang lain. Temperatur (der. C 160 140 120 100 80 60 40 20 0 10% 20% 30% 40% Penguapan 0% 60% 70% 80% 90% 0 % % 10 % 1 % 20 % 2 % Grafik 1. Angka Oktan Sebagai Fungsi Prosentase Penambahan 4.2 Uji Destilasi Pada grafik 2 ditunjukkan kurva yang menyatakan hubungan antara temperatur penguapan dan prosentase penguapan untuk 6 sampel uji, yaitu bensin tanpa, bensin dengan %, bensin dengan 10%, bensin dengan 1 % bensin dengan 20% dan bensin dengan 2%. Nampak bahwa semakin besar konsentrasi yang digunakan semakin kecil temperatur penguapannya. Hal ini menyatakan bahwa dengan penambahan konsentrasi akan mempermudah proses penguapan bahan bakar tersebut. Untuk kondisi start dingin dengan penguapan 10% volume (uji destilasi 10%, temperatur penguapan terendah terdapat pada konsentrasi 2%, yaitu 3 C (lebih kecil dari 74 C. Pada kondisi ini fraksi ringan yang terbentuk paling banyak dibandingkan sampel yang lain, dan keadaan ini memudahkan motor dihidupkan dalam kondisi dingin. Demikian pula pada uji destilasi 0% untuk kondisi Grafik 2. Temperatur Fungsi % Penguapan 4.3 Uji Tekanan Uap Reid Dari hasil pengujian tekanan uap Reid, didapatkan bahwa pada berbagai konsentrasi yang telah dilakukan pengujian, tekanan uap Reid untuk masing-masing sampel berada dibawah 9 Psi. Jadi semua sampel memenuhi kriteria uji. 4.4 Uji Performansi Motor Pada grafik 3, nampak bahwa daya optimum dihasilkan oleh motor yang menggunakan bensin dengan konsentrasi 20% dimana angka oktannya 92.2 RON daya maksimum terjadi pada putaran 200 Rpm. Jika konsentrasi ditambah sehingga menjadi 2%, walaupun angka oktan bahan bakarnya meningkat menjadi 93.7 RON dan sifat volatilitasnya semakin baik, tetapi justru daya optimum dari motor cenderung berada dibawah daya optimum motor yang menggunakan bensin dengan konsentrasi 20%. Hal ini diakibatkan karena angka oktan bensin dengan konsentrasi 2% terlalu tinggi dibandingkan dengan 30

Oksigenat Methyl Tertiary Buthyl Ether Sebagai Aditif Octane Booster Bahan Bakar Motor Bensin (Philip Kristanto perbandingan kompresi pada motor uji (9., disamping itu kondisi ruang bakar, saluran masuk bahan bakar + udara (intake manifold yang buruk serta ditunjang oleh terlalu majunya sudut pengapian (17 sebelum TMA. Daya (Hp 20 18 16 14 12 10 8 6 4 2 0 1000 Rpm 120 Rpm 100 Rpm 170 Rpm 2000 Rpm 220 Rpm 200 Rpm 270 Rpm 3000 Rpm Putaran Grafik 3. Daya Fungsi Putaran 0 % % 10 % 1 % 20 % 2 % Pada grafik 4, ditunjukkan hubungan antara torsi sebagai fungsi dari putaran motor. Torsi optimum juga dihasilkan dalam penggunaan bensin + 20% konsentrasi, dimana torsi maksimumnya terjadi pada putaran 100 Rpm. Nampak bahwa dengan penambahan konsentrasi pada bahan bakar semakin meningkatkan torsi yang dihasilkan oleh motor. Khusus pada konsentrasi 2% terjadi penurunan torsi keluaran dari motor dibandingkan pada konsentrasi 20%. Hal ini terutama diakibatkan karena terlalu majunya sudut pengapian untuk mengimbangi perbandingan kompresi motor. Torsi (N-m 70 60 0 40 30 20 10 0 1000 Rpm 120 Rpm 100 Rpm 170 Rpm 2000 Rpm 220 Rpm 200 Rpm 270 Rpm 3000 Rpm Putaran 0 % % 10 % 1 % 20 % 2 % Grafik 4. Torsi Sebagai Fungsi Putaran Motor. Kesimpulan Beberapa kesimpulan yang dapat diambil dari percobaan yang telah dilakukan adalah sebagai berikut: Karena sifat volatilitas dan tekanan uap Reid yang dimiliki oleh senyawa Methyl Tertiary Buthyl Ether, maka senyawa tersebut memiliki kemampuan untuk berfungsi sebagai additivive otane booster guna meningkatkan angka oktan bahan bakar. Pada uji destilasi temperatur penguapan terendah untuk kondisi 10% penguapan (kondisi start dingin, 0% penguapan (kondisi warm-up dan 90% penguapan (kondisi distribusi campuran udara bahanbakar di dalam silinder, maka campuran bensin + 2% (angka oktan 93.7 RON sebagai campuran optimal. Tetapi hal ini tentunya harus disesuaikan dengan motor yang memiliki perbandingan kompresi tinggi. Dari hasil uji performansi pada motor bakar, daya dan torsi optimal dihasilkan pada bensin + 20% konsentrasi. Jika konsentrasi diperbesar menjadi 2% cenderung performansi semakin menurun dibandingkan dengan konsentrasi 20%. Daftar Pustaka 1. Edward F. Obert, Internal Combustion Engines and Air Polution. Harper & Row, Publisher, 1973. 2. Heywood, John B., Internal Combustion Engines. McGraw Hill, 1988. 3. Michael., Pengaruh Perubahan Konsentrasi Methyl tertiary Buthyl Ether Pada Gasolin Terhadap Unjuk Kerja Motor Bensin. Skeipsi: Jurusan Teknik Mesin U K Petra, 2000. 4. Sen S.P., Internal Combustion Engines Theory and Practise. Khanna Publisher Delhi, 1990.. Sugiarto., Pengaruh Napthalene dan Terhadap Sifat Volatilitas dan Angka Oktan. Skripsi: Jurusan Teknik Mesin U K Petra. 2000 6. Maleev V.L., Internal Combustion Engines. McGraw Hill 1989 31