Analisis Dispersi Emisi Hidrokarbon pada Onshore Receiving Facilities menggunakan ALOHA 5.4.5

dokumen-dokumen yang mirip
JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print) 1

BAB I PENDAHULUAN BAB I PENDAHULUAN

BAB 1 PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN. campuran beberapa gas yang dilepaskan ke atmospir yang berasal dari

commit to user BAB I PENDAHULUAN

GAS ALAM. MAKALAH UNTUK MEMENUHI TUGAS MATAKULIAH Kimia Dalam Kehidupan Sehari_Hari Yang dibina oleh Bapak Muntholib S.Pd., M.Si.

BAB IV DATA SISTEM PIPELINE DAERAH PORONG

1.1. Latar Belakang BAB I PENDAHULUAN

TUGAS AKHIR EVALUASI EMERGENCY RESPONSE PLAN DAN ALAT PEMADAM API RINGAN PADA PT. PHILIPS INDONESIA ADHITYA NUGROHO

Analisis Perbandingan Emisi Gas Buang Mesin Diesel Menggunakan Bahan Bakar Solar dan CNG Berbasis Pada Simulasi

LIMBAH. Pengertian Baku Mutu Lingkungan Contoh Baku Mutu Pengelompokkan Limbah Berdasarkan: 1. Jenis Senyawa 2. Wujud 3. Sumber 4.

BAB II LANDASAN TEORI

BAB I PENDAHULUAN. utama pencemaran udara di daerah perkotaan. Kendaraan bermotor merupakan

USAHA DAN/ATAU KEGIATAN BERISIKO TINGGI

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB III PROSES PEMBAKARAN

BAB 1 : PENDAHULUAN. beberapa tahun terakhir ini. Ekonomi kota yang tumbuh ditandai dengan laju urbanisasi yang

BAB IV HASIL DAN PEMBAHASAN

BEBERAPA ISTILAH YANG DIGUNAKAN DALAM PENGENDALIAN PENCEMARAN UDARA

BAB I PENDAHULUAN. Pencemaran udara dewasa ini semakin memprihatinkan. Hal ini terlihat

Makalah Baku Mutu Lingkungan

Kondisi Abnormal pada Proses Produksi Migas

PENGARUH PEMANASAN BAHAN BAKAR PADA RADIATOR TERHADAP KONSUMSI BAHAN BAKAR DAN KADAR EMISI GAS BUANG DAIHATSU HIJET Suriansyah Sabaruddin 1)

SKENARIO KONSEKUENSI ANALISIS PENGANGKUTAN LNG SEMARANG-YOGYAKARTA DENGAN SIMULASI ALOHA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Gorontalo dibagi menjadi 9 kecamatan, terdiri dari 50 kelurahan. Secara

BAB I PENDAHULUAN. 1.1 Latar Belakang

IDENTIFIKASI SUMBER EMISI DAN PERHITUNGAN BEBAN EMISI

BAB I PENDAHULUAN. orang berhak hidup sejahtera lahir dan batin, bertempat tinggal dan mendapatkan

BAB I PENDAHULUAN. I.1 Latar Belakang

SKENARIO KONSEKUENSI ANALISIS PENGANGKUTAN LNG SEMARANG-YOGYAKARTA DENGAN SIMULASI ALOHA

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB 1 : PENDAHULUAN. kendaraan bermotor. Kendaraan bermotor mengeluarkan zat-zat berbahaya yang

PENCEMARAN UDARA AKIBAT KENDARAAN BERMOTOR DI JALAN P. H. H. MUSTOFA, BANDUNG. Grace Wibisana NRP : NIRM :

PENENTUAN AIR FUEL RATIO (AFR) AKTUAL PEMBAKARAN LPG PADA CELAH SEMPIT TIPE HORISONTALAris

Penilaian Risiko Menggunakan Metode SWEHI (Safety Weighted Hazard Index) Pada Unit Gas Station PT. Indonesia Power UP Perak Grati

BAB I PENDAHULUAN. sehingga kontak terhadap bahaya menjadi lebih dekat. kegagalan dalam transportasi dan penyimpanan diantaranya kecelakaan truk yang

KEPUTUSAN MENTERI NEGARA LINGKUNGAN HIDUP NOMOR: 129 TAHUN 2003 TENTANG BAKU MUTU EMISI USAHA DAN ATAU KEGIATAN MINYAK DAN GAS BUMI

BAB I PENDAHULUAN. 1.1 Latar Belakang

PROSES PEMBAKARAN 1. Soalan objektif (30 markah) 1. Pembakaran hidrokarbon bergantung kepada 3 keperluan asas iatu

Ika Hertin Atmaja. Departemen Keselamatan & Kesehatan Kerja, Fakultas Kesehatan Masyarakat Universitas Indonesia, Depok 16424, Indonesia

LAPORAN SKRIPSI ANALISA DISTRIBUSI TEMPERATUR PADA CAMPURAN GAS CH 4 -CO 2 DIDALAM DOUBLE PIPE HEAT EXCHANGER DENGAN METODE CONTROLLED FREEZE OUT-AREA

BAB I PENDAHULUAN. terjadi di kota-kota besar dan juga daerah padat industri yang menghasilkan

BAB III METODOLOGI DAN PENGOLAHAN DATA

BAB I PENDAHULUAN. bidang kesehatan. Udara sebagai komponen lingkungan yang penting dalam

BAB I PENDAHULUAN. dunia. Hal ini disebabkan karena manusia memerlukan daya dukung unsur unsur

BAB 3 METODOLOGI PENGUJIAN

Frekuensi yang digunakan berkisar antara 10 hingga 500 khz, dan elektrode dikontakkan dengan benda kerja sehingga dihasilkan sambungan la

Prosiding Seminar Nasional Manajemen Teknologi XVII Program Studi MMT-ITS, Surabaya 2 Februari 2013

BAB I PENDAHULUAN 1.1 Latar Belakang

CONTOH SOAL UJIAN SARINGAN MASUK (USM) IPA TERPADU Institut Teknologi Del (IT Del) Contoh Soal USM IT Del 1

(Studi Kasus PT. Samator Gas Gresik) Teknik Keselamatan dan Kesehatan Kerja Politeknik Perkapalan Negeri Surabaya. Oleh : Niki Nakula Nuri

ADLN - Perpustakaan Universitas Airlangga DAFTAR ISI

Unsur gas yang dominan di atmosfer: Nitrogen : 78,08% Oksigen : 20,95% Argon : 0,95% Karbon dioksida : 0,034%

BAB I PENDAHULUAN Latar Belakang. Perubahan lingkungan udara pada umumnya disebabkan oleh pencemaran,

RISET KECELAKAAN KEHILANGAN AIR PENDINGIN: KARAKTERISTIK TERMOHIDRAULIK

I. PENDAHULUAN. Industri kelapa sawit merupakan salah satu industri penghasil devisa non migas di

KESELAMATAN DAN KESEHATAN KERJA

4.1 INDENTIFIKASI SISTEM

BAB 1 PENDAHULUAN. dari masa ke masa. Dengan demikian, setiap tenaga kerja harus dilindungi

BAB I PENDAHULUAN. Perwujudan kualitas lingkungan yang sehat merupakan bagian pokok di

PEDOMAN TEKNIS PENETAPAN BAKU MUTU UDARA AMBIEN DAERAH

AlCl₃ (Aluminium Klorida) Ishmar Balda Fauzan ( ) Widya Fiqra ( ) Yulia Endah Permata ( )

SMP kelas 9 - FISIKA BAB 4. SISTEM TATA SURYALatihan Soal 4.10

Pasal 9 ayat (3),mengatur kewajiban pengurus menyelenggarakan latihan penanggulangan kebakaran

PT. TRIDOMAIN CHEMICALS Jl. Raya Merak Km. 117 Desa Gerem Kec. Grogol Cilegon Banten 42438, INDONESIA Telp. (0254) , Fax.

PLANT 2 - GAS DEHYDRATION AND MERCURY REMOVAL

STRUKTURISASI MATERI

BAB I PENDAHULUAN. yang ada dibumi ini, hanya ada beberapa energi saja yang dapat digunakan. seperti energi surya dan energi angin.

K3 KEBAKARAN. Pelatihan AK3 Umum

SUMMARY. ANALISIS KADAR NITROGEN DIOKSIDA (NO₂) dan KARBONMONOKSIDA (CO) DI UDARA AMBIEN KOTA GORONTALO

Bab 2 Tinjauan Pustaka

Pengolahan Lumpur Tinja Pada Sludge Drying Bed IPLT Keputih Menjadi bahan Bakar Alternatif Dengan Metode Biodrying

BAB 1 : PENDAHULUAN. Akan tetapi udara yang benar-benar bersih saat ini sudah sulit diperoleh, khususnya

ANALISIS KONSENTRASI GAS HIDROGEN SULFIDA (H2S) DI UDARA AMBIEN KAWASAN LOKASI PEMBUANGAN AKHIR (LPA) SAMPAH AIR DINGIN KOTA PADANG TUGAS AKHIR

BAB 2 TI NJAUAN PUSTAKA. Gas alam sering juga disebut sebagai gas bumi atau gas rawa yaitu bahan bakar fosil

BAB I PENDAHULUAN. yang sehat, baik fisik, biologi, maupun sosial yang memungkinkan setiap orang

Gas dan Debu. Pada Tambang Bawah Tanah

LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 4 TAHUN 2014 TENTANG BATASAN DAN KONDISI OPERASI INSTALASI NUKLIR NONREAKTOR

OPTIMASI NILAI GAS ALAM INDONESIA

PT. BINA KARYA KUSUMA

Sistem Pencegahan dan. Kebakaran. Teknik Keselamatan dan Kesehatan Kerja POLITEKNIK PERKAPALAN NEGERI SURABAYA

Chrisnanda Anggradiar NRP

Gambar 1.1 Produksi plastik di dunia tahun 2012 dalam Million tones (PEMRG, 2013)

PENGARUH PEMANASAN BAHAN BAKAR DENGAN RADIATOR SEBAGAI UPAYA MENINGKATKAN KINERJA MESIN BENSIN

EVALUASI SARANA MENYELAMATKAN DIRI KEADAAN DARURAT PADA BANGUNAN GEDUNG PERKANTORAN SEBAGAI UPAYA IMPLEMENTASI SISTEM MANAJEMEN KESELAMATAN KEBAKARAN

OLEH: Nama : DAYANG NRP :

Gambar 2.6 Diagram Skematis Kromatografi Gas Dengan Detektor Konduktivitas Thermal (TCD) (Underwood A.l., 2000). BAB 3 BAHAN DAN METODE

BAB III METODE PENELITIAN

BAB I PENDAHULUAN. Lingkungan kerja merupakan tempat yang potensial mempengaruhi kesehatan pekerja.

PERATURAN MENTERI NEGARA LINGKUNGAN HIDUP NOMOR 07 TAHUN 2007 TENTANG BAKU MUTU EMISI SUMBER TIDAK BERGERAK BAGI KETEL UAP

POLUSI UDARA DI KAWASAN CEKUNGAN BANDUNG

Analisis Daya Tampung Beban Pencemaran Sungai Mangetan Kanal Kabupaten Sidoarjo dengan Metode QUAL2Kw

Analisa Risiko dan Langkah Mitigasi pada Offshore Pipeline

BAB 1 PENDAHULUAN. Indian di Amerika untuk keperluan ritual seperti memuja dewa atau roh. Pada abad

BAB I PENDAHULUAN. Kebutuhan energi akan semakin meningkat bersamaan dengan. perkembangan teknologi dan pertumbuhan penduduk. Saat ini sebagian besar

I. BAB I PENDAHULUAN

SIDANG P3 TUGAS AKHIR JURUSAN TEKNIK KELAUTAN 28 JANUARI 2010

Nama : Putri Kendaliman Wulandari NPM : Jurusan : Teknik Industri Pembimbing : Dr. Ir. Rakhma Oktavina, M.T Ratih Wulandari, S.T, M.

APA YANG SALAH? Kasus Sejarah Malapetaka Pabrik Proses EDISI KEEMPAT

Oleh: Dosen Pembimbingh: Gaguk Resbiantoro. Dr. Melania Suweni muntini

Transkripsi:

1 Analisis ispersi Emisi Hidrokarbon pada Onshore Receiving Facilities menggunakan ALOHA 5.4.5 Muhammad Radifan Putra dan Arie ipareza Syafei Jurusan Teknik Lingkungan, Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim, Surabaya 60111 Indonesia e-mail: dipareza@enviro.its.ac.id Abstrak Onshore Receiving Facilities (ORF) adalah fasilitas penerimaan dan distribusi gas alam terletak di daratan. ORF dilengkapi dengan vent tower yang berfungsi untuk melepas gas alam ke atmosfer melalui proses yang dinamakan emergency hydrocarbon release. Proses ini dinamakan emergency hydrocarbon release karena sifatnya yang darurat (untuk keselamatan) dan komposisi utama dari gas alam adalah hidrokarbon. Analisis dispersi emisi hidrokarbon yang terjadi saat emergency hydrocarbon release menjadi penting karena bahaya yang ditimbulkan oleh hidrokarbon terhadap manusia. Analisis dispersi dilakukan dengan menggunakan perangkat Areal Locations of Hazardous Atmosphere (ALOHA) 5.4.5. Hasil penelitian berupa jarak sebaran emisi terjauh yang dianggap berbahaya (rawan meledak dan beracun) yang didapat dengan membandingkan konsentrasi emisi hidrokarbon di permukaan dengan standar baku pembanding. Penelitian kali ini menggunakan tiga jenis variabel, yaitu volume emisi hidrokarbon, kecepatan angin, dan kelas kestabilan atmosfer. erdasarkan hasil analisis dispersi menggunakan ALOHA 5.4.5, jarak terjauh yang dianggap berbahaya (rawan meledak dan beracun) adalah masing - masing 1,6 km dan 2,8 km. Jarak terjauh ini terjadi pada volume emisi hidrokarbon terbesar, kecepatan angin terendah, dan kondisi atmosfer cenderung stabil. Kata Kunci ALOHA 5.4.5, emergency hydrocarbon release, emisi hidrokarbon, dan onshore receiving facilities. I. PENAHULUAN OMPONEN utama penyusun dari gas alam adalah Khidrokarbon fraksi ringan, yaitu metana (CH 4 ) dan sedikit CO 2, H 2 O, air raksa, dan H 2 S. Pada umumnya gas alam digunakan sebagai bahan penghasil energi, baik untuk perumahan ataupun industri [1]. ORF adalah faslitas penerimaan dan distribusi gas alam dari kilang penghasil gas alam yang terletak di tengah laut menuju fasiltas pembeli di daratan. ORF dilengkapi dengan vent tower yang berfungsi pada keadaan darurat untuk melakukan emergency hydrocarbon release, yaitu proses lepas nya gas alam (hidrokarbon) ke udara bebas dan biasanya dalam jumlah besar [2]. Gas hidrokarbon yang merupakan komponen utama penyusun dari gas alam ini terlepas ke udara bebas dan menyebar dengan jauh karena tekanan dan kecepatan yang tinggi [3]. Hidrokarbon dalam wujud gas memiliki sifat beracun yang lebih berbahaya dibandingkan dengan wujud padatan dan cairan. Gas hidrokarbon apabila dihirup dapat menyebabkan iritasi pada membran mukosa dan menimbulkan infeksi paru paru bila terhisap [4]. ampak lain yang ditimbulkan dari gas hidrokarbon antara lain, dapat menyebabkan penyerapan oksigen bagi tubuh berkurang karena darah yang m engikat gas hidrokarbon [5]. Selanjutnya dijelaskan pula konsentrasi hidrokarbon melebihi 10% dapat menyebabkan hilang kesadaran pada manusia. Oleh karena risiko yang ditimbulkan dari emisi hidrokarbon pada manusia saat emergency hydrocarbon release terjadi, membuat penelitian ini perlu dilakukan. Penelitian mengenai analisis dispersi emisi hidrokarbon dilakukan untuk mengetahui jarak sebaran emisi terjauh dimana konsentrasi hidrokarbon dianggap berbahaya untuk risiko rawan terbakar dan beracun. Analisis dispersi emisi hidrokarbon menggunakan perangkat ALOHA. Perangkat ini dapat digunakan untuk membuat emergency response plan pada keadaan darurat [6]. ALOHA telah digunakan dalam permodelan emisi udara dalam keadaan darurat, seperti kebocoran reaktor nuklir Fukushima [7], kecelekaan truk pengangkut klorin di Amerika Serikat [8] dan Ledakan pada sebuah pabrik hidrogen klorida di Cina [9]. Hidrokarbon yang akan dianalisis dispersinya pada penelitian kali ini adalah metana (CH 4 ). II. TINJAUAN PUSTAKA A. Komposisi Gas Alam Gas alam atau sering juga disebut gas bumi merupakan bahan bakar yang sangat sederhana. Sekitar 90% dari gas alam adalah metana (CH 4 ), yang terdiri dari satu atom karbon dan empat atom hidrogen. 10% lainnya terdiri dari etana (C 2 H 6 ), propana (C 3 H 8 ), butana (C 4 H 10 ), serta komponen pengotor seperti H 2 O, H 2 S, dan CO 2 [10]. Tabel 1 menunjukan komposisi gas alam yang ada di ORF. Tabel 1 Komposisi Gas Alam ORF Nama Komponen Persen (%) Etana 1,9 utana 1,3 Propana 2,8

2 Nama Komponen Persen (%) Metana 90,1 Pentana 0,4 Nitrogen 1 Karbon ioksida 2,3 Lain-lain 0,2. Emergency Hydrocarbon Release Emergency hydrocarbon release adalah proses yang terjadi diluar rencana dan bertujuan selain untuk mengurangi tekanan berlebih pada distribusi dari migas juga untuk mencegah agar api tidak menyebar ketika terjadi kebakaran dengan cara menjauhkan gas alam dari sumber api [11]. Pada saat emergency hydrocarbon release, gas dalam pipa distribusi akan dikosongkan untuk mencapai tekanan tertentu yang dianggap aman untuk kemudian dilakukan proses perbaikan [12]. Skema dari emergency hydrocarbon release yang ada di ORF dijelaskan pada Gambar 1.. Skenario Penelitan Skenario pada penelitian kali ini adalah hasil kombinasi dari variabel variabel penelitian yang digunakan. Skenario penelitan yang digunakan pada penelitian kali ini adalah sebagai berikut. 1) Skenario emergency hydrocarbon release normal, dimana volume emisi hidrokarbon yang diemisikan dihitung dari durasi emergency hydrocarbon relase dikalikan dengan flow rate pada ORF yang selanjutnya disebut dengan skenario 1. Persamaan 1 menunjukan volume emisi hidrokarbon skenario 1. V = flow rate ORF t % metana (1) imana: t : waktu emergency hydrocarbon release (detik) 2) Skenario emergency hydrocarbon release (worst case) dimana pada skenario ini terjadi kegagalan pada safety device valve sehingga seluruh gas yang ada di ORF dikeluarkan melalui vent tower yang selanjutnya disebut dengan skenario 2. Volume emisi hidrokarbon yang diemisikan dihitung berdasarkan volume pipa utama yang ada di ORF. Secara desain, skenario 2 tidak dimungkinkan, adanya skenario ini hanya untuk kepentingan studi. Persamaan 2 menunjukan volume emisi hidrokarbon skenario 2. Gambar 1 Skema emergency hydrocarbon release pada ORF. Pada saat terjadi emergency hydrocarbon release, safety device valve yang ada di ujung pipa utama ORF akan menutup, sehingga tidak ada suplai gas dari kilang. Gas yang ada di ORF kemudian akan dilepas melalui vent tower. III. METOE PENELITIAN A. Pengumpulan ata Pengumpulan data dilakukan dengan mengumpulkan referensi yang berhubungan dengan pokok penelitian berupa jurnal ilmiah dan penelitan terdahulu. Referensi yang digunakan adalah teori mengenai hubungan antara emergency hydrocarbon release dengan panjang,diameter dan tekanan pada pipa di ORF [13] ata sekunder yang digunakan pada penelitian kali ini adalah sebagai berikut: 1) ata meteorologi berupa temperatur udara rata-rata bulanan, kelembapan udara rata-rata bulanan, kecepatan angin rata-rata bulanan,serta arah angin dominan bulanan hasil pengukuran adan Meteorologi Klimatologi dan Geofisika setempat tahun 2015. 2) ata flow rate gas alam pada ORF, berupa metering penyerahan gas harian kepada pembeli pada bulan Januari 2016. 3) ata spesifikasi vent tower berupa tinggi, diameter, tekanan dan diameter dari pipa utama pada ORF. imana: V : volume (m 3 ) L : panjang pipa (m) : diameter pipa (m) π : 3.14 V = L X 1 4 π2 (2).1 urasi Emergency Hydrocarbon Release urasi emergency hydrocarbon release dihitung dengan menggunakan persamaan 3 sebagai berikut. t = f 2 2 d2 L P (3) imana: t : waktu emergency hydrocarbon release (menit) f : koefisien ( 0,38 min/mpa.km) : diameter dari pipa utama (m) d : diameter dari pipa vent (m) L : panjang pipa utama (km) P: perbedaan tekanan sebelum dan sesudah hydrocarbon release (MPa) C. Analisis ispersi Emisi Hidrokarbon Hasil dari analisis dispersi emisi menggunakan ALOHA 5.4.5 adalah jarak sebaran emisi yang berisiko rawan terbakar dan beracun dimana jarak tersebut didapatkan dari perbandingan konsentrasi emisi dipermukaan dengan baku mutu pembanding yang digunakan. Penentuan baku mutu yang dipakai sebagai pembanding dengan konsentrasi emisi di permukaan adalah Lower Expolosive Limit (LEL) sebesar 50000 dan 30000 ppm untuk menentukan daerah yang rawan terbakar dan paparan maksimum metana sebesar 2500 pp m

3 untuk daerah beracun. LEL dapat dikatakan sebagai titik nyala dari suatu zat, yang apabila konsentrasi dari LEL telah dicapai atau dilampui, maka dengan adanya sumber pengapian (panas,api,dll) zat tersebut dapat terbakar [14]. Konsentrasi dibawah LEL, dianggap terlalu sedikit bagi suatu zat untuk dapat terbakar dengan adanya sumber api, sebailiknya, konsentrasi diatas LEL dianggap terlalu banyak sehingga zat tidak dapat terbakar [15]. Namun p ada beberapa kasus, ada terjadi ledakan ketika konsentrasi suatu zat baru mencapai 60% LEL [16]. Sehingga pada penelitian kali ini, baku mutu pembanding yang digunakan untuk daerah rawan terbakar adalah 100% LEL dan 60% LEL. Sedangkan paparan maksimum didapatkan dari referensi [17] bahwa paparan maksimum dari gas methane adalah 5% dari LEL atau setara dengan 2500 ppm. Konsentrasi ini adalah konsentrasi metana sesaat ketika terjadi emergency hydrocarbon release. IV. ANALISIS AN PEMAHASAN A. Perhitungan urasi Emergency Hydrocarbon Release engan menggunakan (3), durasi emergency hydrocarbon release dapat diperkirakan. Nilai dari variabel perhitungan setiap skenario dapat dilihat pada Tabel 2. Tabel 2. Nilai variabel perhitungan untuk setiap skenario penelitan. (m) 0,254 0,254 d (m) 0,457 0,4572 L (km) 0,065 49,89 P (MPa) 2,41 2,41 ari hasil perhitungan, durasi emergency hydrocarbon release pada skenario 1 a dalah sebesar 0,0184 menit sedangkan skenario 2 adalah 14,1 menit.. Perhitungan Flow Rate Gas ORF Flow rate gas pada ORF adalah sebesar 78.291,2 standard ft 3 per hari (MSCF) atau setara dengan 2.216.971 standar m 3 per hari. Kondisi standar yang dijadikan acuan pada pengukuran flow rate gas adalah pada tekanan 1 ps ig dan 60 o F sedangkan kondisi aktual di ORF adalah 350 psig dan 83,6 o F, sehingga perlu dilakukan penyusuain volume dengan menggunakan persamaan 2 sebagai berikut. V A = V S X P S P A X T A T S (2) imana: V A : volume aktual (m 3 ) V S : volume standar (m 3 ) P A : tekanan aktual (psig) P S : tekanan standar (psig) T A : suhu aktual ( o F) T S : suhu standar ( o F) Sehingga didapatkan flow rate gas ORF dalam kondisi aktual adalah sebesar 8867,49 m 3 /hari atau 0,103 m 3 /detik. C. Perhitungan Volume Emisi Hidrokarbon Perhitungan volume emisi hidrokarbon diperlukan sebagai input data dari perangkat ALOHA 5.4.5 C.1 Skenario 1 Nilai dari variabel perhitungan volume emisi hidrokarbon skenario 1 dapat dilihat pada Tabel 3 Tabel 3. Nilai variabel perhitungan volume emisi hidrokarbon skenario 1. Jenis Variabel Skenario 1 flow rate ORF (m 3 /s) 0,103 t (detik) 1,1 % metana 90,1 Sehingga volume emisi hidrokarbon pada skenario 1 dengan menggunakan (1) adalah sebesar 0,102 m 3. C.2 Skenario 2 Nilai dari variabel perhitungan volume emisi hidrokarbon skenario 2 dapat dilihat pada Tabel 4 Tabel 4. Nilai variabel perhitungan volume emisi hidrokarbon skenario 2. Jenis Variabel Skenario 2 Panjang pipa (m) 49889,54 iameter pipa (m) 0,6604 t (detik) 846 Sehingga volume emisi hidrokarbon pada skenario 2 dengan menggunakan (2) adalah sebesar 15403,275 m 3, sedangkan flow rate dari emergency hydrocarbon release didapat dengan membagi dengan waktu emergency hydrocarbon release, maka didapat flow rate dari emergency hydrocarbon release adalah 18,21 m 3 /detik.. Input ata ALOHA 5.4.5 Perangkat ALOHA 5.4.5 membutuhkan beberapa input data untuk melakukan analisis dispersi emisi yang ingin diteliti. Input data tersebut dibagi menjadi tiga yaitu: 1) Input data meteorologi 2) Input data karakteristik emisi 3) Input data sumber emisi.1 Input ata Meteorologi Input data meteorologi yang digunakan pada penelitian kali ini di perlihatkan pada Tabel 5 Tabel 5. Input data meteorologi ALOHA 5.4.5 untuk setiap skenario penelitian. Kecapatan angin minimum,ratarata,maksimum (knot) 3 / 4,4 / 5 Suhu udara ( o C / o F) 28,7 / 83,6 Kelembapan udara (%) 73 Kelas kestabilan atmosfir /

4.2 Input ata Karakteristik Emisi Input data karakteristik emisi yang digunakan pada penelitian kali ini di perlihatkan pada Tabel 6 Tabel 6. Input data karakteristik emisi ALOHA 5.4.5 untuk setiap skenario penelitian. LEL (ppm) 50000 60% LEL (ppm) 30000 Paparan Maksimum (ppm) 2500 Jenis Zat Kimia.3 Input ata Sumber Emisi Metana Input data sumber emisi yang digunakan pada penelitian kali ini di perlihatkan pada Tabel 7 Tabel 7. Input data sumber emisi ALOHA 5.4.5 untuk setiap skenario penelitian. Flow rate (m 3 /s) 0,102 18,21 Tekanan (psia) 364,7 Temperatur ( o F) 83,6 Ketinggian sumber (ft) 190 E. Analisis ispersi Emisi Hidrokarbon Hasil dari analisis dispersi emisi hidrokarbon untuk skenario 1 adalah tidak terdeteksi jarak berbahaya untuk daerah rawan terbakar dan beracun yang berarti bahwa konsentrasi emisi hidrokarbon di permukaan s elalu lebih kecil dengan baku mutu pembanding yang digunakan. Hal ini disebabkan oleh volume emisi yang dikeluarkan kecil (0,102 m 3 ) dan tinggi dari cold vent yang ada pada ORF X mencapai 190 feet (59,7 m) sehingga emisi metana terdispersi dengan baik. Hasil dari analisis dispersi emisi hidrokarbon untuk skenario 2 da pat dilihat pada Tabel 8 sampai dengan Tabel 10. Tabel 10. Hasil analisis dispersi emisi hidrokarbon (2500 ppm) untuk skenario 2. 3 0,724 1,6 4,4 0,602 1,3 5 0,554 1,1 Jarak terjauh dimana konsentrasi emisi hidrokarbon berada diatas baku mutu pembanding adalah 0,498 km untuk daerah rawan terbakar dan 1,6 km untuk daerah beracun. Semua jarak terjauh terjadi pada kondisi kecepatan angin minimum (3 knot) dan kelas kestabilan atmosfir (cenderung stabil). Hal ini disebabkan ketika kecepatan angin minimal terjadi, konsentrasi dari emisi pada koordinat x,y, dan z yang sama semakin besar. Sedangkan kelas kestabilan atmosfir (cenderung stabil) memiliki tingkat reaktifitas yang rendah sehingga dispersi terjadi lebih jauh. Konsentrasi emisi hidrokarbon di permukaan tidak pernah dilampaui, sehingga tidak terdeteksi di ALOHA 5.4.5. Jarak terjauh hanya terjadi pada skenario 2 yang merupakan worst case scenario, dimana terjadi kegagalan safety device valve sehingga volume gas yang diemisikan menjadi jauh lebih besar. Pada skenario tersebut, seluruh gas yang ada pada pipa dibuang menuju ORF terdekat. Hasil simulasi ALOHA 5.4.5 menunjukan bahwa volume gas yang dapat dikeluarkan melalui ven tower adalah maksimal 5% dari volume pipa supaya emergency hydrocarbon release tidak berbahaya. Gambar 2 menggambarkan visualisasi dispersi emisi untuk daerah rawan terbakar sedangkan Gambar 3 menggambarkan visualisasi dispersi emisi untuk daerah beracun. Tabel 8. Hasil analisis dispersi emisi hidrokarbon (50000 ppm) untuk skenario 2. 3 - - 4,4 - - 5 - - Tabel 9. Hasil analisis dispersi emisi hidrokarbon (30000 ppm) untuk skenario 2. 3 0,273 0,498 4,4-0,191 5 - - Gambar 2 Visualisasi dispersi emisi hidrokarbon untuk daerah rawan terbakar.

5 Gambar 3 Visualisasi dispersi emisi hidrokarbon untuk daerah beracun. [8] S. Hanna, dkk. Comparison of six widely used dense gas dispersion models for recent chlorine accidents in Process Safety Progress Vol. 27 no. 3 (2008) 248-259. [9] W. Shuang, and W. Zhi-rong Simulation analysis on the accident of hydrogen chloride with the simulation software ALOHA in Journal of Fire Science and Technology Vol. 08 (2010) [10] M. Nasution, Penentuan kadar metana pada gas menggunakan kromatografi gas in Jurnal Akademik Universitas Indonesia (2011) [11] J. Shapiro, Fire code requirements for venting of flammable gasses in National Fire Protection. (2011) [12] K. Ji Min, Gas venting time and gas venting amount in natural gas pipeline in Journal of Petrochemical Industry Application (2005) [13] Y. Xiong, Research of emergency venting time in natural gas pipeline accidents with SPS in Journal of Safety Science and Technology (2014) [14]. P. Nolan, Handbook of Fire and Explosion Protection Engineering Principles. San iego, CA: Elsevier (2014) [15]. Martel, Chemical Risk Analysis A Practical Handbook. France: Penton Press (2004) [16] NOAA, ALOHA Technical ocumentation. Seattle: Office of Response and Restoration (2013) [17] Airgas, Methane Gas Material Safety ata Sheet. Avaliable: http://www.pge.com/includes/docs/pdfs/shared/environment/pge/cleanai r/methane1033.pdf V. KESIMPULAN/RINGKASAN Kesimpulan dari penelitian kali ini adalah: 1) Volume emisi yang diemisikan pada skenario 1 a dalah sebesar 0,102 m 3 dan 15403,275 m 3 untuk skenario 2. Volume emisi terbesar dihasilkan pada saat terjadi kegagalan safety device valve. Meskipun begitu, secara desain skenario ini tidak dimungkinkan dan adanya skenario ini hanya untuk keperluan studi. 2) Jarak terjauh yang dianggap berbahaya untuk daerah rawan terbakar adalah 0,498 km dan untuk daerah beracun adalah 1,6 km. Jarak terjauh terjadi pada kondisi kecepatan angin minimum dan kelas kestabilan (cenderung stabil). UCAPAN TERIMA KASIH Penulis mengucapkan terimakasih kepada apak Arie ipareza Syafei atas bimbingan yang telah diberikan kepada saya selama proses penelitian dan penyusunan jurnal ini. Terimakasih juga penulis ucapkan untuk pihak-pihak yang telah membantu mengumpulkan data-data yang diperlukan untuk penelitan kali ini. AFTAR PUSTAKA [1] V. Chandra, Fundamentals of Natural Gas: An International Perspective. Oklahoma: Penwell ooks (2006) [2] S. Mokhatab, Handbook of Natural Gas Transmission and Processing. Oxford: Elsevier (2015) [3] F. Khan, Modelling and simulation of heavy gas dispersion on the basis of modification in plume path teory in Journal of Hazardous Material (2000) [4] Sugiarti Gas pencemar udara dan pengaruhnya bagi kesehatan manusia dalam Jurnal Chemica Vol, 10 nomor 1 (2009) 50-58. [5] T. Zongchao, Air Pollution and Greenhouse Gasses. Singapore: Springer (2014) [6] EPA, Air ispersion Modelling Guidance. Washington.C: EPA Publication. [7] A. Leelossy, R. Meszaros and I. Lagzi Short and long term dispersion patterns of radionuclides in the atmosphere around Fukushima Nuclear Power Plant, in Journal of Environmental Radioactivity vol 102 (2011) 1117-1121.