Gambar 7 Skema interaksi proton dengan struktur kaolin.

dokumen-dokumen yang mirip
HASIL DAN PEMBAHASAN. Adsorpsi Zat Warna

HASIL DAN PEMBAHASAN. nm. Setelah itu, dihitung nilai efisiensi adsorpsi dan kapasitas adsorpsinya.

HASIL DAN PEMBAHASAN. Preparasi Adsorben

HASIL DAN PEMBAHASAN. Skema interaksi proton dengan struktur kaolin (Dudkin et al. 2004).

HASIL DAN PEMBAHASAN y = x R 2 = Absorban

IV. HASIL PENELITIAN DAN PEMBAHASAN

4 Hasil dan Pembahasan

Perlakuan awal kaolin dan limbah padat tapioka. Pembuatan adsorben campuran kaolinlimbah KMK pada NDS dan HDTMA-Br

HASIL DAN PEMBAHASAN Hasil analisis proses preparasi, aktivasi dan modifikasi terhadap zeolit

HASIL DAN PEMBAHASAN. kedua, dan 14 jam untuk Erlenmeyer ketiga. Setelah itu larutan disaring kembali, dan filtrat dianalisis kadar kromium(vi)-nya.

METODE. Penentuan kapasitas adsorpsi dan isoterm adsorpsi zat warna

Gambar 3.1 Diagram Alir Penelitian Secara Keseluruhan

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan uji kapasitas adsorben kitosan-bentonit terhadap

ADSORPSI ASAM LEMAK BEBAS MENGGUNAKAN ADSORBEN BERBASIS LIMBAH PADAT SAGU SHIDIQ PATRIA KURNIAWAN

BAB II TINJAUAN PUSTAKA. dan Ca-Bentonit. Na-bentonit memiliki kandungan Na +

PENURUNAN KADAR PHENOL DENGAN MEMANFAATKAN BAGASSE FLY ASH DAN CHITIN SEBAGAI ADSORBEN

BAB I PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang

LAPORAN PRAKTIKUM KIMIA FISIKA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. 1. Panjang Gelombang Maksimum (λ maks) Larutan Direct Red Teknis

LAMPIRAN I. LANGKAH KERJA PENELITIAN ADSORPSI Cu (II)

BABrV HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN. limbah organik dengan proses anaerobic digestion. Proses anaerobic digestion

LAMPIRAN A DATA PERCOBAAN

LAMPIRAN 1 DATA HASIL PERCOBAAN

BAB IV HASIL DAN PEMBAHASAN

*ÄÂ ¾½ Á!" ÄÂ Â. Okki Novian / Michael Wongso / Jindrayani Nyoo /

HASIL DAN PEMBAHASAN. Lanjutan Nilai parameter. Baku mutu. sebelum perlakuan

BAB III METODE PENELITIAN. Matematika dan Ilmu Pengetahuan Alam Universitas Udayana. Untuk sampel

Disusun Oleh : Shellyta Ratnafuri M BAB I PENDAHULUAN. A. Latar Belakang Masalah

θ HASIL DAN PEMBAHASAN. oksida besi yang terkomposit pada struktur karbon aktif.

SINTESIS KARBON AKTIF DARI LIMBAH KULIT PISANG KEPOK (Musa Paradisiaca) MENGGUNAKAN AKTIVATOR NaOH DAN APLIKASINYA SEBAGAI ADSORBEN MALACHITE GREEN

HASIL DAN PEMBAHASAN. Uji Fotodegradasi Senyawa Biru Metilena

BAB V HASIL DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN ANALISIS DATA

Lampiran 1 Pembuatan Larutan Methylene Blue

BAB I PENDAHULUAN. A. Latar Belakang Masalah

TINJAUAN PUSTAKA Kadmium (Cd) Stuktur Kimia Zeolit

HASIL DAN PEMBAHASAN

BAB III METODE PENELITIAN

BAB II LANDASAN TEORI. (Balai Penelitian dan Pengembangan Industri, 1984). 3. Arang gula (sugar charcoal) didapatkan dari hasil penyulingan gula.

BAB IV HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN. Tabel 7. Hasil Analisis Karakterisasi Arang Aktif

Hasil dan Pembahasan

Hasil dan Pembahasan. konsentrasi awal optimum. abu dasar -Co optimum=50 mg/l - qe= 4,11 mg/g - q%= 82%

Pemanfaatan Kulit Singkong Sebagai Bahan Baku Karbon Aktif

BAB IV HASIL DAN PEMBAHASAN

Kata kunci: surfaktan HDTMA, zeolit terdealuminasi, adsorpsi fenol

LAMPIRAN 1 DATA HASIL PERCOBAAN

Penulis sangat menyadari bahwa masih terdapat banyak kekurangan dalam penyusunan tesis ini, oleh karena itu penulis mengharapkan kritik dan saran

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB II TINJAUAN PUSTAKA

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

HASIL DAN PEMBAHASAN. = AA diimpregnasi ZnCl 2 5% selama 24 jam. AZT2.5 = AA diimpregnasi ZnCl 2 5% selama 24 jam +

BAB I PENDAHULUAN A. Latar Belakang Masalah

LAMPIRAN 1 Pola Difraksi Sinar-X Pasir Vulkanik Merapi Sebelum Aktivasi

ION EXCHANGE DASAR TEORI

BAB I PENDAHULUAN. 1.1 Latar Belakang. Industri yang menghasilkan limbah logam berat banyak dijumpai saat ini.

BAB IV ANALISIS DAN PEMBAHASAN 4.2 DATA HASIL ARANG TEMPURUNG KELAPA SETELAH DILAKUKAN AKTIVASI

PEMBUATAN DAN KUALITAS ARANG AKTIF DARI SERBUK GERGAJIAN KAYU JATI

DAFTAR ISI ABSTRAK... KATA PENGANTAR... DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR LAMPIRAN... BAB I PENDAHULUAN... 1

JURNAL REKAYASA PROSES. Kinetika Adsorpsi Nikel (II) dalam Larutan Aqueous dengan Karbon Aktif Arang Tempurung Kelapa

BAB I PENDAHULUAN A. Latar Belakang Masalah

BAB I PENDAHULUAN A. Latar Belakang Masalah Perindustrian di Indonesia semakin berkembang. Seiring dengan perkembangan industri yang telah memberikan

II. TINJAUAN PUSTAKA. 2.1 Sifat Umum Tanah Masam

BAB I PENDAHULUAN. Dalam bab ini diuraikan mengenai latar belakang masalah, tujuan dari penelitian dan manfaat yang diharapkan. I.

BAB IV. HASIL PENELITIAN DAN PEMBAHASAN

MAKALAH PENDAMPING : PARALEL A. PEMANFAATAN SERBUK GERGAJI KAYU SENGON SEBAGAI ADSORBEN ION LOGAM Pb 2+

BENTONIT SEBAGAI ADSORBEN PADA PEMUCATAN CINCAU HIJAU SERTA KARAKTERISASINYA

Penurunan Bod dan Cod Limbah Cair Industri Batik Menggunakan Karbon Aktif Melalui Proses Adsorpsi Secara Batch

HASIL DAN PEMBAHASAN Preparasi Contoh

dapat ditemukan dalam tanah bentonit. Montmorillonit kualitas komersial sering juga dinamakan

BAB IV HASIL DAN PEMBAHASAN

Efek Suhu Kalsinasi Pada Penggunaan Lumpur Alum IPA sebagai Adsorben Untuk Menurunkan Konsentrasi Limbah Fosfat

BAB I PENDAHULUAN A. Latar Belakang

BAB IV HASIL DAN PEMBAHASAN. coba untuk penentuan daya serap dari arang aktif. Sampel buatan adalah larutan

Lampiran 1. Pembuatan Larutan Methyl Red

BAB III METODE PENELITIAN

BAB IV HASIL DAN PEMBAHASAN. Modifikasi Ca-Bentonit menjadi kitosan-bentonit bertujuan untuk

BAB II TINJAUAN PUSTAKA

BAB IV HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN I.1 Latar Belakang

Pemanfaatan Biomaterial Berbasis Selulosa (TKS dan Serbuk Gergaji) Sebagai Adsorben Untuk Penyisihan Ion Krom dan Tembaga Dalam Air

HASIL DAN PEMBAHASAN. didalamnya dilakukan karakterisasi XRD. 20%, 30%, 40%, dan 50%. Kemudian larutan yang dihasilkan diendapkan

MAKALAH PENDAMPING : PARALEL A

4 Hasil dan Pembahasan

adsorpsi dan katalisator. Zeolit memiliki bentuk kristal yang sangat teratur dengan rongga yang saling berhubungan ke segala arah yang menyebabkan

HASIL DAN PEMBAHASAN. dicatat volume pemakaian larutan baku feroamonium sulfat. Pembuatan reagen dan perhitungan dapat dilihat pada lampiran 17.

LAMPIRAN. Lampiran I Langkah kerja percobaan adsorpsi logam Cadmium (Cd 2+ ) Mempersiapkan lumpur PDAM

BAB IV. HASIL DAN PEMBAHASAN

Manfaat Penelitian. Hipotesis BAHAN DAN METODE. Waktu dan Tempat Penelitian. Bahan dan Alat. Metode Penelitian

ADSORPSI ION Pb 2+ MENGGUNAKAN CAMPURAN KAOLIN-AMPAS SAGU DAN BENTONIT-AMPAS SAGU YUYUN YUNITA

BAB I PENDAHULUAN I.1 Latar Belakang

Simposium Nasional Teknologi Terapan (SNTT) ISSN: X

BAB I PENDAHULUAN. mengandung bahan anorganik yang berisi kumpulan mineral-mineral berdiameter

4 HASIL DAN PEMBAHASAN

II. TINJAUAN PUSTAKA CH 2 O H O

IV. HASIL DAN PEMBAHASAN

Bab IV Hasil dan Pembahasan

LAMPIRAN I DATA PENGAMATAN. 1.1 Analisa Kadar Air Karbon Aktif dari Tempurung Kelapa

Transkripsi:

8 HASIL DAN PEMBAHASAN Kaolin dan limbah padat tapioka dapat dimanfaatkan sebagai adsorben. Penelitian ini menggabungkan kaolin dan limbah padat tapioka kemudian digunakan sebagai adsorben untuk asam lemak bebas dan zat warna biru Kaolin dan limbah padat tapioka yang digunakan terlebih dahulu diaktivasi sebelum dicampur secara homogen. Kaolin diaktivasi dengan lima variasi perlakuan, yaitu T = 750 ºC (A), autoklaf (B), H 2 SO 4 30% (C), T = 750 ºC dan autoklaf (D), T = 750 ºC dan H 2 SO 4 30% (E), sedangkan limbah padat tapioka diaktivasi dengan H 3 PO 4 30%. Aktivasi limbah padat tapioka dengan H 3 PO 4 30% bertujuan untuk menghilangkan senyawa-senyawa selain polisakarida yang terdapat di limbah padat tapioka sehingga diharapkan senyawa tersebut tidak ikut berperan dalam mekanisme adsorpsi asam lemak bebas maupun zat warna. Aktivasi kaolin menggunakan H 2 SO 4 30% bertujuan untuk melarutkan komponenkomponen seperti Fe 2 O 3, Al 2 O 3, CaO, dan MgO yang mengisi ruang antarlapisan kaolin, sehingga aktivasi dengan asam akan menambah luas permukaan adsorben, selanjutnya ion-ion Ca 2+ dan Mg 2+ yang berada pada permukaan kristal adsorben secara berangsur-angsur diganti oleh ion H + dari H 2 SO 4 (Ketaren 1986). Gambar aktivasi H 2 SO 4 terlihat pada Gambar 7. Gambar 7 Skema interaksi proton dengan struktur kaolin. Reaksi yang terjadi pada saat kaolin ikatan antarlapisan silikat dan aluminat yang diaktivasi dengan asam adalah sebagai dihasilkan pada pemanasan suhu tinggi dapat berikut: dipertahankan pada pemanasan dengan uap. Al 2 O 3.2SiO 2.2H 2 O + 3H 2 SO 4 Al 2 (SO 4 ) 3 + 2SiO 2 + 5H 2 O Aktivasi kaolin dengan pemanasan pada suhu tinggi, yaitu 750 C mengakibatkan terjadinya perubahan fase kristal kaolin menjadi metakaolin. Pada suhu ini, ikatan antara Si dan Al diharapkan lebih mudah dipisahkan sehingga gabungan aktivasi pemanasan suhu tinggi dengan kimia akan melarutkan aluminium oksida dan meninggalkan residu SiO 2 (Purwaningsih 2002). Pemanasan dengan menggunakan uap air (suhu 121 C) bertujuan agar perlakukan pemanasan tidak berpengaruh langsung terhadap struktur kaolin sehingga diharapkan struktur kaolin masih dapat dipertahankan dan tidak terjadi pemutusan ikatan antara lapisan silikat dan aluminatnya. Akan tetapi perlakuan tersebut mengakibatkan ada molekul air yang masuk ke dalam ruang antarlapisan kristal kaolin. Gabungan pemanasan suhu tinggi dan uap air bertujuan agar struktur fase kristal baru (metakaolin) yang terbentuk akibat pemutusan Kondisi Optimum Adsorpsi Asam Lemak Bebas Waktu Adsorpsi Waktu kontak merupakan salah satu faktor yang mempengaruhi laju dan besarnya adsorpsi. Pengaruh waktu kontak terhadap asam lemak bebas dapat dilihat pada Gambar 8. Gambar 8 Waktu optimum adsorpsi asam lemak bebas.

9 Lamanya proses adsorpsi ditentukan berdasarkan kapasitas dan persentase efisiensi penjerapannya selama kisaran waktu tertentu. Waktu kontak yang lebih lama memungkinkan proses difusi dan penempelan molekul adsorbat berlangsung lebih baik (Wijaya 2008). Hasil penelitian menunjukkan bahwa kapasitas adsorpsi dan efisiensi penjerapan naik seiring dengan bertambahnya waktu kontak, selanjutnya stabil walaupun terlihat sedikit mengalami penurunan. Waktu optimum adsorpsi yang diperoleh adalah 90 menit dengan kapasitas adsorpsi sebesar 56.38 mg/g artinya untuk setiap 1 g adsorben mampu mengadsorpsi 56.38 mg adsorbat dan efisiensi penjerapan sebesar 9.77%. Data selengkapnya dapat dilihat pada Lampiran 2. hampir seluruh permukaan adsorben telah terikat dengan adsorbat, sedangkan penambahan bobot adsorben sampai 5 gram menyisakan banyak tapak aktif tidak berikatan dengan adsorbat. Data selengkapnya dapat dilihat pada Lampiran 3. Perlakuan Optimum Campuran Kaolin- Limbah Padat Tapioka Adsorben yang dibuat merupakan campuran dari kaolin dan limbah padat tapioka dengan nisbah 75:25 (1), 50:50 (2), dan 25:75 (3). Pengaruh perlakuan adsorben dan perbandingannya terhadap kapasitas adsorpsi dan efisiensi penjerapan dapat dilihat pada Gambar 10. Bobot Adsorben Bobot adsorben mempengaruhi kapasitas adsorpsi dan efisiensi penjerapan. Hal ini dapat dilihat pada Gambar 9. Gambar 9 Bobot optimum adsorpsi asam lemak bebas. semakin banyak jumlah adsorben, maka luas permukaan aktifnya juga meningkat. Semakin luas permukaan adsorben, semakin banyak adsorbat yang dapat dijerap. Hal ini akan meningkatkan efisiensi penjerapan adsorpsi. Data hasil penelitian menunjukkan bahwa efisiensi penjerapan asam lemak bebas meningkat dari 20.09% sampai 29.41% dengan variasi bobot adsorben dari 0.5 g sampai 5 g. Namun demikian, peningkatan jumlah sisi aktif adsorben akan memperluas penyebaran adsorbat, sehingga kapasitas adsorpsi menjadi lebih rendah dibandingkan dengan jumlah tapak aktif adsorben yang lebih sedikit. Kapasitas adsorpsi dengan bobot adsorben 0.5 gram adalah sebesar 222.59 mg/g mengalami penurunan menjadi 32.70 mg/g dengan bobot adsorben sebesar 5 gram. Hal ini menunjukkan bahwa dengan bobot 0.5 gram Gambar 10 Perlakuan optimum adsorpsi asam lemak bebas. paling besar ditunjukkan oleh adsorben E3, yaitu 25% kaolin teraktivasi 750 C dan H 2 SO 4 30% dicampur dengan 75% limbah padat tapioka teraktivasi H 3 PO 4 30%. Gambar 10 menunjukkan bahwa penjerapan asam lemak bebas lebih besar saat komposisi dari limbah padat tapioka lebih banyak daripada kaolin. Kapasitas adsorpsi tertinggi ditunjukkan oleh adsorben E3, yaitu sebesar 479.70 mg/g dan efisiensi penjerapan sebesar 89.94%. Data selengkapnya dapat dilihat pada Lampiran 4. Kondisi Optimum Adsorpsi Zat Warna Waktu Adsorpsi Adsorben dari campuran kaolin dan limbah padat tapioka digunakan untuk menjerap larutan biru metilena dengan konsentrasi 100 mg/l. Lamanya proses adsorpsi ditentukan berdasarkan kapasitas dan efisiensi penjerapannya selama kisaran waktu tertentu. Pengaruh waktu kontak terhadap

10 biru metilena dapat dilihat pada Gambar 11. disebabkan karena saat bobot 0,5 gram hampir seluruh permukaan adsorben telah terikat dengan adsorbat, sedangkan pada bobot 3 gram masih banyak tapak aktif yang belum berikatan dengan adsorbat. Data selengkapnya dapat dilihat pada Lampiran 13. Perlakuan Optimum Campuran KaolinLimbah Padat Tapioka Gambar 11 Waktu optimum adsorpsi biru Konsentrasi larutan biru metilena menurun dari 100 mg/l menjadi 14.59 mg/l dengan bertambahnya waktu adsorpsi. Waktu optimum adsorpsi yang diperoleh adalah 30 menit dengan kapasitas adsorpsi 8.51 mg/g artinya untuk setiap 1 g adsorben mampu mengadsorpsi 8.51 mg ion biru metilena dalam waktu 30 menit dengan efisiensi penjerapan 85.68%. Setelah melewati 30 menit kapasitas adsorpsi dan efisiensi penjerapan cenderung stabil. Data selengkapnya dapat dilihat pada Lampiran 12. Bobot Adsorben Bobot adsorben berpengaruh terhadap larutan biru metilena dengan konsentrasi 100 mg/l, hal ini dapat dilihat pada Gambar 12. Pengaruh perlakuan adsorben dan perbandingannya terhadap kapasitas adsorpsi dan efisiensi penjerapan larutan biru metilena dengan konsentrasi 100 mg/l dapat dilihat pada Gambar 13. Gambar 13 Perlakuan optimum adsorpsi biru terbesar dengan menggunakan adsorben C1, yaitu campuran 75% kaolin teraktivasi H2SO4 30% dan 25% limbah padat tapioka teraktivasi H3PO4 30%. Pada nisbah optimum tersebut diperoleh kapasitas adsorpsi sebesar 9.83 mg/g dan efisiensi penjerapan sebesar 99.53%. Data selengkapnya dapat dilihat pada Lampiran 14. Kapasitas Adsorpsi dan Efisiensi Penjerapan Adsorben Lain Gambar 12 Bobot optimum adsorpsi biru semakin banyak jumlah adsorben maka efisiensi penjerapan adsorpsi semakin meningkat dan kapasitas adsorpsi akan menurun. Hal ini terlihat dari efisiensi penjerapan biru metilena yang meningkat dari 66.83% sampai 94.09% dengan variasi bobot dari 0.5 g sampai 3 g. Penambahan jumlah adsorben akan menurunkan kapasitas adsorpsi dari 13.23 mg/g menjadi 3.12 mg/g. Hal ini Kinerja dari adsorben campuran kaolin dan limbah padat tapioka dievaluasi dengan cara membandingkan kemampuan mengadsorpsinya dengan adsorben komersial, yaitu arang aktif dan adsorben komersial yang diperoleh dari industri pengolahan makanan. nilai asam lemak bebas dan biru metilena yang paling besar adalah dengan adsorben campuran kaolin-limbah padat tapioka (komposit). Data hasil penelitian disajikan pada Tabel 4 dan 5. Berdasarkan nilai kapasitas adsorpsi dan efisiensi penjerapannya, adsorben campuran kaolin dan limbah padat tapioka lebih baik

11 dalam adsorpsi asam lemak bebas dan zat warna daripada arang aktif dan adsorben komersial. Hal ini disebabkan karena komposit bekerja dengan dua jenis adsorben yang bekerja secara sinergis untuk menjerap asam lemak bebas dan biru Tabel 4 Data adsorpsi asam lemak bebas dengan berbagai jenis adsorben Adsorben Efisiensi Kapasitas Penjerapan Adsorpsi (%) (mg/g) Komposit 89.94 479.6968 Arang aktif 70.38 387.5826 Adsorben komersial 59.38 327.0222 Tabel 5 Data adsorpsi biru metilena dengan berbagai jenis adsorben Adsorben Efisiensi Kapasitas Penjerapan Adsorpsi (%) (mg/g) Komposit 99.53 9.83 Arang Aktif 96.79 9.59 Adsorben komersial 78.84 7.87 Onggok 47.26 4.69 Data yang disajikan pada Tabel 4 dan 5 juga mengindikasikan bahwa kapasitas adsorpsi dari asam lemak bebas lebih besar daripada zat warna biru Hal ini dikarenakan ukuran molekul biru metilena lebih besar daripada asam lemak bebas, sehingga lebih mudah molekul asam lemak bebas masuk ke dalam pori-pori adsorben daripada biru Data selengkapnya dapat dilihat pada Lampiran 5 dan 15. Isoterm Adsorpsi Tipe isoterm adsorpsi dapat digunakan untuk mengetahui mekanisme penjerapan asam lemak bebas dan biru metilena dengan adsorben campuran dari kaolin dan limbah padat tapioka. Isoterm adsorpsi Langmuir dilakukan dengan cara membuat kurva hubungan c/(x/m) terhadap c, sedangkan isoterm adsorpsi Freundlich dilakukan dengan membuat kurva hubungan log x/m terhadap log c. Isoterm adsorpsi asam lemak bebas dapat dilihat pada Gambar 14 dan Gambar 15. Linearitas kedua tipe isoterm adsorpsi berbeda, yaitu 65.94% untuk isoterm Langmuir dan 93.66% untuk isoterm Freundlich. Gambar 14 Isoterm Langmuir adsorpsi asam lemak bebas Gambar 15 Isoterm Freundlich adsorpsi asam lemak bebas Berdasarkan penelitian ini dapat ditentukan bahwa adsorpsi asam lemak bebas mengikuti tipe isoterm Freundlich karena nilai linearitasnya lebih besar. Isoterm Freundlich mengasumsikan bahwa adsorpsi yang melibatkan fase padat-cair berlangsung secara fisika. Adsorpsi secara fisika terjadi terutama karena adanya gaya tarik antara molekul zat terlarut dengan adsorben lebih besar daripada gaya tarik antara molekul dengan pelarutnya, sehingga zat terlarut tersebut akan diadsorpsi ke permukaan adsorben. Mekanisme adsorpsi asam lemak bebas terjadi melalui gaya tarik-menarik antarmolekuler di antara adsorben dengan asam lemak bebas dalam minyak goreng bekas. Ikatan yang terjadi antara asam lemak bebas dan adsorben diperkirakan terbentuk melalui ikatan hidrogen. Pada kaolin terjadi ikatan hidrogen antara atom O pada SiO 2 dengan atom H pada gugus karboksil dalam asam lemak bebas, sedangkan pada limbah padat tapioka terjadi ikatan hidrogen antara atom O pada gugus OH dalam selulosa dengan atom H gugus karboksil dalam asam lemak bebas. Ikatan tersebut sangat lemah sehingga mudah diputuskan. Hasil yang berbeda diperoleh pada isoterm adsorpsi biru Tipe isoterm adsorpsi zat warna dapat dilihat pada Gambar 16 dan Gambar 17.

12 Nilai konstanta n, k, α, dan β dapat dihitung dari persamaan regresi Freundlich dan Langmuir untuk asam lemak bebas (ALB) dan biru metilena (BM) dapat dilihat pada Tabel 6 dan 7. Tabel 6 Nilai konstanta n dan k dari persamaan Freundlich Gambar 16 Isoterm Langmuir adsorpsi biru metilena Adsorbat ALB BM n 1.4641 20.3666 K 0.1407 101.5781 R 93.66 86.74 Nilai n dan k pada isoterm Freundlich tergantung pada suhu, adsorben, dan unsurunsur yang dijerap. Nilai n menggambarkan intensitas dari adsorpsi, sedangkan nilai k menunjukkan kapasitas adsorpsi dari adsorben. Tabel 7 Nilai konstanta α dan β dari persamaan Langmuir Adsorbat ALB BM Gambar 17 Isoterm Freundlich adsorpsi biru metilena Linearitas kedua tipe isoterm adsorpsi adalah 99.62% untuk isoterm Langmuir dan 86.74% untuk isoterm Freundlich. Berdasarkan nilai linearitas kedua tipe isoterm adsorpsi dapat ditentukan bahwa adsorpsi biru metilena mengikuti tipe isoterm Langmuir karena nilai linearitasnya lebih besar daripada nilai linearitas isoterm Freundlich. Mekanisme adsorpsi biru metilena berlangsung secara kimisorpsi oleh adsorben campuran tersebut. Hal ini menunjukkan bahwa adsorben memiliki permukaan yang homogen dan hanya dapat mengadsorpsi satu molekul adsorbat untuk setiap molekul adsorbennya. Adsorpsi terjadi akibat adanya interaksi kimia antara padatan adsorben dengan material yang terjerap. Selain itu, adsorpsi biru metilena ini diperkirakan terjadi secara sinergis antara kaolin dengan selulosa pada limbah padat tapioka melalui mekanisme pertukaran ion. Struktur aluminasilikat pada kaolin memiliki sifat kelebihan elektron. Kelebihan elektron ini akan diimbangi oleh kehadiran kation-kation pusat asam (H+). Biru metilena memiliki muatan positif yang akan menggantikan ion H+ tersebut, sehingga biru metilena terjerap oleh kaolin. Pada limbah padat tapioka, molekul biru metilena akan berikatan pada gugus -OH selulosa. α 204.0816 131.5789 Β 0.00006 0.7308 R 65.94 99.62 Nilai α menggambarkan jumlah yang dijerap atau kapasitas adsorpsi untuk membentuk lapisan sempurna pada permukaan adsorben. Nilai β merupakan konstanta yang bertambah dengan kenaikan ukuran molekuler yang menunjukkan kekuatan ikatan molekul adsorbat pada permukaan adsorben. Nilai-nilai konstanta n, k, α, dan β pada isoterm adsorpsi asam lemak bebas dan biru metilena tidak dapat dibandingkan. Hal ini disebabkan karena asam lemak bebas dan biru metilena merupakan dua senyawa yang memiliki ukuran yang berbeda. Selain itu, metode yang digunakan untuk adsorpsi kedua senyawa juga berbeda. SIMPULAN DAN SARAN Simpulan Adsorben campuran kaolin dan limbah padat tapioka terbukti dapat digunakan sebagai adsorben untuk asam lemak bebas dan zat warna. Kondisi optimum adsorpsi asam lemak bebas dicapai pada waktu 90 menit dengan adsorben campuran 25% kaolin teraktivasi 750 C serta H2SO4 30% dan 75 % limbah padat tapioka teraktivasi H3PO4 30%. Kondisi optimum adsorpsi zat warna dicapai pada waktu 30 menit dengan adsorben campuran 75% kaolin teraktivasi H2SO4 30%